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SUMMARY

Change point detection aims to find abrupt changes in time series data. These changes
denote substantial modifications to the process; these can be modeled as a change in the
distribution (in location, scale, or trend). Traditional changepoint detection methods often
rely on a cost function to assess if a change occurred in a series. Here, change point de-
tection is investigated in a mixture-model-based clustering framework and a novel change
point detection algorithm is developed using a finite mixture of regressions with concomi-
tant variables. Through the introduction of a label correction mechanism, the unstructured
clustering-based labels are treated as ordered and distinct segment labels. This approach
can detect change points in both univariate and multivariate time series, and different kinds
of change can be captured using a parsimonious family of models. Performance is illus-
trated on both simulated and real data.
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1 Introduction

Finding change points entails identifying abrupt, large, or rapid changes, that involve a shift in lo-
cation/trend, scale, or distribution in the data-generating process. Those changes frequently require
further investigation because they may indicate a substantial change to the process. These change
points separate the time series into distinct, homogeneous segments. Changepoint detection has
previously been noted to be a key task for large data analysis (National Research Council, 2013).
Change point detection has been proposed and used in multiple applications including medical sta-
tus monitoring (Robinson et al., 2010; Liu et al., 2017), climatology (Beaulieu and Killick, 2018),
quality control (Page, 1954; Lai, 1995), signal and image analysis (Han et al., 2012; Fryzlewicz,
2014), and finance (Taylor and Letham, 2018), etc.

Traditional change point detection methods, at their core, determine if a difference in some met-
ric is larger than some threshold by comparing the model fit of a model with change points (single or
multiple) versus no change point (or fewer change points). However, many approaches/implemen-
tations exist for change point detection. Wald (1945) developed a sequential probability ratio test,
that made use of a likelihood ratio test to determine if the parameters of two density functions differ.
Based on the control chart demonstration by Shewhart and Deming (1940), Page (1954) proposed a
Cumulative Sum (CUSUM) control chart as a nonparametric approach for identifying the presence
of a change point. Direct density ratio methods have been established (Kuncheva, 2011; Kawahara
and Sugiyama, 2012; Liu et al., 2013; Alippi et al., 2016), which replace the density function with
nonparametric dissimilarity measures to simplify the estimation in likelihood ratio and expand the
approach to additional scenarios. Other approaches include product partition models (Loschi and
Cruz, 2005; Loschi et al., 2010) and the Bayesian change point detection approach (Prescott Adams
and MacKay, 2007; Lau and Yamamoto, 2010; Malladi et al., 2013; Roberts and Zhao, 2022). Limi-
tations of some of these can include reliance on a greedy algorithm, restrictions to a univariate series,
or a strong reliance on cost and penalty functions, and repeated testing.

By treating each distinct segment as a cluster, the change point detection problem can also be
reframed as a clustering problem. As such, the number of segments/clusters can be unknown, and
the goal of the analysis is to identify segments such that observations are homogeneous within
segments and heterogeneous between segments. Some efforts have been made towards clustering of
time series data with change points (Samé et al., 2011; Zakaria et al., 2012; Tran, 2019), while other
approaches have been based on k-means (Li et al., 2020; Dawn et al., 2021). Although some of these
methods utilize existing clustering techniques, they can also rely on repeated testing to find multiple
change points. Other efforts including those that used mixture model-based clustering and change
point detection include Joseph and Wolfson (1993) and Joseph et al. (1996), Zhu and Melnykov
(2022) and Sarkar and Zhu (2022).

Due to its modelling versatility, the finite mixture model (MacLahlan and Peel, 2000) is the
most popular framework for investigating heterogeneity in data (McNicholas and Murphy, 2008;
Lin, 2009; Subedi et al., 2020; Tu and Subedi, 2022a,b; Dang et al., 2023). A finite mixture model
assumes that the data can be represented as a mixture of G components where each component
follows a unique distribution. By treating each segment of consecutive measurements as a distinct
cluster, the change point detection problem can be modelled as a clustering problem. Thus, each
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subgroup or component can be seen as a segment of consecutive measurements, and a change point
can be defined when the distribution changes. It can also be extended conveniently to a multivariate
form and integrated into a mixture of regressions framework (Wedel, 2002).

Herein, we propose a novel change point detection algorithm using a Gaussian mixture model
which can detect change points in both univariate and multivariate scenarios. In model-based clus-
tering, observations within a cluster are typically independent and unordered. By introducing a
label correction algorithm, our algorithm can ensure that the cluster label corresponds to distinct
segments, preserving the sequential nature of time series and facilitating the detection of multiple
change points. A family of parsimonious models is developed, which allows for change point detec-
tion on several common scenarios (change in mean, variance and slope), and the best-fitted model
among the fitted models can be chosen using a model selection criteria. Our approach is also rel-
atively robust to outliers. The manuscript is structured as follows: Section 2 describes the main
algorithm and Section 3 introduces the family of models and model selection criteria. Simulation
and real data studies are presented in Sections 4 and 5. Section 6 concludes with a discussion.

2 Methodology
Let t denote time, and X denote a n × p matrix consisting of measurements of p variables at n
different time points. To account for time via the finite mixture model, and capture changes in
trend, a finite mixture of regressions with concomitant variables (FMRC; Wedel, 2002) framework
is adopted where time t is treated as a concomitant variable. The density function of aG-component
FMRC can be written as

f(xi|Θ) =

G∑
g=1

πigfg(xi|β0g + tiβ1g,Σg),

where πig = exp(α0g + α1gti)/
∑G

g=1 exp(α0g + α1gti), the mixing weight, follows a multino-
mial logit model with the first component as the baseline. Here, fg(xi|β0g + tiβ1g,Σg) is a Gaus-
sian density function of the gth component, and β0g and β1g are p-dimensional vectors of intercepts
and regression coefficients, Σg is a p×p covariance matrix, and Θ = (α01, . . . , α0G, α11, . . . , α1G,

β01, . . . ,β0G,β11, . . . , β1G,Σ1, . . . ,ΣG) represents the model parameters.
The unobserved group membership of each observation is treated as missing data. We define the

membership indicator variable Zi as

Zig =

1 observation i ∈ gth component,

0 otherwise.

The complete-data likelihood is as follows:

L(Θ) =

n∏
i=1

G∏
g=1

{
πigfg(xi|β0g + tiβ1g,Σg)

}zig
.
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We define T as the design matrix such that the first column of T is a n dimensional vector of 1s
and the second column of T is time t with Ti being the ith row of T and we define ζg as a 2 × p

dimensional matrix where the first row of ζg is β0g and the second row of ζg is β1g . Then, the
complete-data likelihood can be written as

L(Θ) =

n∏
i=1

G∏
g=1

{
πigfg(xi|Tiζ̂g,Σg)

}zig
.

2.1 The EM algorithm

Parameter estimation can be done via an expectation-maximization (EM) algorithm (Dempster et al.,
1977). An EM algorithm comprises two steps: an E-step where the expected value of the complete-
data log-likelihood is computed and an M-step where the expected value of the complete-data log-
likelihood is maximized to obtain the maximum likelihood estimate of the model parameters.

The complete data log-likelihood can be written as

l(Θ) = logL(Θ) = log

n∏
i=1

G∏
g=1

{
πigfg(xi|Tiζ̂g,Σg)

}zig

=

n∑
i=1

n∑
g=1

zig log πig +

n∑
i=1

n∑
g=1

zig log fg(xi|Tiζ̂g,Σg).

The expected value of the complete-data log-likelihood requires the expected value of the missing
data zig conditional on xi. The expected value of the zig conditional on xi for a mixture of Gaussian
distributions is

E(zig | xi) = ẑig =
πgfg(xi|Tiζ̂g,Σg)∑G

h=1 πhfh(xi|Tiζ̂h,Σh)
. (2.1)

In the M-step, using the expected value of the complete-data log-likelihood, we obtain the max-
imum likelihood estimates of the model parameters ζg and Σg:

ζ̂g = (

n∑
i=1

ẑigT
T
i Ti)

−1
n∑

i=1

ẑigT
T
i xi,

Σ̂g =

∑n
i=1 ẑig(xi −Tiζ̂g)(xi −Tiζ̂g)

T∑n
i=1 ẑig

, (2.2)

and thus, β̂0g = ζ̂g[1, ] and β̂1g = ζ̂g[2, ].

The α in πig can be estimated by fitting a multinomial regression of ẑ with time t. The E and M
steps are iterated until convergence. We determine the convergence of the EM algorithm based on
Aitken’s acceleration (Aitken, 1926).
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2.2 Changepoint detection

The estimated ẑig is a soft classifier, i.e., it is the posterior probability of the ith observation be-
longing to the gth component. Here, we view each component as a segment in x such that the
observations in one segment are a sequence of consecutive observations generated from the same
distribution, i.e., with the same component membership. Then, we can define a new variable z∗

as the membership of the segment and a changepoint is defined as the first time point when the
component membership switches.

In traditional mixture model-based clustering, the final cluster assignment is often done using
hard partitioning of ẑig where the ith point is assigned to the component with the largest weight.
Directly using the hard classification of ẑig from the EM algorithm for a segment has several issues.
First, the number of segments will not necessarily equal the number of components. For instance,
a sequence with z = (1, . . . , 2, . . . , 1, . . .) has 3 segments but only 2 components. Secondly, the
cluster assignment of the ith observation is considered independent of the jth observation where
j = 1, . . . , n and j ̸= i. Thus, the cluster assignment will not always form distinct, contiguous
segments. Moreover, if the data is noisy or has potential outliers, there may not be clear separation
between the segments. In such a scenario, z∗ could look like (1, 2, 1, 1, 1, 2, 1, 2, 2, 2). To reduce
the effects of atypical/noise observations, we first apply a moving average with degree m on X to
smooth the data resulting in a xnew such that

xnew
i =

∑i+m−1
j=i xj

m
.

Note that xnew has a shorter length with time ranging from 1 to n−m+1. As long as the degreem is
smaller than the number of observations in the last segment, the last m− 1 observations will always
belong to the last segment. After smoothing, we run cluster analysis using a Gaussian mixture model
on xnew and obtain ẑ∗. Based on the smoothed xnew, and cluster labels ẑ∗, we define the following
terms:

- The vector containing all change points is denoted as c with length G∗ such that cg is the gth

changepoint and c1 = 1.
- w: window size.
- ẑ∗[cg : cg +w− 1] represents a vector of length w containing labels of w observations at and

after the cthg changepoint.
- l: the label that has the highest proportion inside the cthg window.
- s: stopping number, i.e., s = 0, 1.

The basic idea of the proposed changepoint detection algorithm is to find the position where the
membership label switches, i.e., a new segment starts. First, we find the label that has the highest
proportion (l) inside the first (or previous) segment, then use l to define the segment. Recall that
here we define a change point as the position where a new segment starts. We then compute the
number of l for all subsequent rolling windows from left to right of size w. Let lj be the number of
l in jth rolling window. Ideally, we would like to see lj = 0 at some time point, so that the label
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l completely disappears, indicating a change has happened. But in reality, a complete change may
be too restrictive. Instead, we use the stopping number s, which is the number of l in windows such
that the segment changes if lj ≤ s. For example, with w = 5 and s = 0, in a dataset with labels
(1, 2, 1, 1, 1, 2, 1, 2, 2, 2, . . .) the first changepoint will be detected at 8th position (identifying the
changepoint after label “1” completely disappears i.e., (1, 2, 1, 1, 1, 2, 1, 2, 2, 2, . . .) ) whereas with
w = 5 and s = 1, in the same dataset, the first changepoint will be detected at 6th position (iden-
tifying the changepoint when 1 out of 5 observations has label lj i.e., (1, 2, 1, 1, 1, 2, 1, 2, 2, 2, . . .).
Thus s > 0 allows some contamination in the next segment. Depending on the combination of w
and s, the position of inferred change points could change. The algorithm to detect changepoints is
summarized below:

Algorithm 1. Algorithm 1: Algorithm for changepoints detection
1: g = 1 and c1 = 1.
2: while g < gmax do
3: Compute the number of labels following the last changepoint in the next window: ẑ∗[cg :

cg + w − 1]

4: Let l be the label that has the highest proportion inside the cthg window.
5: Compute the number of l for all subsequent rolling windows of size w.
6: Let lj be the number of l in the jth rolling window. Then, we find the first window such

that lj ≤ s.
7: if no window satisfies lj ≤ s or cg+1 − cg < 3 then
8: Break
9: end if

10: Define the left end of that window to be cg+1.
11: g = g + 1

12: end while
Output: c

end

Here, gmax is the maximum number of segments that can be detected, set to gmax = 30 in our work.

2.3 Overall algorithm

The overall algorithm, referred to from hereon as change point mixture model (cpmm) algorithm,
where change point detection is incorporated within the EM algorithm is summarized below:
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Algorithm 2. Algorithm 2: Algorithm for changepoint mixture model Input: x, G, m, w, s

Initialization:
1: Apply moving average with degree m on x.
2: Initialize cluster label z∗ based on mclust (Scrucca et al., 2016) or flexmix (Grün and Leisch,

2008) with concomitant variables with G.
3: Apply Algorithm 1 for changepoint detection with input z∗, w and s.

return c.

Main:
4: Create G∗ segments with c and initialize another FMRC model with G∗ components.
5: Run the EM algorithm outlined in Section 2.1 on the new G∗-component model to obtain the

estimates of the model parameters and ẑig,G∗ based on the new G∗-component model and
obtain new z∗G∗ .

6: Set Gnew as the total number of unique labels in the z∗G∗ .
7: while Gnew < G∗ do
8: Restart the EM algorithm outlined in Section 2.1 with Gnew.
9: Get ẑig and z∗Gnew

.
10: Set G∗ = Gnew and redefine Gnew as the total number of unique labels in the z∗Gnew

.
11: end while
12: Apply Algorithm 1 for changepoint detection with input z∗Gnew

, w, and s.

Output: cGnew which is the vector of final changepoints.
end

Using the final cGnew
, we define the final Gnew segments and then obtain the final estimate of the Ẑ

matrix Zig = 1 if an observation belongs to g segment and 0 otherwise. Using Ẑ, the estimates of
the model parameters β0g , β1g , and Σg can be obtained.

3 Family of models and model selection
Constraints can be imposed on β and Σ for parsimony; these are outlined in Table 1 resulting in a
family of four models.

The model “trend” is the unconstrained model introduced in Section 2 with details of the pa-
rameter estimation provided in Section 2.1. In the model “VV”, we impose the constraint that the
slope is 0, i.e., the segments are modelled with unique means and covariance matrices. Imposing
constraints that the means are equal across segments but the covariance differs results in the model
“EV” while imposing constraints that the means across the segments are different but covariance is
the same results in the model “VE”. Details on the parameter estimation of the three latter models
are provided in the Appendix.

Ideally, detection of the segments should not be impacted if observations are ordered x1,x2, . . . ,

xn or in reverse order: xn, xn−1, . . . , x1. Hence, we also reverse the ordering of the data and fit all
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Table 1: Specification of different constraints in the family of models.

Model name β0g β1g Σg Number of parameters

trend β0g = β0g β1g = β1g Σg = Σg G∗
(

p(p+1)
2

+ 2p
)
+ 2(G∗ − 1)

VV β0g = β0g β1g = 0 Σg = Σg G∗
(

p(p+1)
2

+ p
)
+ 2(G∗ − 1)

VE β0g = β0g β1g = 0 Σg = Σ G∗p+ p(p+1)
2

+ 2(G∗ − 1)

EV β0g = β0 β1g = 0 Σg = Σg G∗
(

p(p+1)
2

)
+ p+ 2(G∗ − 1)

models in the family to the reversed data as well.

As the number of segments is unknown, we run our algorithm with a range of values for G.
Moreover, the optimal model from the family of models for a given dataset is also unknown. We also
run these algorithms to allow for some small contamination of the segments to make the algorithm
more robust to outliers. Hence, we run all four models for s = {0, 1}, window size w = {5, 10},
number of observations in moving average m = {1, 5, 10}, and G = {2, 3} using both original
and reverse ordering of the data and the best-fitting model is chosen based on a model-selection
criterion a posteriori. Note that G is crucial only for initialization of Algorithm 2. The final number
of segments is determined by c and it can be larger than G. The Bayesian information criterion
(BIC; Schwarz, 1978) is the most widely used model selection criterion and is considered to be
consistent and efficient under certain regularity conditions (Keribin, 2000; Fraley and Raftery, 1998).
Mathematically,

BIC = −2L+ ψ log n,

where L is the log-likelihood, ψ is the number of free parameters, and n is the total number of time
points. The model with the lowest BIC is chosen as the best model.

4 Simulation studies

Here, we demonstrate the performance of cpmm in both univariate and multivariate scenarios and
provide comparisons with other existing approaches with R implementations. For each simulation
scenario, we generate 100 datasets and fit the family of models for a range of initial G using both
the original ordering of the data and the reversed ordering of the data. The goal here is to have a
high true positive rate (i.e., identifying a true changepoint as a changepoint) and a low false positive
rate (i.e., identifying a data point as a changepoint when it is not a true changepoint). Since the
changepoints split data into segments, we utilize the adjusted Rand index (ARI; Hubert and Arabie,
1985) to measure the agreement between the true (when known) and estimated segments. An ARI
value of 1 stands for perfect agreement and has an expected value of 0 under random classification.
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4.1 Univariate simulations

For the univariate case, we conduct six sets of simulations (Figure 1). The performance of our
proposed algorithm is compared to the following four methods available in R: mcp (Lindeløv, 2020),
change point (Killick and Eckley, 2014; Killick et al., 2022), EnvCpt (Killick et al., 2021) and stepR
(Pein et al., 2022). Figure 1 shows examples of one example dataset generated under each scenario:

- Simulation Scenario 1 (4 segments): The datasets are generated using a mixture of normal
distributions such that different segments have different means but the same variance.

- Simulation Scenario 2 (4 segments): The datasets are generated using a mixture of normal
distributions such that different segments have the same mean but different variances.

- Simulation Scenario 3 (3 segments): The datasets are generated using a mixture of regression
models with different slopes. The slopes of adjacent segments are simulated with contrasting
directionality, i.e., β1g from the neighbouring segments have opposite signs.

- Simulation Scenario 4 (3 segments): The datasets are generated using a mixture of regres-
sions with different slopes. However, the slopes are changing gradually and towards the same
direction (all β1g have the same signs). Scenario 4 is considered a challenging case according
to Beaulieu and Killick (2018).

- Simulation Scenario 5 (7 segments): Here, the datasets are generated with noise, similar to
Simulation Scenario 2 from Fearnhead and Rigaill (2019). To add noise, we randomly replace
50 points with noise from a t-distribution with 5 degrees of freedom.

- Simulation Scenario 6 (4 segments): The datasets are generated using 4 different skew-normal
distributions (i.e., 4 segments) from package: sn. The parameters of skew-normal distributions
are ξ, ω, and α, where ξ and ω control the location and scale of the distribution and α controls
the skewness. All four segments are generated to have slightly different location parameters.
The first and last segments are both generated to have left-skewness with the same scale, the
second segment is generated to have a larger scale and right-skewness, and the third segment
is generated with a smaller scale value but with right-skewness as well.

Note that some competitive approaches have some limitations, which need to be taken into ac-
count while fitting these models on the simulated datasets. The package mcp provides a change point
detection algorithm based on a regression framework which can model various complex structures
of the data, however, it requires prespecifying the number of segments and the structure of seg-
ments, such as constant, slope or AR process as well as the order of the segments. The other three
methods can detect change points automatically: stepR uses the step function to model time-series
data. change point can detect changes in mean and variance, while EnvCpt utilizes a similar search
algorithm as change point but uses the univariate normal distribution to model each segment with
and without the AR process introduced.

For each dataset, for cpmm, we ran all four models in the family for a range of G using both the
original ordering and reverse ordering of the datasets and the best model was chosen using BIC. As
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Figure 1: Example datasets from each of the six simulation scenarios for the univariate case. Red
lines indicate either the mean (or location parameter in Scenario 6) or the slope.

mcp requires prespecifying the number of segments and the structure of segments, such as constant,
slope or AR process and the order of the segments, it was provided for all scenarios. To have a
fair comparison, we use function cpt.meanvar with method “PELT” for changepoint, and only run
mean and trend detection for EnvCpt. The default setting is selected for stepR.

The results from all five approaches are summarized using density plots (see Figure 2), which
show the high-density regions of the change points identified by each approach and using a table
(see Table 2), which shows the proportions of changepoints that were identified within ± k (with
k = 1, 3, 5) observations of the true change point out of the changepoints that were identified.

Although mcp required prespecifying the number of segments and the structure of segments (i.e.,
specifying whether to fit the model with a slope or mean), it did not have the best performance in
five out of six scenarios: Scenarios 1, 2, 3, 5, and 6. According to the density plot in Figure 2
and Table 2, we can see that all methods perform well in Simulation Scenario 1. All changepoints
detected by cpmm are within 5 observations of the true changepoint and EnvCpt and stepR have the
highest ARI. For Simulation Scenario 2, as stepR cannot model the changes in variances, it did not
perform well while EnvCpt had the highest ARI as well as the highest proportion of changepoints
detected. Our proposed approach yields competitive performance based on both the proportion of
changepoints detected as well as ARI. As changepoint and stepR don’t model slopes, poorer perfor-
mance is expected in Scenarios 3 and 4. When there is a change is in the slope, cpmm outperforms
all other methods in Scenario 3. Although mcp performed slightly better than cpmm in Scenario 4,
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Figure 2: Density plots showing the high-density regions of the selected changepoints for the six
univariate simulation scenarios using all 5 approaches (our proposed approach and four competitive
approaches). The x-axis indicates the time points and the vertical dashed lines are the true change
points.

note that the number of changepoints (presence of three segments) and the structure of the model
(i.e., information that all three segments have different slopes) are provided to the mcp algorithm,
whereas cpmm is an unsupervised implementation. Note that cpmm also had better performance
than EnvCpt in this challenging scenario. In scenario 5, cpmm has the best performance in selecting
the correct number of change points although a lower ARI compared to changepoint and EnvCpt. In
scenario 6 where the dataset is generated from a mixture of skew-normal distributions, when looking
at change points detected within ±1 of the true change points, the EnvCpt algorithm outperforms
all other approaches whereas when looking at changepoints detected within ±3 or ±5 of the true
changepoints, cpmm, EnvCpt, and changepoint have similar performance. In terms of picking out
the changepoints in the neighbourhood of the true changepoint, stepR did not perform as well as the
other approaches. mcp on the other did not perform well on this dataset. In terms of ARI, EnvCpt
yielded the highest ARI while a similar ARI was observed for cpmm and changepoint.

4.2 Multivariate case

Here, we demonstrate the performance of our proposed model on simulated multivariate datasets
generated under two different scenarios. Changepoint detection on multivariate data is typically
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Table 2: Summary of the proportion of changepoints that were detected within ± k (with k = 1, 3, 5)
observations of the true changepoints. The average ARI along with standard deviations (sd) from all
five approaches are also provided.

Univariate ± k cpmm changepoint EnvCpt stepR mcp

Scenario 1


±1

±3

±5


0.91

1

1

0.98

0.99

0.99

0.99

0.99

0.99

0.98

0.99

0.99

0.63

0.73

0.79

ARI Mean (sd) 0.97 (0.02) 0.96 (0.01) 0.99 (0.01) 0.99 (0.02) 0.88 (0.15)

Scenario 2


±1

±3

±5


0.48

0.77

0.91

0.83

0.97

0.98

0.84

0.98

0.99

0.07

0.13

0.20

0.38

0.60

0.70

ARI Mean (sd) 0.90 (0.07) 0.95 (0.02) 0.98 (0.02) 0.60 (0.06) 0.80 (0.20)

Scenario 3


±1

±3

±5


0.72

0.93

0.99

0.06

0.12

0.20

0.68

0.93

0.98

0.09

0.15

0.23

0.38

0.58

0.92

ARI Mean (sd) 0.93 (0.05) 0.34 (0.04) 0.91 (0.05) 0.35 (0.03) 0.84 (0.09)

Scenario 4


±1

±3

±5


0.18

0.38

0.56

0.03

0.08

0.13

0.11

0.23

0.41

0.02

0.07

0.13

0.34

0.66

0.88

ARI Mean (sd) 0.79 (0.11) 0.49 (0.05) 0.74 (0.11) 0.49 (0.05) 0.89 (0.07)

Scenario 5

±1

±3

 0.45

0.58

0.33

0.39

0.30

0.41

0.16

0.22

0.08

0.12

ARI Mean (sd) 0.55 (0.10) 0.65 (0.14) 0.65 (0.14) 0.45 (0.08) 0.40 (0.16)

Scenario 6


±1

±3

±5


0.87

0.98

0.99

0.96

0.99

0.99

0.98

1

1

0.69

0.72

0.73

0.06

0.09

0.14

ARI Mean (sd) 0.96 (0.06) 0.96 (0.01) 0.99 (0.01) 0.93 (0.05) 0.54 (0.08)

more challenging than changepoint detection on univariate data, and many available R algorithms
are restricted to univariate data only.

- Multivariate Scenario 1: We consider the first multivariate scenario as the same as the example
in ecp (James and Matteson, 2014). In this scenario, the means are the same across segments
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but the variances are different; this would be analogous to our “EV” model. The observations
are drawn from a 3-dimensional multivariate Gaussian distribution with β0 = β1 = (0, 0, 0),
and the following covariance matrix:

Σ1 =

1, 0, 0

0, 1, 0

0, 0, 1

 , Σ2 =

1, 0.9, 0.9

0.9, 1, 0.9

0.9, 0.9, 1

 , Σ3 =

1, 0, 0

0, 1, 0

0, 0, 1

 .

Assuming that the variables are independent, each univariate variable follows aN(0, 1). Thus,
applying univariate changepoint methods will not model the data adequately. Thus, it is crucial
to model the data as multivariate data using a multivariate changepoint detection approach.

- Multivariate Scenario 2: In the second multivariate scenario, the observations are drawn from
an 8-dimensional multivariate Gaussian distribution with 3 segments. The covariance matrix
of the three segments is set to be the same across segments but the intercepts and the slopes
for the jth variable (where j = 1, . . . , 8) are generated from N(0, 10) and N(0, 0.5), for all
segments respectively.

We compared the performance of our approach with the multivariate changepoint detection ap-
proach in ecp which utilizes a divergence measurement to determine if two independent variables
are identically distributed.

Figure 3: Density plots show the high-density regions of the selected changepoints for the two
multivariate simulation scenarios using both cpmm and ecp approaches. The x-axis indicates the
time points and the vertical dashed lines are the true change points.

As evident in Figure 3 and Table 3, cpmm performs very well in both multivariate scenarios.
In Scenario 1, where one expects the univariate case to not perform satisfactorily, both cpmm and
ecp show good performance. However cpmm is slightly better in inferring changepoints in the
neighbourhood of the true changepoints. In Scenario 2, where the change in each dimension is a
mixture of different slopes, ecp could not always correctly identify the changepoint. cpmm on the
other hand detects the changepoints well (within ±1 observations of the true changepoint) and has
a high ARI.
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Table 3: Summary of the proportion of changepoints that were detected within ± k (with k = 1, 3, 5)
observations of the true changepoints. The average ARI along with standard deviations (sd) from
both cpmm and ecp approaches are also provided.

Multivariate ±k cpmm ecp

Scenario 1


±1

±3

±5


0.68

0.86

0.92

0.58

0.76

0.85

ARI Mean (sd) 0.98 (0.03) 0.95 (0.10)

Scenario 2


±1

±3

±5


1

1

1

0.17

0.18

0.18

ARI Mean (sd) 0.99 (0.01) 0.31 (0.02)

5 Real data analysis

In the real data analysis, we applied cpmm to two publicly available datasets: Well-log dataset
and House Price Index dataset.

5.1 Well-log dataset

We apply our method to the well-log dataset (Ruanaidh and Fitzgerald, 1996), which is a univari-
ate time series dataset. Models were fitted with G = {2, . . . , 6}, window size w = {10, 20},
m = {1, 10, 20}, and stop number s = {0, 1}. This data comprises measurements on rocks from a
probe being lowered into a bore-hole. As the probe passes through different rock strata, there is a
sudden change in the measurements. The original motivation for collecting this data was to detect
the changes in real-time when the rock strata are being drilled so that once the change is detected,
appropriate adjustments to the settings of the drill can be made. Several studies have analyzed this
dataset (Ruanaidh and Fitzgerald, 1996; Wyse et al., 2011; Fearnhead, 2006; Ruggieri and Antonel-
lis, 2016). Fearnhead and Rigaill (2019) pointed out that there is another version of this dataset
which contains several outliers. Visualization of the two versions of the dataset is provided in Fig-
ure 4: the plot on the left is the dataset with outliers, and the one on the right is the version where
these outliers have been removed.

We applied our methods along with the comparator approaches from packages changepoint,
EnvCpt and stepR on both versions of the Well-log dataset. Visualization of the changepoints
detected in the dataset without outliers is presented in Figure 5 and the dataset with outliers is
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Figure 4: Visualization of the two versions of the Well-log dataset.

presented in Figure 6.
Based on Figures 5 and 6, we can see that cpmm is the most conservative approach. In terms of

the number of changepoints detected, visual inspection of Figures 5 and 6 reveals that changepoint
detected the most number of changepoints followed by stepR; in both cases, some observations
are identified as changepoints even though the shift in the data looks to be quite small. Although
EnvCpt and cpmm perform similarly, cpmm is more robust to outliers as there is a smaller difference
in changepoints detected in datasets with and without outliers. Furthermore, the performance of
cpmm agreed better with the results from Fearnhead and Rigaill (2019).

5.2 House Price Index dataset

We consider the changes in the UK House Price Index (HPI) for four countries: England, North-
ern Ireland, Scotland, and Wales. The UK House Price Index (HPI) dataset comprises house
sales data from various sources such as the HM Land Registry, Registers of Scotland, and Land and
Property Services Northern Ireland. Based on a hedonic regression model, the Office for National
Statistics computes an index which produces estimates of the change in house prices for each period
and all types of property for each country. This 4-dimensional data runs from April 1968 to Septem-
ber 2022 and is available from https://landregistry.data.gov.uk/app/ukhpi. As
the data are reported monthly and quarterly depending on different periods, we compute the average
index for each quarter and treat it as quarterly data. Hence, the resulting dataset runs from the second
quarter in 1968 to the third quarter in 2022 with 218 time points in total. As this is multivariate data
when the data from multiple countries are analyzed together, we compare the result of our approach
with the ecp algorithm.

Figure 7 shows that the segments seem to have gradually increasing slopes, thus making this

https://landregistry.data.gov.uk/app/ukhpi
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(a) cpmm (b) changepoint

(c) EnvCpt (d) stepR

Figure 5: Visualization of the changepoints detected by all four approaches on the Well-log
dataset without outliers. The red line indicates the changepoints that were detected.

dataset a harder segment detection problem.

Visualization of the changepoints identified by both approaches is shown in Figure 7. Some of
the changepoints detected by cpmm and ecp are close (within a 1-year difference) to each other:
cpmm selects 1978 q2, 1988 q1, and 2002 q4 while ecp selects 1979 q2, 1988 q2, and 2003 q1.
ecp can sometimes miss the dramatic change e.g., the decrease in slope around the fourth quarter
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(a) cpmm (b) change point

(c) EnvCpt (d) stepR

Figure 6: Visualization of the changepoints detected by all four approaches on the Well-log
dataset with outliers. The red line indicates the changepoints that were detected.

in 2007 - this was identified by cpmm. In addition, cpmm further picked another changepoint at
2018 q2 - visual inspection of Figure 7 shows the rate of slope seems to change around 2018 q2 as
well.
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(a) cpmm (b) ecp

Figure 7: Visualization of the changepoints detected by both cpmm and ecp approaches on the
House Price Index dataset. The y-axis represents the housing index and the x-axis represents
the quarter of the year. The dotted line indicates the changepoints that were detected.

6 Conclusion

In this manuscript, we propose and develop a novel changepoint detection algorithm that utilizes
a finite mixture model and a label correction method based on a moving window. By considering
changepoint detection as a clustering problem, the novel approach can automatically detect the po-
sition of changepoints as well as the number of changepoints. Due to the flexibility of the finite
mixture model, it can model changes in mean, variance and trend (i.e., slopes) in both univariate
and multivariate cases. The novel approach for label correction proposed here allows for clusters to
be defined such that the number of segments will equal the number of components and observations
in the components are consecutive. Furthermore, the algorithm is also relatively robust to the ef-
fects of outliers on change point detection. While the proposed label correction is implemented in a
mixture-model-based clustering framework, this label correction method can be used in any cluster-
ing algorithm to force the label to be continuous and distinct. Through simulation studies, we show
that the proposed approach provides competitive performance compared to existing algorithms, and
is better when modelling trend changes and datasets with outliers. On real data, we also demonstrate
the robust performance of the proposed approach in the presence of data with outliers. Using the
UK house index dataset, we show its ability to identify meaningful changepoints for multivariate
real data.

Our novel approach to changepoint detection connects the changepoint detection algorithm to
a clustering problem and allows a natural unified framework for changepoint detection for both
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univariate and multivariate data. However, in the multivariate scenario when p is large, the model can
be computationally intensive especially when computing Σ−1. Moreover, to estimate Σ properly,
the minimal number of points needed in each segment is going to increase as p increases. Thus,
efficient estimation of Σ is necessary when p becomes large. Similar to any mixture model-based
clustering, our approach can be sensitive to the initialization of the EM algorithm, especially for
larger dimensional datasets. Some future work could focus on extending these models to allow
for additional flexibility in modelling heavy-tailed and/or skewed data by utilizing heavy-tailed or
skewed mixture models. Furthermore, future work will also include incorporating more complex
structures into the model such as the AR process.

Appendix
Here we provide the parameter estimations for the remaining three models in the model family:

• VV model: This model can be considered as a special case of the trend model with β1g = 0.
Thus, the updates of the parameters become:

β̂0g =

∑n
i=1 ẑigxi∑n
i=1 ẑig

Σ̂g =

∑n
i=1 ẑig(xi − β̂0g)(xi − β̂0g)

T∑n
i=1 ẑig

.

• VE model: This model is a special case of “VV” model but with the constraint that

Σ1 = · · · = ΣG = Σ.

Thus, the update for β0g is exactly the same as the VV model but the update of Σ is given by:

Σ̂g = Σ̂ =

∑G
g=1

∑n
i=1 ẑig(xi − β̂0g)(xi − β̂0g)

T

n
.

• EV model: This model is a special case of the “VV” model but with the constraint that

β01 = · · · = β0G = β0.

Thus, the estimate of β0 is given by:

β̂0g = β̂0 =

∑n
i=1 xi

n
.
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Samé, A., Chamroukhi, F., Govaert, G., and Aknin, P. (2011), “Model-based clustering and segmen-
tation of time series with changes in regime,” Advances in Data Analysis and Classification, 5,
301–321.

Sarkar, S. and Zhu, X. (2022), “Multiple change point clustering of count processes with application
to California COVID data,” Pattern Recognition Letters, 157, 83–89.

Schwarz, G. (1978), “Estimating the dimension of a model,” The Annals of Statistics, 6, 461–464.

Scrucca, L., Fop, M., Murphy, T. B., and Raftery, A. E. (2016), “mclust 5: clustering, classification
and density estimation using Gaussian finite mixture models,” The R Journal, 8, 289–317.

Shewhart, W. A. and Deming, W. (1940), “Statistical method from the viewpoint of quality control,”
Philosophy of Science, 7.



Change point detection via Gaussian mixture models 219

Subedi, S., Neish, D., Bak, S., and Feng, Z. (2020), “Cluster analysis of microbiome data by using
mixtures of Dirichlet–multinomial regression models,” Journal of the Royal Statistical Society
Series C, 69, 1163–1187.

Taylor, S. J. and Letham, B. (2018), “Forecasting at scale,” The American Statistician, 72, 37–45.

Tran, D.-H. (2019), “Automated change detection and reactive clustering in multivariate streaming
data,” in 2019 IEEE-RIVF International Conference on Computing and Communication Tech-
nologies (RIVF), IEEE, pp. 1–6.

Tu, W. and Subedi, S. (2022a), “A family of mixture models for biclustering,” Statistical Analysis
and Data Mining: The ASA Data Science Journal, 15, 206–224.

— (2022b), “Penalized logistic normal multinomial factor analyzers for high dimensional composi-
tional data,” Journal of Statistical Research, 56, 185–216.

Wald, A. (1945), “Sequential tests of statistical hypotheses,” The Annals of Mathematical Statistics,
16, 117 – 186.

Wedel, M. (2002), “Concomitant variables in finite mixture models,” Statistica Neerlandica, 56,
362–375.

Wyse, J., Friel, N., and Rue, H. (2011), “Approximate simulation-free Bayesian inference for multi-
ple changepoint models with dependence within segments,” Bayesian Analysis, 6, 501–528.

Zakaria, J., Mueen, A., and Keogh, E. (2012), “Clustering time series using unsupervised-shapelets,”
in 2012 IEEE 12th International Conference on Data Mining, IEEE, pp. 785–794.

Zhu, X. and Melnykov, Y. (2022), “On finite mixture modeling of change-point processes,” Journal
of Classification, 39, 3–22.

Received: February 8, 2024

Accepted: July 13, 2024


	Introduction
	Methodology
	The EM algorithm
	Changepoint detection
	Overall algorithm

	Family of models and model selection
	Simulation studies
	Univariate simulations
	Multivariate case

	Real data analysis
	Well-log dataset
	House Price Index dataset

	Conclusion

