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SUMMARY

This paper proposes a longitudinal integer-valued auto-regressive model of order one with
Negative-Binomial marginals. The proposed model is suitable for analyzing repeated count
data that exhibits significant over-dispersion at each time point and that is exposed to sev-
eral time-dependent covariates. The estimation of the model parameters is handled by
two non-likelihood approaches: The Generalized Quasi-likelihood (GQL) and the adaptive
Quadratic Inference function (AQIF). The consistency of the model estimators is assessed
via Monte Carlo simulation experiments and application to the epileptic seizures is made.
The results demonstrate that both approaches GQL and AQIF yield reliable estimates but
GQL provides better standard errors.
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1 Introduction
Longitudinal count data is made up of repeated count observations for different independent subjects
over a specified period of time. The repeated counts for each subject are most likely to be serially
correlated. In addition, information on the time-dependent or time-independent covariates that are
most likely to influence the repeated counts may be provided. Such types of data are commonly
seen in medical studies where different patients are subjected to various types of treatment over a
period of time and how these treatments influence their health outcomes. In the literature, Thall
and Vail (1990) analyzed the epileptic seizures data where the number of seizures over four eight
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week periods for fifty nine patients were examined against two different treatments: Placebo and
Progabide. Such data arise in various fields of research (Sutradhar, 2011; Oyet and Sutradhar,
2013; Adachi and Willoughby, 2015; Sutradhar and Rao, 2016; Zhao et al., 2020; Tang et al., 2023).

The main interest in such longitudinal studies is to estimate the effects of the different influential
factors on the outcomes. Thus, we require to establish the longitudinal model and identify the model
parameters. This paper assumes that the inter-valued auto-regressive process of order 1 (INAR(1))
is the time series structure to represent the serial auto-correlation among the repeated observed re-
sponses. In this context, we refer to the papers by McKenzie (1986), Al-Zaid and Al-Osh (1990),
Al-Osh and Aly (1992), Alosh (2010) and Oyet and Sutradhar (2021). These authors assumed that
the current observation is related with previous lagged observation by a binomial thinning opera-
tor with fixed or random coefficient and a random innovation term. In this work, we assume that
the count response in the INAR process is Negative Binomial (NB) marginal with NB innovations.
We then propose to estimate the model parameters including the regression effects, over-dispersion
coefficient and auto-correlation parameters using the GQL (Sutradhar and Das (1999)) and AQIF
(Qu and Lindsay (2003)) approaches. In a nutshell, Liang and Zeger (1986) proposed a general-
ized estimating equation (GEE) approach to estimate model parameters in longitudinal count data
analysis since the full likelihood was difficult to formulate. The GEE assumes some common ’work-
ing’ correlation structures like the auto-regressive, equi-correlation and moving average to mimick
the true serial structure ( Lipsitz and Fitzmaurice (2008); Zhang et al. (2012). However, Crowder
(1995) pointed out that the GEE may result in inconsistent estimates of the auto-correlation parame-
ters while Sutradhar and Das (1999) noticed that the ’working’ independence structure may provide
more efficient estimates than the GEE based under other common working structures. Thereon,
Sutradhar and Das (1999) proposed a general auto correlation structure and called the estimation
approach as GQL. In the same lines of thought, Qu and Lindsay (2003) proposed an alternative
estimation approach to GEE based on using a quadratic inference function (AQIF). Their approach
yields more efficient estimates than GEE. However, as at now, there are very few studies comparing
GQL and AQIF.

This paper explores the longitudinal INAR with NB marginals and compares the efficiency of
the estimators between these two approaches. The organization of this paper is as follows: In sec-
tion 2, we develop the Gaussian non-stationary AR(1) correlation model for longitudinal NB data.
In the next section, we develop the joint generalized quasi-likelihood estimation (JGQL) approach
based on these models. We will also develop the AQIF approach. Next, we compare the perfor-
mance of these approaches for analyzing non-stationary and over-dispersed longitudinal count data
through simulation studies and section 5 provides a real-life application to epileptic seizures data.
The conclusion is presented in the last section.

2 The Longitudinal INAR(1) Model with NB marginal

We assume that the response yit conditional on random effect γit has a Poisson distribution of the
form

f(yit | γit) =
1

yit!
exp{yitηit − exp(ηit)}, (2.1)
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with E(Yit | γit) = V ar(Yit | γit) = exp(ηit), where ηit = xT
itβ + log(γit) and γit follows a

gamma distribution denoted by Gamma( 1c ,
1
c ), with the density function given by

g(γit) =
(γit)

1
c−1 exp(−γit

c )

Γ( 1c )c
1
c

. (2.2)

Marginally, yit has the negative binomial distribution with the probability mass function

f(yit) =
Γ(c−1 + yit)

Γ(c−1)yit!
(

1

1 + cθit
)c

−1

(
cθit

1 + cθit
)yit , (2.3)

i.e.,
Yit ∼ NeBin(1/c, cθit), (2.4)

where c is the over-dispersion parameter. The expectation and variance of yit are given by

E(Yit) = θit = exp(xT
itβ), V ar(Yit) = θit + cθ2it, (2.5)

where c > 0.
Consider the relationship of yit and yi,t−1, i.e.,

yit = αit ∗ yi,t−1 + dit, (2.6)

where 0 < αit < 1 and αit ∼ Beta(ρc ,
1−ρ
c ). We further assume that

αit ∗ yi,t−1 | yi,t−1, αit ∼ Binomial(yi,t−1, αit), (2.7)

yi,t−1 ∼ NeBin(
1

c
, cθi,t−1), and

dit ∼ NeBin(
(θit − ρθi,t−1)

2

c(θ2it − ρθ2i,t−1)
,
c(θ2it − ρθ2i,t−1)

(θit − ρθi,t−1)
), for t = 1, . . . , T,

where θit = exp(xT
itβ), dit and yi,t−1 are independent. Note yi0 ∼ NeBin( 1c , cθi1). Following

these assumptions, Yit ∼ NeBin(1/c, cθit). Hence we have

E(Yit) = θit, (2.8)

V ar(Yit) = θit(1 + cθit), (2.9)

Cov(Yit, Yi,t−k) = ρk(θi,t−k + cθ2i,t−k). (2.10)

The lag-k correlation

Corr(Yit, Yi,t−k) =
Cov(Yit, Yi,t−k)√

θit + cθ2it

√
θi,t−k + cθ2i,t−k

= ρk

√
(θi,t−k + cθ2i,t−k)√

θit + cθ2it
, (2.11)
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for k = 1, . . . , T − 1. Note that since the mean parameter of dit, i.e., (θit − ρθi,t−1) > 0 and since
ρ is a probability parameter, we have

0 < ρ < min(
θi2
θi1

, . . . ,
θit

θi,t−1
, 1). (2.12)

Refer to Appendix for detailed derivations of the moments.

3 Estimation of Parameters

3.1 The joint generalized quasi-likelihood estimating equation (JGQL)

This estimation approach is based on observation-driven non-stationary correlation models devel-
oped in section 2. The JGQL estimating equation to estimate the regression and over-dispersion
parameters is given by

I∑
i=1

DT
i Σ̃i

−1
(fi − µi) = 0, (3.1)

where fi = (fT
i1, . . . , f

T
it , . . . , f

T
iT ), µi = (µT

i1, . . . , µ
T
it, . . . , µ

T
iT ) are 2T × 1 vectors with fit =

(yit, y
2
it), µit = (θit,mit)

T . θit = E(Yit) and mit = E(Y 2
it) = θit + (c + 1)θ2it, where θit =

exp(xT
itβ). Σ̃i is the covariance matrix of the score vector fi and Di is the 2T × (p+ 1) derivative

matrix consisting of

Di = [∂µi/∂β
T , ∂µi/∂c] = [DT

i1, . . . , D
T
it, . . . , D

T
iT ]

T ,

with

Dit =

 ∂θit/∂βT 0

∂mit/∂βT ∂mit/∂c

 ,

where ∂θit/∂βT = θitx
T
it, ∂mit/∂β

T = θitx
T
it +2(c+1)θ2itx

T
it and ∂mit/∂c = θ2it. The construc-

tion of the covariance matrix Σ̃i with the moment generating function of yit is given by

Myit
(s) = {1 + cθit − cθit exp(s)}−1/c. (3.2)

By deriving the moments for y2it, y
3
it and y4it, we obtain

cov(Yit, Y
2
it) = E(Y 3

it)− E(Yit)E(Y 2
it)

= θit + 3θ2it + 3cθ2it + 3cθ3it + 2c2θ3it + θ3it − θit(θit + (c+ 1)θ2it)

= θit{1 + (2 + 3c)θit + 2c(1 + c)θ2it}, (3.3)

V ar(Y 2
it) = E(Y 4

it)− E(Y 2
it)

2

= θit + 7θ2it + 7cθ2it + 6θ3it + 18cθ3it + 12c2θ3it + 6cθ4it

+ 11c2θ4it + 6c3θ4it + θ4it − (θit + (c+ 1)θ2it)
2

= θit + (6 + 7c)θ2it + (4 + 16c+ 12c2)θ3it + (4c+ 10c2 + 6c3)θ4i1. (3.4)
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The computation of elements of Ω̃itw is done using the relation

σitw = σ̃itw − θitθiw

= ρitwσittσiww, (3.5)

with σitt =
√
θit + cθ2it, where θit = E(Yit) and σ̃itw = E(YitYiw). The off-diagonal sub matrices

are obtained from

E(YitYiwYiw) = 2

(
ρitw

√(
θit + cθit

2
) (

θiw + cθiw
2
)
+ θitθiw

)
θiw+(θiw+(c+1)θ2iw)θit−2 θitθiw

2,

(3.6)

E(YitYitYiwYiw) =
√
θit + cθ2it

√
θiw + cθ2iw + 2ρ2itw(θit + cθ2it)(θiw + cθ2iw)

+ 2((θit + (c+ 1)θ2it)θiw

+ 2(ρitw

√
θit + cθ2it

√
θiw + cθ2iwθitθiw)θit − 2θ2itθiw)θiw

+ 2(2(ρitw

√
θit + cθ2it

√
θiw + cθ2iw + θitθiw)θiw + (θiw + cθ2iw + θ2iw)θit

− 2θitθ
2
iw)θit − (θit + cθ2it + θ2it)θ

2
iw

− 4(ρitw

√
θit + cθ2it

√
θiw + cθ2iw + θitθiw)θitθiw

− (θiw + (c+ 1)θ2iw)θ
2
it + 3θ2itθ

2
iw. (3.7)

Thus we have

Cov(Yit, Yiw) = E(YitYiw)− E(Yit)E(Yiw)

= ρitw

√
(θit + cθit

2)(θiw + cθiw
2), (3.8)

Cov(Yit, Y
2
iw) = E(YitYiwYiw)− E(Yit)E(Y 2

iw)

= 2(ρitw

√
(θit + cθit

2)(θiw + cθiw
2) + θitθiw)θiw − 2θitθiw

2, (3.9)

Cov(Y 2
it, Y

2
iw) = E(YitYitYiwYiw)− E(Y 2

it)E(Y 2
iw)

=
√

θit + cθ2it

√
θiw + cθ2iw + 2ρ2itw(θit + cθ2it)(θiw + cθ2iw)

+ 2((θit + (c+ 1)θ2it)θiw + 2(ρitw

√
θit + cθ2it

√
θiw + cθ2iw + θitθiw)θit − 2θ2itθiw)θiw

+ 2(2(ρitw

√
θit + cθ2it

√
θiw + cθ2iw + θitθiw)θiw + (θiw + cθ2iw + θ2iw)θit − 2θitθ

2
iw)θit

− (θit + cθ2it + θ2it)θ
2
iw − 4(ρitw

√
θit + cθ2it

√
θiw + cθ2iw + θitθiw)θitθiw

− (θiw + (c+ 1)θ2iw)θ
2
it + 3θ2itθ

2
iw − (θit + (c+ 1)θ2it)(θiw + (c+ 1)θ2iw). (3.10)
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Note that covariances will be different even for the responses which are same lags apart and for
different individuals. We estimate the correlations for the different structures using a moment esti-
mating equation approach following Jowaheer and Sutradhar (2005). We derive a moment estimate
of ρ as follows:

AR(1) non-stationary model. From previous section, we obtain

E(Yit) = θit, V ar(Yit) = θit + cθ2it (3.11)

and

Corr(Yit, Yi,t−k) = ρk

√
θi,t−k + cθ2i,t−k√

θit + cθ2it
. (3.12)

Using the method of moments and equating

∑I
i=1

∑T−1
t=1 Ỹit

˜Yi(t+1)/(T − 1)∑I
i=1

∑T
t=1 Ỹit

2
/T

= ρ

∑I
i=1

∑T
t=2

√
θi,t−1+cθ2

i,t−1

θit+cθ2
it

I(T − 1)
.

(3.13)

Thus

ρ =
IT
∑I

i=1

∑T−1
t=1 Ỹit

˜Yi,t+1

[
∑I

i=1

∑T
t=1 Ỹit

2
][
∑I

i=1

∑T
t=2

√
θi,t−1+cθ2

i,t−1

θit+cθ2
it

]

, (3.14)

where ỹit =
yit−θit√
θit+cθ2

it

.

Thus using this value of ρ,

Ci,t,t−k = ρk

√
θi,t−k + cθ2i,t−k√

θit + cθ2it
. (3.15)

Note that ρ and the correlation matrix Ci,t,t−k are obtained using known estimates for β̂ and ĉ.
The Newton-Raphson algorithm is applied to ( 3.1) to estimate the regression parameters, i.e.,β̂r+1

ĉr+1

 =

β̂r

ĉr

+ [

I∑
i=1

DT
i Σ̃i

−1
Di]

−1
r [

I∑
i=1

DT
i Σ̃i

−1
(fi − µi)]r. (3.16)

The estimators are consistent and under mild regularity conditions, for I → ∞, it may be
shown that I

1
2 ((β̂, ĉ)− (β, c))T has an asymptotic normal distribution with mean 0 and covariance

matrix I[
∑I

i=1 D
T
i Σ̃i

−1
Di]

−1[
∑I

i=1 D
T
i Σ̃i

−1
(fi − µi)(fi − µi)

T Σ̃i

−1
Di][

∑I
i=1 D

T
i Σ̃i

−1
Di]

−1

(Sutradhar and Das (1999)).
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3.2 The AQIF approach
In this section, the AQIF approach under the non-stationary case is derived such that the basic score
vector, the covariance structure and the derivative matrix vary with time.

1.

V = (1/I)

I∑
i=1

(fi − µi)(fi − µi)
T , (3.17)

where fi = (fT
i1, . . . , f

T
it , . . . , f

T
iT ), µi = (µT

i1, . . . , µ
T
it, . . . , µ

T
iT ) are 2T × 1 vectors with

fit = (yit, y
2
it), µit = (θit,mit)

T . θit = E(Yit) and mit = E(Y 2
it) = θit + (c+ 1)θ2it where

θit = exp(xT
itβ). The steps to estimate the parameters can be summarized as follows:

2.

gI =

 ∑I
i=1 D

T
i (fi − µi)∑I

i=1 α̂
TDT

i V (fi − µi)

 , (3.18)

where α̂ is the orthogonal vector and

Di = [∂µi/∂β
T , ∂µi/∂c] = [DT

i1, . . . , D
T
it, . . . , D

T
iT ]

T ,

with

Dit =

 ∂θit/∂βT 0

∂mit/∂βT ∂mit/∂c

 ,

where ∂θit/∂βT = θitx
T
it, ∂mit/∂β

T = θitx
T
it+2(c+1)θ2itx

T
it and ∂mit/∂c = θ2it. Follow-

ing Qu and Lindsay (2003), we rescale the Di, V and the score vector (fi − µi) to A
− 1

2
i Di

,A− 1
2

i V A
− 1

2
i and A

− 1
2

i (fi − µi), where Ai is a 2T × 2T block diagonal matrix of the form
diag[Ai1, . . . , Ait, . . . , AiT ], where

Ait =

V ar(Yit)

V ar(Y 2
it)

 ,

with

V ar(Yit) = θit + cθ2it,

V ar(Y 2
it) = θit + (6 + 7c)θ2it + (4 + 16c+ 12c2)θ3it + (4c+ 10c2 + 6c3)θ4it.

3. Then a GMM is used to construct an objective function given by

QI(β, c) = gTI C
−1
I gI , (3.19)

where CI is the sample variance of gI : ∑I
i=1 DT

i V Di (
∑I

i=1 DT
i V 2Di)α̂

α̂T (
∑I

i=1 DT
i V 2Di) α̂T (

∑I
i=1 DT

i V 3Di)α̂

 . (3.20)
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4. By minimizing this function and applying the Newton-Raphson algorithm, we have

β̂r+1

ĉr+1

 =

β̂r

ĉr

− [Q̈I(β̂r, ĉr)]
−1[Q̇I(β̂r, ĉr)], (3.21)

where asymptotically, Q̇I(β, c) = 2ġTI C
−1
I gI and Q̈I(β, c) = 2ġTI C

−1
I ġI , with ġI = [ ∂gI

∂βT ,
∂gI
∂c ]

of dimension (p+ 2)× (p+ 1).

The estimators obtained in this way are consistent and asymptotically normal with ((β̂, ĉ)−(β, c))T ∼
N{0, (E[ġTI ]E[C−1

I ]E[ġI ])
−1} (Qu and Lindsay, 2003).

4 Simulation Study

We first simulate non-stationary responses by constructing a time-dependent covariate design, where
the first covariate is given by

xit1 =

 rbinom(0.5) (t = 1, . . . , T/2), (i = 1, . . . , I),

−rbinom(0.5) (t = (T/2) + 1, . . . , T ), (i = 1, . . . , I).

Here rbinom(0.5) is the random binary variable with parameter 0.5, xit2 is generated from the
standard normal distribution, for t = 1, . . . , T . We generate T = 4 correlated negative binomial
counts under AR(1) with autocorrelation coefficient ρ = 0.9. The true regression parameters are
β0 = β1 = 0.01. We consider different values of c, and for each structure, we run 10,000 simula-
tions. The following tables provide the simulated mean of the estimates where the entry in brackets
represent their corresponding standard errors. The results are shown in Table 1-2.
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Table 1: Estimates of parameters and standard errors under non-stationary AR(1) negative binomial
model

c = 0.05 c = 0.2

I Method β̂0 β̂1 ĉ β̂0 β̂1 ĉ

60 JGQL 0.0112 0.0111 0.0502 0.0114 0.0113 0.1765

(0.1856) (0.1477) (0.2805) (0.2215) (0.1872) (0.1878)

AQIF 0.0117 0.0115 0.04678 0.0118 0.0116 0.1666

(0.1885) (0.1490) (0.3578) (0.2277) (0.1901) (0.2115)

100 JGQL 0.0105 0.0101 0.0511 0.0102 0.0103 0.1976

(0.1456) (0.1045) (0.1976) (0.1132) (0.1052) (0.1256)

AQIF 0.0105 0.0106 0.0479 0.0101 0.0107 0.1890

(0.1494) (0.1076) (0.2987) (0.1178) (0.1055) (0.1510)

500 JGQL 0.0101 0.0104 0.0498 0.0101 0.0102 0.1999

(0.0989) (0.0876) (0.1678) (0.0952) (0.0835) (0.1038)

AQIF 0.0103 0.0106 0.0487 0.0102 0.0101 0.1956

(0.1018) (0.0894) (0.2416) (0.0978) (0.0867) (0.1207)

c = 0.5 c = 1

60 JGQL 0.0101 0.0101 0.4896 0.0102 0.0106 1.0162

(0.1899) (0.1546) (0.2313) (0.2167) (0.1976) (0.1267)

AQIF 0.0105 0.0101 0.4698 0.0105 0.0104 0.9843

(0.1901) (0.1568) (0.3967) (0.2187) (0.1982) (0.1567)

100 JGQL 0.0101 0.0101 0.5015 0.0102 0.0106 1.0012

(0.1150) (0.1214) (0.1556) (0.1256) (0.1265) (0.1045)

AQIF 0.0101 0.0106 0.4918 0.0106 0.0105 1.0175

(0.1189) (0.1281) (0.2661) (0.1292) (0.1299) (0.1442)

500 JGQL 0.0105 0.0101 0.4996 0.0101 0.0101 0.9989

(0.0129) (0.0137) (0.0110) (0.0578) (0.0465) (0.1015)

AQIF 0.0104 0.0106 0.4984 0.0101 0.0101 0.9981

(0.0131) (0.0142) (0.0221) (0.0585) (0.0474) (0.1276)
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Table 2: Estimates of parameters and standard errors under non-stationary AR(1) negative binomial
model

c = 1.75 c = 3

I Method β̂0 β̂1 ĉ β̂0 β̂1 ĉ

60 JGQL 0.0105 0.0101 1.7386 0.0101 0.0101 2.8812

(0.2143) (0.1786) (0.2678) (0.2078) (0.1988) (0.2123)

AQIF 0.0105 0.0105 1.7254 0.0101 0.0104 2.7892

(0.2159) (0.1790) (0.3327) (0.2089) (0.2009) (0.2879)

100 JGQL 0.0101 0.0101 1.7378 0.0102 0.0101 3.0132

(0.0985) (0.0995) (0.1154) (0.0983) (0.0948) (0.1034)

AQIF 0.0106 0.0105 1.7276 0.0101 0.0101 2.8769

(0.1001) (0.1012) (0.1365) (0.1012) (0.0954) (0.1323)

500 JGQL 0.0105 0.0102 1.7492 0.0101 0.0101 2.8459

(0.0367) (0.0289) (0.0899) (0.0174) (0.0189) (0.0712)

AQIF 0.0101 0.0101 1.7619 0.0101 0.0104 2.7861

(0.0382) (0.0311) (0.0918) (0.0181) (0.0199) (0.0852)

To estimate the regression and over-dispersion parameters, we assume small initial values for
both parameters in both methods. We note the same pattern in the efficiency between the two meth-
ods. JGQL has shown slightly more efficient results than AQIF,i.e, for I = 60, we note large
standard errors for the over-dispersion parameter in the AQIF approach while for JGQL, the stan-
dard errors for over-dispersion parameter are comparatively lower. In fact, as the number of clusters
increases, the standard errors under both methods decrease but JGQL gains more efficiency irre-
spective of the values for c. For almost all number of clusters, we note that for c = 0.2, 0.5, 1, AQIF
yields bigger standard errors for the over-dispersion parameter. As the number of clusters increases,
the standard errors decrease but still, JGQL shows more efficiency. As for the regression estimates,
JGQL yields slightly more efficient results than AQIF for almost all cluster sizes. For I = 60
and c = 0.05, JGQL has yielded approximately 2250 non-convergent simulations while AQIF fail
in 1990 simulations respectively. As c increases to 1.75 and when I = 60, the number of non-
convergent simulations increases to 3125 in the JGQL approach and for larger c, there is a further
increase in the non-convergent simulations of the JGQL approach. However, for the AQIF approach,
these number of non-convergent simulations are lesser. AQIF has failed in 1800 simulations. How-
ever, AQIF yields unreliable estimates of the over-dispersion parameter in many simulations. We
note that, for large c, AQIF performs extremely slow. This is justified by the high number of flop
counts. The average correlation estimates for each cluster under each case are provided in Table 3.
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Table 3: Estimates of the non-stationary AR(1) correlations

c I ρ̂12 ρ̂13 ρ̂14 ρ̂23 ρ̂24 ρ̂34

0.05 60 0.9378 0.7867 0.6956 0.9276 0.7652 0.9256

100 0.9245 0.7897 0.7267 0.9116 0.8256 0.9156

500 0.9156 0.7992 0.6876 0.9124 0.8245 0.8997

0.2 60 0.9345 0.7892 0.6725 0.9242 0.7951 0.9166

100 0.9232 0.7967 0.7275 0.9245 0.8243 0.9347

500 0.9234 0.8124 0.7166 0.9256 0.7998 0.9431

0.5 60 0.8932 0.7867 0.7014 0.8876 0.7854 0.8917

100 0.9152 0.8476 0.7286 0.9285 0.7999 0.9156

500 0.8999 0.7967 0.7551 0.9098 0.8176 0.9101

1 60 0.8967 0.7816 0.7156 0.9256 0.8244 0.9267

100 0.8956 0.8498 0.6987 0.9135 0.8246 0.9236

500 0.8984 0.8136 0.7474 0.9187 0.7998 0.9076

1.75 60 0.9076 0.8267 0.6987 0.8998 0.7885 0.9156

100 0.9132 0.8278 0.6891 0.9143 0.7982 0.8985

500 0.9015 0.8187 0.7126 0.9126 0.7886 0.8842

3 60 0.8945 0.8278 0.6967 0.9257 0.8231 0.9243

100 0.9032 0.8176 0.6997 0.8965 0.7864 0.8997

500 0.9102 0.8287 0.6874 0.8997 0.7865 0.8897

5 Application
The epileptic seizures data from Thall and Vail (1990) consists of the number of seizures occurring
at each of four successive two weekly clinic visits for 59 patients. The summary statistics for these
responses are given in Table 4.

Table 4: Summary statistics of the epileptic seizure counts

Visit 1 Visit 2 Visit 3 Visit 4

Sample mean 8.949 8.356 8.441 7.305

Sample variance 220.084 103.785 200.182 93.112

We notice that the variances are greater than their corresponding means for each time point



254 Khan et al.

indicating that the data are clearly over-dispersed. Information on their age, gender and mode of
treatment are also available. We thus consider five covariates namely the intercept term denoted by
xit1, the treatment parameter xit2, coded as 0 for placebo and 1 for progabide, the baseline-seizure
rates denoted by xit3, the age of the person denoted by xit4 and the interaction effect between
treatment and baseline seizure rates xit5. The mean parameter of the negative binomial distribution
for the ith person is given by θi = exp(xT

i β) with xi = (xit1, xit2, . . . , xit5)
T for t = 1, . . . , 4.

Here β is the 5 × 1 vector of regression parameters. Jowaheer and Sutradhar (2002) used the
negative binomial model and estimated the model parameters using the true general autocorrelation
structure based JGQL approach. We analyze the epileptic data assuming that the counts follow the
unstructured covariance matrix and estimate the parameters using the AQIF approach.

Table 5: Epileptic data:estimates of the regression and over-dispersion parameters using JGQL and
AQIF approaches

Method INTC TR BR Age INTA ĉ ρ̂1 ρ̂2 ρ̂3

JGQL 0.4582 -0.2471 0.0027 0.0210 0.0011 0.5142 0.5222 0.3371 0.2030

(0.4321) (0.1521) (0.0040) (0.0109) (0.0048) (0.3121)

AQIF 0.4221 -0.2671 0.0056 0.0222 0.0012 0.5431

(0.4372) (0.1603) (0.0055) (0.0111) (0.0056) (0.3914)

We choose small starting values for the longitudinal correlations and small positive values for
the regression and over-dispersion parameters. To obtain JGQL estimates, we apply the iterative
equation (3.16) and calculate ρ̂ using equation (3.14). To obtain AQIF estimates, we use the iterative
equation (3.21). However, we note that in AQIF some starting values yield non-convergent estimates
as shown in simulations. Some starting values also lead to computational difficulties in calculating
the inverse of the covariance matrix in the JGQL approach and the hessian matrix in the AQIF
approach. Between these two techniques, JGQL works slightly faster and converges in less iterates
compared to AQIF.

The autocorrelation values under JGQL are large, indicating high longitudinal correlations. The
values of c under both methods justify that the data are over-dispersed. The treatment parameter in
both methods is negative which indicate that the predicted seizure counts will be less in the treatment
group than in the placebo group. The age factor is positive indicating that as age increases, the
patients are more likely to obtain more epileptic attacks. The interaction between the treatment and
the baseline seizure rate does not appear to be significant in both methods. Based on the standard
errors, we note that the estimates of the parameters under the JGQL approach are more efficient than
AQIF especially for the over-dispersion parameter.

6 Conclusion
This paper proposes the longitudinal INAR(1) model with NB marginal, based on a random thin-
ning procedure. The estimation of the model parameters is conducted using the JGQL and AQIF
approaches. Simulation results show that the JGQL yield lower standard errors and estimates with
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lower bias under non-stationary set-up. The proposed model is applied to analyze the epileptic
seizures data and yields reliable estimates of the different model parameters. It is also noticeable
that the JGQL provides more efficient estimates than the AQIF approach. Thus, the longitudinal
INAR(1) with NB marginal is a commendable model and we conclude that for such setting the
JGQL is a reliable inferential estimation approach.

Appendix

A Detailed Derivation

E(Yit) = EYi,t−1EαitE(αit ∗ yi,t−1|Yi,t−1, αit) + E(dit)

= E(ρYi,t−1) + E(dit) = θit. (A.1)

V ar(Yit) = V ar(αit ∗ Yi,t−1) + V ar(dit)

= V arYi,t−1 [EαitE(αit ∗ Yi,t−1|Yi,t−1, αit)] + EYi,t−1 [V arαit(E(αit ∗ Yi,t−1)|Yi,t−1, αit)

+ E(V ar(Yit|Yi,t−1, αit))] + V ar(dit)

= V ar[Eαit(αitYi,t−1)] + E[V arαit(αitYi,t−1) + Eαit(Yitαit(1− αit))] + V ar(dit)

= V ar(ρYi,t−1) + E[
ρ(1− ρ)c

1 + c
Y 2
i,t−1 + ρYit − Yit(

ρ(1− ρ)c

1 + c
+ ρ2)] + V ar(dit)

= ρ2(θi,t−1 + [cθ2i,t−1 +
ρ(1− ρ)c

1 + c
(θi,t−1 + (c+ 1)θ2i,t−1) + ρθit − θit(

ρ(1− ρ)c

1 + c
+ ρ2)]

+ (θit − ρθi,t−1) + c(θ2it − ρθ2i,t−1)

= θit(1 + cθit). (A.2)

E(YitYi,t−1) = EYi,t−1 [Yi,t−1E(Yit|Yi,t−1)]

= EYi,t−1 [Yi,t−1EαitE(Yit|Yi,t−1, αit)]

= EYi,t−1 [Yi,t−1(ρYi,t−1 + θit − ρθi,t−1)]

= ρ(θi,t−1 + cθ2i,t−1 + θ2i,t−1) + θitθi,t−1 − ρθ2i,t−1

= ρ(θi,t−1 + cθ2i,t−1) + θitθi,t−1. (A.3)

E(YitYi,t−2) = EYi,t−2
EYi,t−1

[Yi,t−2E(Yit|Yi,t−1, Yit−2)]

= EYi,t−2
EYi,t−1

[Yi,t−2Eαit
E(Yit|Yi,t−1, Yi,t−2, αit)]

= EYi,t−2
[Yi,t−2(ρEYi,t−1

(Yi,t−1|Yi,t−2) + (θit − ρθi,t−1))]

= ρ2(θi,t−2 + cθ2i,t−2 + θ2i,t−2) + θi,t−1θi,t−2 − ρ2θ2i,t−2

= ρ2(θi,t−2 + cθ2i,t−2) + θi,t−1θi,t−2. (A.4)
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Cov(Yit, Yi,t−1) = E[YitYi,t−1]− E[Yit]E[Yi,t−1] = ρ(θi,t−1 + cθ2i,t−1). (A.5)

Cov(Yit, Yi,t−2) = E[YitYi,t−2]− E[Yit]E[Yi,t−2] = ρ2(θi,t−2 + cθ2i,t−2). (A.6)

Thus
Cov(Yit, Yi,t−k) = ρk(θi,t−k + cθ2i,t−k). (A.7)

The lag-k correlation

Corr(Yit, Yi,t−k) =
Cov(Yit, Yi,t−k)√

θit + cθ2it

√
θi,t−k + cθ2i,t−k

= ρk

√
(θi,t−k + cθ2i,t−k)√

θit + cθ2it
, (A.8)

for k = 1, . . . , T − 1.
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