
Journal of Statistical Research https://doi.org/10.3329/jsr.v58i2.80606
2024, Vol. 58, No. 2, pp. 259-277 ISSN 0256 - 422 X

A TEST OF SIGNIFICANCE FOR BENFORD’S LAW BASED ON THE
CHEBYSHEV DISTANCE

LEONARDO CAMPANELLI

All Saints University School of Medicine, 5145 Steeles Ave., M9L 1R5, Toronto, Canada, and
Mississauga Career College, 6341 Mississauga Rd., L5N 1A5, Mississauga, Canada

Email: leonardo.s.campanelli@gmail.com

SUMMARY

We show, by means of a numerical simulation, that the asymptotic (n ≥ 100) cumulative
distribution function of the Chebyshev distance statistic is well approximated by a log-
normal function with parameters µ = −0.6183 and σ = 0.3561 in the null hypothesis that
Benford’s law holds. The deviations of the cumulative function observed in Monte Carlo
simulations from the empirical one are below 0.5%. This makes the statistical test based on
the Chebyshev statistic accurate at a level of 1% when testing Benford’s law for moderately
large and large numbers of data points. Test values of the Chebyshev distance as a function
of the sample size are also estimated empirically by performing a Monte Carlo simulation
in the case of low n (10 ≤ n ≤ 99). The efficacy and power of the goodness-of-fit test
based on the Chebyshev estimator are analyzed and compared with those based on the
Pearson χ2 and Kolmogorov-Smirnov statistics. Finally, an application of the Chebyshev
test to the annual deaths counts by country is discussed.
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Chebyshev Distance, Max Statistic, World Death Counts, World Homicides Counts, World
Deaths by Infectious Diseases, World Suicides Counts
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1 Introduction
Benford’s law (Benford, 1938) is an empirical statistical law about the distribution of the first sig-
nificant digit (FSD) d of numerical data sets that has been observed to emerge in many and disparate
real-data sources.

Although the causes of appearance of this law in data are still not completely clear, the number
of its applications has grown in recent years [for theoretical insights and general applications of
Benford’s law, see Miller (2015)]. Probably, the most famous applications are to detecting fraud in
campaign finance (Cho and Gaines, 2007) and political elections (Roukema, 2013). Other interest-
ing applications are in cryptology, where the law has been employed to examine the truthfulness of
undeciphered numerical codes (Wase, 2021, Campanelli, 2022a), and in epidemiology, where Ben-
ford’s law has been applied to the study of the temporal spread of infectious diseases, such as Covid
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19 (Sambridge and Jackson, 2020, Farhadi, 2021, Campanelli, 2023) and Monkeypox (Campanelli,
2024a).

The most common tests in use for testing Benford’s law in data are the Pearson’s χ2 and the
Kolmogorov-Smirnov tests. These tests, however, have some limitations. The former has a low
power for even moderately large sample sizes (Morrow, 2014), while the latter, being based on the
hypothesis of a continuous distribution, is generally conservative for testing discrete distributions
as the Benford’s one (Noether, 1963). The latter problem has been recently solved by the author
(Campanelli, 2024b) by showing that an appropriate linear transformation of the argument of the
standard Kolmogorov cumulative distribution function makes the Kolmogorov-Smirnov test accu-
rate at a level of 1% when testing Benford’s law for moderately large and large numbers of data
points (n ≥ 100).

Other tests have been proposed in the literature to overcome the limitations of the χ2 and
Kolmogorov-Smirnov tests. They are based on new statistics, such as the “Chebyshev distance”
statistic (also known as “max distance” statistic), introduced by Leemis et al. (2000), and the “nor-
malized Euclidean distance” statistic, introduced by Cho and Gaines (2007). Asymptotic test values
for these statistics have been subsequently provided by Morrow (2014).

For the case of the normalized Euclidean distance statistic, we have already expanded the work
of Morrow (2014) by finding an empirical expression of its cumulative distribution function as a
function of the sample size (Campanelli, 2022b, 2022c). The goal of this paper is twofold: to find an
empirical expression of the asymptotic cumulative distribution function of the Chebyshev distance
statistic, and to compare the efficacy and power of the test based on the Chebyshev estimator with
those of the χ2 and Kolmogorov-Smirnov tests.

2 Method

The Chebyshev distance statistic is defined by (Leemis et al., 2000, Morrow, 2014)

mn =
√
nmax

d
|fB(d)− fn(d)|, (2.1)

where

fB(d) = log

(
1 +

1

d

)
(2.2)

is the probability mass function of a random Benford variable X , fB(d) = Pr(X has FSD = d), and
fn(d) is the observed first-digit distribution of a numerical set containing n data points.

In the left panel of Figure 1, we show the observed cumulative distribution function (Cdf) of
the Chebyshev distance statistic, Fobs(mn), for n = 500 (black points), found by a Monte Carlo
simulation based on N = 105 draws. 1

1Monte Carlo simulations and fitting procedures were all performed by using Mathematica (Wolfram, 2023) with its
build-in libraries, such as Mathematica’s core randomness generator “RandomChoice” and “NonlinearModelFit”. Notice
also that special functions, such as the (elliptic) theta function ϑ4(z, q) introduced in Section 7, are build-in functions in
Mathematica and can be evaluated to an arbitrary numerical precision.
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Figure 1: Left panel. The observed Cdf for n = 500 (black points), together with the best-fitted
Cdf Flog-normal(mn) in Equation 2.3 (continuous blue line). Middle panel. The best-fit values of the
parameters µ and σ in Equation 2.3 as a function of n. The (blue) continuous lines are the corre-
sponding linear fits whose values are reported in Equation 3.1. Right panel. The maximum |δ|max =
maxmn

|δ(mn)| of the absolute value of the difference δ(mn) = Flog-normal(mn) − Fobs(mn) be-
tween the theoretical Cdf with parameters in Equation 3.1 and the observed one as a function of n,
together with its linear fit (the blue continuous line).

The (blue) continuous line in the panel represents the distribution obtained by fitting the ob-
served one with the Cdf of a (standard) log-normal distribution with location parameter µ and shape
parameter σ,

Flog-normal(mn) =
1

2

[
1 + erf

(
lnmn − µ

σ
√
2

)]
, (2.3)

where erf(z) = 2√
π

∫ z

0
dt e−t2 is the error function (Abramowitz and Stegun, 1972). The values

of the best-fit parameters are µ = −0.6184 and σ = 0.3554. Since the absolute value of the
difference between the best-fit cumulative function and the observed one has a maximum value as
low as 0.0028, we repeated this procedure for each sample size n. The minimum and maximum n

considered are 100 and 1000, respectively, and we proceeded with increments of ∆n = 10.

3 Results
The best-fit values of the parameters µ and σ as a function of n are shown in the middle panel of
Figure 1. The (blue) continuous lines are the fit lines

µ = −0.6183, σ = 0.3561. (3.1)

In the right panel of Figure 1, we show |δ|max = maxmn |δ(mn)| as a function of n, namely the
maximum of the absolute value of the differences δ(mn) = Flog-normal(mn) − Fobs(mn) between
the empirical Cdf with parameters in Equation 3.1 and the observed one, for each run with a given
n. The average value of |δ|max, represented by the (blue) continuous line, is about 0.0031.

The choice of the log-normal distribution is satisfactory, in the sense that it produces values of
|δ|max comparable to the typical value of the statistical fluctuations associated to the finite number
of draws N , which is expected to be about 1/

√
N ∼ few × 10−3. Moreover, since |δ|max < 0.005
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Table 1: Asymptotic (n ≥ 100) test values mn,1−α, mean mn, standard deviation sn, and skewness
gn of the Chebyshev distance statistic mn in Equation 2.1 obtained by using the empirical Cdf in
Equation 2.3 with parameters µ and σ given by Equation 3.1, and the empirical Cdf in Equation 4.1
with parameters α and β given by Equation 4.2. Also indicated are the test values obtained by
Morrow (2014).

mn,0.90 mn,0.95 mn,0.99 mn sn gn

log-normal 0.85 0.97 1.23 0.57 0.21 1.15

beta prime 0.85 0.96 1.21 0.58 0.21 1.04

Morrow 0.851 0.967 1.212 – – –

for all n, our empirical Cdf can be used to calculate p values, and accordingly to test Benford’s law,
with an accuracy of 1%.

In Table 1, we show the test values mn,0.90, mn,0.95, and mn,0.99, 2 the sample mean mn,
the standard deviation sn, and the skewness gn of the Chebyshev distance statistic in Equation 2.1
obtained by using the Cdf in Equation 2.3 with parameters µ and σ given by Equation 3.1. The
asymptotic test values for α = 0.10, 0.05, and 0.01 are in agreement with those obtained by Morrow
(2014) by a different statistical procedure based on a Monte Carlo simulation with N = 106 draws
and sample sizes up to n = 500.

4 Other Choices for the Cdf of the Chebyshev Distance

As we showed before, the log-normal distribution provides a reasonably good fit to the Cdf of the
Chebyshev distance. Other distributions, however, could in principle give better fits. If we restrict
ourself to the case of “known” unimodal distribution i) with positive support, ii) positively skewed
and, for simplicity, iii) having at most two parameters (µ and σ for the case of the log-normal
distribution), then the log-normal distribution gives, to the best of our knowledge, the closest fit to
the observed Cdf of the Chebyshev estimator.

There are two unimodal, positively skewed, one-parameter distributions with positive support.
They are the Rayleigh and the half-normal distributions, both with one scale parameter σ. [For a
monumental collection of continuous distributions, see Crooks (2014).] The former has a skewness
of g = 2

√
π(π− 3)/(4−π)3/2 ≃ 0.631, while for the observed one g is close to 1.15 (see Table 1).

Also, the expected value µ and standard deviation σ are connected by the relation µ/σ =
√
π/2 ≃

1.571, while for the observed distribution this ratio is close to 2.71. The latter has a skewness of
g = 2(4− π)/(π − 2)3/2 ≃ 0.995, quite close to the observed one. However, the mean-to-standard
deviation ratio is µ/σ =

√
2/π ≃ 0.798, very different from the observed one.

2Given a random variable X with cumulative distribution function F (x), the test values xα are defined by F (xα) =
1− α.
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The only two-parameters candidates (with the characteristics before specified) are the (standard)
gamma distribution with shape parameter α and scale parameter θ, and the (standard) beta prime
distribution with shape parameters α and β. The skewness and the expected value-to-standard de-
viation ratio of these two distributions depend on both parameters, which can be then tuned to best
approximate the observed distribution.

Proceeding as for the log-normal case, we find that, typically, the absolute value of the difference
between the best-fit cumulative function and the observed one, |δ|max, has maximum values of order
of 10−2 for the gamma distribution. Accordingly, we did not investigate the gamma distribution case
any further because the deviations from the observed distribution are much greater than the expected
fluctuations due to the finite number of draws N .

For the case of the beta prime distribution, instead, the deviations are of order of few × 10−3.
In the left panel of Figure 2, for example, we show the observed Cdf for n = 500 (black points),
together with the best-fitted Cdf Fβ′(mn) (continuous red line) of the beta prime distribution,

Fβ′(mn) = I

(
mn

1 +mn
, α, β

)
, (4.1)

where I(z, a, b) = B(z, a, b)/B(a, b) is the regularized incomplete beta function, B(z, a, b) =∫ z

0
dt ta−1(1−t)b−1 is the incomplete beta function, and B(a, b) =

∫ 1

0
dt ta−1(1−t)b−1 is the Euler

beta function (Abramowitz and Stegun, 1972). The values of the best-fit parameters are α = 12.77

and β = 23.33, which give |δ|max = 0.0030. For the beta prime case, then, we repeated the analysis
done for the log-normal case. The minimum and maximum n considered are, again, 100 and 1000,
respectively, and we proceeded with increments of ∆n = 10. The best-fit values of the parameters
α and β as a function of n are shown in the middle panel of Figure 2. The (red) continuous lines are
the fit lines

α = 12.54, β = 22.78. (4.2)

In the right panel of Figure 2, we show |δ|max as a function of n, The average value of |δ|max,
represented by the (red) continuous line, is about 0.0039. In Table 1, instead, we show the test
values mn,0.90, mn,0.95, and mn,0.99, the sample mean, the standard deviation, and the skewness
of the Chebyshev distance statistic calculated by using the Cdf in Equation 4.1 with parameters
in Equation 4.2. As it is clear from the table, the log-normal and beta prime distributions give
compatible results. However, the log-normal distribution should be preferred to the beta prime
because the former displays lower deviations from the observed distribution (lower values of |δ|max)
as is shown by the box-and-whisker plots in Figure 3.

5 Small n

One of the conditions of the emergence of Benford’s law in data is that the numerical values are dis-
tributed across multiple orders of magnitude (Benford, 1938). Usually, but not always, this means
that the law tends to be most accurate for numbers of data points relatively high (n ≥ 100). How-
ever, “Benfordness” has been checked, and sometimes observed, also in small real-world data sets
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Figure 2: Left panel. The observed Cdf for n = 500 (black points), together with the best-fitted Cdf
Fβ′(mn) in Equation 4.1 (continuous red line). Middle panel. The best-fit values of the parameters
α and β in Equation 4.1 as a function of n. The (red) continuous lines are the corresponding linear
fits whose values are shown in Equation 4.2. Right panel. The maximum |δ|max = maxmn |δ(mn)|
of the absolute value of the difference δ(mn) = Fβ′(mn)− Fobs(mn) between the theoretical Cdf
with parameters in Equation 4.2 and the observed one as a function of n, together with its linear fit
(the red continuous line).

log-normal beta prime
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Figure 3: Box-and-whisker plots of the deviations |δ|max for both cases of log-normal and beta
prime distributions.

(n < 100), as for example in some of the financial data sets analyzed by Rodriguez (2004) (and
re-analyzed by Lesperance et al., 2016).

For this reason, it is worth considering the case of “small n”. Our Monte Carlo simulation, as in
the case of large n, is based on N = 105 draws for each sample size 10 ≤ n ≤ 99. This time, we
proceeded with size increments of ∆n = 1. In the upper panels of Figure 4, we show the mean mn,
the standard deviation sn, and the skewness gn of the observed Cdf of the Chebyshev distance as a
function of the sample size n. These estimators exhibit a regular dependence of the sample size n

that can be quantified by the following best fit curves,

mn = 0.57 + 0.16n−1, (5.1)

sn = 0.21 + 0.13n−1, (5.2)

gn = 1.14 + 0.04n−1, (5.3)

all represented in Figure 4 by (blue) continuous lines.
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Figure 4: Upper panels. The mean mn (left panel), the standard deviation sn (middle panel), and
the skewness gn (right panel) of the observed Cdf of the Chebyshev distance as a function of the
sample size 10 ≤ n ≤ 99. Lower panels. As in the upper panels but for the test values mn,90 (left
panel), mn,95 (middle panel), and mn,95 (right panel).

In the lower panels of Figure 4, instead, we show our results for the test values mn,90, mn,95,
and mn,95. The (blue) lines are the fitting curves

mn,0.90 = 0.85 + 0.41n−1, (5.4)

mn,0.95 = 0.97 + 0.31n−1, (5.5)

mn,0.99 = 1.22 + 0.26n−1. (5.6)

Notice that the Cdf function of Chebyshev distance exhibits larger fluctuations (typically, of order
of few percent) with respect to the asymptotic case n ≥ 100. An analysis similar to that performed
before, and aimed to find an empirical expression of the Cdf, is then not feasible in the small-n
case. However, it is remarkable that the quantities in Equations 5.1-5.6 (with the exception of gn
and mn,0.99) agree with the corresponding asymptotic values in Table 1 (log-normal case) for large
values of n (approaching 99).

6 Efficacy: A Comparative Study
As already discussed in the Introduction, the most common tests in use for testing whether a nu-
merical sample conforms to Benford’s law are the Pearson’s χ2 (with 8 degrees of freedom), whose
estimator is

χ2
8,n = n

9∑
d=1

[fB(d)− fn(d)]
2

fB(d)
, (6.1)
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and the Kolmogorov-Smirnov (Kolmogorov, 1933) test, based on the estimator

Dn =
√
nmax

d
|FB(d)− Fn(d)|, (6.2)

where FB(d) = log(1 + d) and Fn(d) are the Benford and the observed cumulative distribution
functions, respectively.

The asymptotic 95%-confidence-level test value for the Pearson’s χ2 with 8 degrees of freedom
is χ2

8,n,0.95 = 15.507. The standard and Benford-specific asymptotic 95%-confidence-level test
values for the Kolmogorov-Smirnov estimator are, instead, Dn,0.95 = 1.36 (Smirnov, 1948) and
D∗

n,0.95 = 1.15 (Campanelli, 2024b), respectively.
In order to quantify the ability of a test to reject the null hypothesis H0 (in our case Benford’s

law) given a set of data points with frequency distribution fn, we introduce the quantity n1−α as

n1−α = {number of data points needed to reject H0 at a significance level of α | fn}. (6.3)

The larger is n1−α the more conservative is the test in rejecting the null hypothesis given an observed
distribution of data that deviates from the theoretical one. Alternatively, the smaller is n1−α the
greater is the efficacy of the test in rejecting the null.

The Benford distribution is a monotonically decreasing distribution, skewed to the write, and
with a long tail. Since the median is

√
10− 1 ≃ 2.1623, we can define the body of the distribution

as d = 1, 2, and the tail as d = 3, 4, 5, 6, 7, 8, 9. We expect the Pearson χ2 test to be very sensitive
to deviations in the tail of a Benford distribution because of the presence of the term fB(d) in the
denominator of the expression of its estimator. On the other hand, because of the structure of its
statistic, the Chebyshev test will be sensitive to variations in the body. Finally, the Kolmogorov-
Smirvos test being based on the difference between the empirical and the Benford cumulative dis-
tribution functions, will be sensitive to cumulative (integrated) deviations in the observed frequency
distribution from the theoretical one which in the following will be refereed to as “subductions”.

These expectations are confirmed by the results of a simulation where the Benford distribution is
perturbed first in the body, then in the tail, and finally in an integrated way. The perturbed distribu-
tions are shown in Figure 5. Here, “IC” and “DC” stand for inverse and direct cascade, respectively.
In an inverse cascade, part of the value of fB(d) for a particular digit is transferred to the previous
digit, while in a direct cascade fB(d) is partially transferred to the next digit. In a subduction, a
series of 2,3, or 4 consecutive values of fB(d) are partially transferred to the next ones (cumulative
transfer of probabilities).

The perturbed distributions are reported in Table 2.
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Figure 5: Perturbed Benford distributions. Perturbations are in the body (d = 1, 2; first row), in the
tail (d > 2; second to fourth rows), and integrated (“subduction”; last row). “IC” and “DC” stand
for inverse and direct cascade, respectively (see text for details).



268 Campanelli Leonardo

Ta
bl

e
2:

Si
m

ul
at

ed
da

ta
in

Fi
gu

re
5:

f n
(d
)

an
d
f d

≡
f B

(d
)

ar
e

th
e

pe
rt

ur
be

d
an

d
st

an
da

rd
B

en
fo

rd
di

st
ri

bu
tio

ns
,r

es
pe

ct
iv

el
y.

G
ro

up
f n

(1
)

f n
(2
)

f n
(3
)

f n
(4
)

f n
(5
)

f n
(6
)

f n
(7
)

f n
(8
)

f n
(9
)

B
od

y

1
(I

C
)

f 1
+

f
2 3

2 3
f 2

f 3
f 4

f 5
f 6

f 7
f 8

f 9

2
(I

C
)

f 1
f 2

+
f
3 3

2 3
f 3

f 4
f 5

f 6
f 7

f 8
f 9

3
(D

C
)

3
f
1

4
f
1 4
+

f 2
f 3

f 4
f 5

f 6
f 7

f 8
f 9

4
(D

C
)

f 1
3
f
2

4
f
2 4
+

f 3
f 4

f 5
f 6

f 7
f 8

f 9

Ta
il

1
(I

C
)

f 1
f 2

f 3
+

f
4 3

2
f
4

3
f 5

f 6
f 7

f 8
f 9

2
(I

C
)

f 1
f 2

f 3
f 4

+
f
5 3

2
f
5

3
f 6

f 7
f 8

f 9

3
(I

C
)

f 1
f 2

f 3
f 4

f 5
+

f
6 3

2
f
6

3
f 7

f 8
f 9

4
(I

C
)

f 1
f 2

f 3
f 4

f 5
f 6

+
f
7 3

2
f
7

3
f 8

f 9

5
(I

C
)

f 1
f 2

f 3
f 4

f 5
f 6

f 7
+

f
8 3

2
f
8

3
f 9

6
(I

C
)

f 1
f 2

f 3
f 4

f 5
f 6

f 7
f 8

+
f
9 3

2
f
9

3

7
(D

C
)

f 1
f 2

3
f
3

4
f
3 4
+

f 4
f 5

f 6
f 7

f 8
f 9

8
(D

C
)

f 1
f 2

f 3
3
f
4

4
f
4 4
+

f 5
f 6

f 7
f 8

f 9

9
(D

C
)

f 1
f 2

f 3
f 4

3
f
5

4
f
5 4
+

f 6
f 7

f 8
f 9

10
(D

C
)

f 1
f 2

f 3
f 4

f 5
3
f
6

4
f
6 4
+

f 7
f 8

f 9

11
(D

C
)

f 1
f 2

f 3
f 4

f 5
f 6

3
f
7

4
f
7 4
+

f 8
f 9

12
(D

C
)

f 1
f 2

f 3
f 4

f 5
f 6

f 7
3
f
8

4
f
8 4
+

f 9

Su
bd

uc
tio

n

1
f 1

−
f
1 4

f 2
−

f
2 4

f 3
+

f
1 8

f 4
+

f
1 8

f 5
+

f
2 8

f 6
+

f
2 8

f 7
f 8

f 9

2
f 1

−
f
1 4

f 2
−

f
2 4

f 3
−

f
3 4

f 4
+

f
1 8

f 5
+

f
1 8

f 6
+

f
2 8

f 7
+

f
2 8

f 8
+

f
3 8

f 9
+

f
3 8

3
f 1

−
f
1 4

f 2
−

f
2 4

f 3
−

f
3 4

f 4
−

f
4 4

f 5
+

f
1 4

f 6
+

f
2 4

f 7
+

f
3 4

f 8
+

f
4 4

f 9

4
f 1

f 2
−

f
2 4

f 3
−

f
3 4

f 4
−

f
4 4

f 5
−

f
5 4

f 6
+

f
2 4

f 7
+

f
3 4

f 8
+

f
4 4

f 9
+

f
5 4



A Test of Significance for Benford’s Law Based on the Chebyshev Distance 269

Table 3: Simulated data in Figure 5: number of data points n0.95 needed to reject the null hypothesis
(Benford’s law) at 95% confidence level by a given statistical test. The tests are: Chebyshev (mn),
Pearson χ2 (χ2

8,n), and Kolmogorov-Smirnov (Dn for the standard continuous case, and D∗
n for the

Benford-specific one.)

Group mn χ2
8,n Dn D∗

n

Body

1 (IC) 274 501 537 384

2 (IC) 543 654 1067 763

3 (DC) 167 305 327 234

4 (DC) 486 585 955 683

Tail

1 (IC) 902 812 1773 1268

2 (IC) 1351 971 2656 1899

3 (IC) 1890 1130 3715 2656

4 (IC) 2518 1290 4950 3540

5 (IC) 3237 1450 6362 4549

6 (IC) 4045 1610 7951 5685

7 (DC) 965 868 1896 1356

8 (DC) 1603 1152 3152 2254

9 (DC) 2402 1436 4721 3375

10 (DC) 3359 1721 6603 4722

11 (DC) 4477 2006 8800 6292

12 (DC) 5754 2291 11311 8087

Subduction

1 167 225 130 93

2 167 162 82 59

3 167 90 61 44

4 167 163 130 93

In Table 3, instead, we show the number of data points n0.95 needed to reject the null hypothesis
(Benford’s law) by a given statistical test at 95% confidence level. Notice that the name of the test
in Table 3 is the same as the symbol of the corresponding statistical estimator. Moreover, Dn and
D∗

n stand for the classical and Benford-specific Kolmogorov-Smirnov tests, respectively.
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As it is clear from Table 3, the Benford-specific Kolmogorov-Smirnov test is always more sen-
sitive than the classical one and, at the same time, the most effective in detecting subductions.
Moreover, the Chebyshev and the Pearson χ2 tests are, in a certain way, complementary in the
sense that their efficacy in rejecting Benford’s law in data that deviate somehow from the theoretical
expectation depends on the position, in the body or tail of the distribution, of such deviations.

7 Power: A Comparative Study
We now consider the power of the Chebyshev test when testing Benford’s law and compare it to the
power of the Pearson’s χ2 and Kolmogorov-Smirnov tests (the standard and the Benford-specific
ones). Given a null hypothesis H0 (in our case Benford’s law), the power of a test against an
alternative hypothesis H1 at a given significance level of α is

B1−α = Pr(reject H0 at a significance level of α |H1 is true). (7.1)

The “natural” alternative hypothesis to Benford’s law is the so-called “generalized Benford’s law”.
This is for the following reason. Benford’s law on the first-digit distribution of a numerical data
set emerges if the underlying distribution of the numerical data is scale and base invariant. If the
distribution is only scale invariant, then the first-digit distribution of the numerical values will follow
a generalized Benford’s law. It is reasonable to assume that numerical data coming from “natural
phenomena” and which do not depend on a particular scale (like lengths of rivers, fundamental con-
stants, etc.), are also base invariant, thus producing Benford’s law. On the other hand, “human phe-
nomena” (like those connected to political elections, campaign finance, etc.) even if scale-invariant
are not necessarily base invariant, thus producing a generalized Benford’s law.

Let us consider a probability distribution function f(x) with support [a, b], where a, b ∈ R∗.
Let us assume that f(x) is a homogeneous function of degree γ − 1, where γ ∈ R∗ (namely a
scale-invariant function). Then the first-digit distribution of the values of f(x), fGB(d), follows a
generalized Benford’s law:

fGB(d) =
(d+ 1)γ − dγ

10γ − 1
. (7.2)

Notice that for γ = 1, the probability mass function is uniform, fGB(d) = 1/9, while for γ → 0,
the distribution fGB(d) approaches Benford’s law in Equation 2.2.

In the left panel of Figure 6, we show the probability mass function of a generalized Benford
variable for different values of the parameter γ (from top to bottom: γ = −1,−0.9, ..., 0.9, 1)
together with Benford’s law (the blue continuous line).

In the middle panel of Figure 6, we show the simulated power obtained from a Monte Carlo sim-
ulation with N = 105 random samples, each of size n = 250, extracted from a generalized Benford
distribution for different values of γ. In the right panel, we show the results of a similar simulation,
this time with n = 50. As it is clear from the figure, the power of the Benford-specific Kolmogorov-
Smirnov test is always greater than the corresponding power for the classical Kolmogorov-Smirnov
test. Moreover, the former has the highest power among the tests here considered. This is explained
by the fact that a generalized Benford distribution behaves like a “subduction” of a standard Benford
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Figure 6: Left panel. Generalized Benford distribution for different values of γ. From top to bottom:
γ = −1,−0.9, ..., 0.9, 1. The (blue) continuous line is Benford’s law, and the horizontal dashed line
is the discrete uniform distribution (corresponding to γ = 1). Middle panel. Simulated power
at a significance level of α = 0.05 for a sample size of n = 250 for four different statistical
tests: Chebyshev test (mn), Pearson’s χ2 test (χ2

8,n), standard Kolmogorov-Smirnov test (Dn), and
Benford-specific Kolmogorov-Smirnov test (D∗

n). The null hypothesis is Benford’s law, while the
alternative hypothesis is the generalized Benford’s law for different values of the parameter γ. Right
panel. As in the middle panel for n = 50.

distribution, and then the Kolmogorov-Smirnov test is very effective in rejecting the null (Benford’s
law) if the alternative hypothesis (a generalized Benford’s law) is true.

For low values of n the power of the χ2 test is low when γ < 0 compared to the Chebyshev
test. This is because a generalized Benford distribution with negative parameter γ exhibits relatively
small deviations in the tail and relatively large deviations in the body when compared to a (standard)
Benford distribution. In this case, then, the Chebyshev test is more effective than the χ2 test in
rejecting Benford’s law if the alternative hypothesis of a generalized Benford’s law is true.

8 Application: Annual Deaths Counts by Country

As an application of the Chebyshev distance to the goodness-of-fit for the Benford distribution, we
consider the following data sets: i) the annual all-causes-deaths counts by country (World Population
Prospects, 2024), ii) the annual number of homicides by country (United Nations Office on Drugs
and Crime, 2024), iii) the annual number of deaths from infectious diseases by country (IHME,
Global Burden of Disease, 2024a), and iv) the annual suicide counts by country (IHME, Global
Burden of Disease, 2024b).

In order to study the first-digit distribution of the above data sets, we use the Chebyshev, Pearson
χ2, and Kolmogorov-Smirnov statistics. The evaluation of the p values for the three statistics is
based on the corresponding cumulative distribution functions, p = 1 − Cdf(Xn), where Xn =

mn, χ
2
8,n, Dn. For the Chebyshev case, we use Equation 2.3 with parameters in Equation 3.1, while

for the Pearson χ2 with 8 degrees of freedom we use the standard asymptotic Cdf

ϕ(χ2
8,n) = 1−Q(4, χ2

8,n), (8.1)
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where Q(a, z) = Γ(a, z)/Γ(a) is the regularized incomplete gamma function, Γ(a, z) =
∫∞
z

dt ta−1e−t

is the incomplete gamma function, and Γ(a) = Γ(a, 0) is the (standard) gamma function (Abramowitz
and Stegun, 1972).

The asymptotic Cdf (Kolmogorov, 1933) of the Kolmogorov-Smirnov statistic Dn, Φ(Dn), can
be written in term of the theta function as (Campanelli, 2024b)

Φ(Dn) = ϑ4

(
0, e−2D2

n

)
, (8.2)

where ϑ4(z, q) = 1 + 2
∑+∞

k=1(−1)kqk
2

cos(2kz) is the theta function of type 4, argument z, and
nome q (Abramowitz and Stegun, 1972). Equation 8.2 is generally used for n ≥ 35 (Smirnov,
1948) and was obtained in the hypothesis of continuous random variables. For the discrete Benford
random variable, the asymptotic Kolmogorov Cdf shows unacceptable large deviations, up to about
35%, from the ones observed in Monte Carlo simulations (Campanelli, 2024b). Such deviations
can be reduced to a level below 0.5% if the following linear transformation of the argument of the
Kolmogorov Cdf is performed (Campanelli, 2024b),

Φ(Dn) → Φ∗(Dn) = Φ(aDn + b), (8.3)

with a = 0.984, and b = 0.227.

In Figure 7, we show the observed first-digit frequency distributions of annual case counts by
country for the four data sets and for four selected years (2021, 2020, 2019, and 2018) superimposed
to Benford’s law (the blue continuous line).

All data sets comply with Benford’ law, as it is clear from Table 4, where we show the p values
obtained from the three statistical tests together with the number of data points n (equal to the
number of countries) and the range of the numerical data [min,max]. The only exception to such
a compliance is represented by the deaths from infectious diseases in 2020. While the Chebyshev
and Pearson χ2 tests cannot reject the null hypothesis of Benford’s law at a significance level of
α = 0.05, the Kolmogorov-Smirnov test gives a p value below 0.01. Looking at Figure 7, it is clear
that this is a typical “subduction” case: the values of the observed frequencies for the first four digits
are well below the theoretical expectations and, at the same time, there is an excess in frequency for
the last five digits. This explains why the Kolmogorov-Smirnov is more effective in rejecting the
null than the other two tests (the numbers of data points needed to achieve such a low p value would
be n = 1315 and n = 332 for the Chebyshev and Pearson χ2 tests, respectively.)

For the case of the deaths from infectious diseases in 2018 and 2019, large deviations from
Benford’s law are observed in the tail of the distributions (see Figure 7). This explain why the χ2

test is the least conservative and give the lowest p values among the three tests. On the other hand,
the distributions of homicides in 2021 and deaths from infectious diseases in 2021 exhibit relatively
large deviations in the body (d = 1, 2). In this case, and as to be expected, the less conservative test
is the Chebyshev one.
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Figure 7: Observed first-digit frequencies of the annual deaths by country. First row: all-causes-
deaths. Second row: homicides. Third row: deaths from infectious diseases. Fourth row: suicides.
The (blue) continuous lines represent Benford’s law.

9 Discussion and Conclusions

The origin of the emergence of Benford’s law in real-data sources is still an open problem in statis-
tics. Nevertheless, this law has been widely used to flag anomalies in numerical data distributions
coming from very disparate disciplines, such as epidemiology, cryptology, finance, politics, and data
imaging, to cite a few.

Standard test statistics, such as the Kolmogorov-Smirnov and the Pearson χ2 statistics, are rou-
tinely used to test the compliance to Benford’s law in data. However, the Kolmogorov-Smirnov test
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Table 4: p values of the observed first-digit frequencies of the annual deaths by country for different
statistics: the Chebyshev (mn), the Pearson χ2 (χ2

8,n), and Kolmogorov-Smirnov (Dn for the stan-
dard continuous case, and D∗

n for the Benford-specific one.) Also indicated is the range of deaths,
[min,max], and the number of data points n (equal to the number of countries).

Year n [min,max] mn χ2
8,n Dn D∗

n

All causes deaths

2021 237 [2,13093783] 0.70 0.49 0.80 0.45

2020 237 [1,10411387] 0.90 0.90 1.00 0.89

2019 236 [3,10128803] 0.83 0.53 1.00 0.84

2018 236 [2,9967030] 0.83 0.77 0.98 0.74

Homicides

2021 114 [1,241467] 0.46 0.57 0.99 0.78

2020 133 [2,250505] 0.94 0.86 0.99 0.77

2019 138 [2,251483] 0.75 0.77 1.00 0.90

2018 138 [2,303601] 0.82 0.96 1.00 0.85

Deaths by infectious diseases

2021 204 [1,3261677] 0.47 0.76 1.00 0.88

2020 204 [1,2586834] 0.47 0.079 0.013 0.0035

2019 204 [1,1751094] 0.25 0.083 0.52 0.24

2018 204 [1,1816219] 0.13 0.053 0.32 0.13

Suicides

2021 202 [1,188578] 0.91 0.93 0.99 0.76

2020 202 [1,186195] 0.64 0.63 1.00 0.87

2019 202 [1,183296] 0.53 0.45 0.99 0.76

2018 202 [1,186055] 0.93 0.83 0.99 0.76

is too conservative for testing discrete distributions as Benford’s, while the Pearson χ2 test has a
high power only for large sample sizes.

The former problem has been recently solved by the author (Campanelli, 2022d) by showing
that an appropriate linear transformation of the argument of the Kolmogorov cumulative distribution
function makes the Kolmogorov-Smirnov test accurate at a level of 1% when testing Benford’s
law for moderately large and large numbers of data points. On the other hand, other authors have
tried to overcome the limitations of standard statistical tests by considering new statistics, such as
the Chebyshev distance statistic. Introduced by Leemis et al. (2000), the properties of this new



A Test of Significance for Benford’s Law Based on the Chebyshev Distance 275

estimator have been subsequently studied by Morrow (2014), who has provided the corresponding
asymptotic test values.

In this paper, we have extended the work by Morrow by finding, by means of a Monte Carlo sim-
ulation, an empirical expression of the asymptotic cumulative distribution function of the Chebyshev
distance. Our results show that the statistical test based on the Chebyshev distance statistic is ac-
curate at a level of 1% when testing Benford’s law for moderately large and large numbers of data
points, n ≥ 100.

For small values of n, the Chebyshev distance exhibits larger fluctuations (of order of few per-
cent) with respect to the asymptotic case. For this reason, the search for a (n-dependent) empirical
expression of the Cdf was not pursued and only test values of the Chebyshev distance as a function
of the sample size were estimated empirically by performing a Monte Carlo simulation.

The performance (efficacy and power) of the goodness-of-fit test based on the Chebyshev statis-
tic was analyzed and compared to that of the Pearson χ2, and to that of both the classical Kolmogorov-
Smirnov test and the Benford-specific one. The general result is that the Benford-specific Kolmogorov-
Smirnov test is always more effective and powerful than the classical one and then should be pre-
ferred over the latter when testing Benford’s law. Moreover, the χ2 and Chebyshev tests are “com-
plementary”: the former performs well when the deviations of the observed distribution from the
Benford one are primarily in the tail (digits d ≥ 3), while if they are in the body (d = 1, 2), the
Chebyshev test outperforms the χ2 test. Finally, the (Benford-specific) Kolmogorov-Smirnov test is
the most effective in detecting cumulative (integrated) deviations in the observed frequency distri-
bution from the theoretical one.

As an application of the Chebyshev test to Benford’s law, we considered the first-digit distri-
butions of the annual deaths counts by country (all-causes, homicides, from infectious diseases,
and suicides) in four different years. All these distributions comply with Benford’s law to a very
high level of confidence. As for the case of efficacy and power, however, the Chebyshev, χ2, and
Benford-specific Kolmogorov-Smirnov tests perform (slightly) differently depending on the partic-
ular observed distribution: a combined use of these three tests is then highly recommended when
checking for conformance to Benford’s law.
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