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SUMMARY

In this paper, we introduce a new class of generalized Akash distribution with suitable R
code known as weighted generalized Akash distribution has been established. The devel-
oped new distribution has been generated by using the weighted technique to its baseline
distribution and has been described with its specific statistical features and characteristics.
Furthermore, its parameters have been estimated based upon the technique of maximum
likelihood estimation. Finally, a real life data set has been investigated and fitted to demon-
strate the applicability and flexibility of a new distribution.
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1 Introduction
The theory of probability distributions has played a crucial role in probability and statistics for modeling, an-
alyzing, and interpreting complicated different lifetime data sets that occur from diversified applied fields. In
probability distribution theory, it has been realized that classical distributions may not provide a better fit to life-
time data, then a situation arises to introduce an extra parameter to the existing baseline distribution. This extra
parameter brings classical distribution into a more reliable and flexible situation while comparing with other
distributions. This additional parameter provides superiority and should be significant for modeling data that
occur from several applied areas such as engineering, medical sciences, insurance, finance, etc. This additional
parameter can be introduced through various techniques. One such technique is the weighted technique. The
theory of weighted distribution is useful because it provides a new understanding of existing classical distribu-
tions due to the introduction of an additional parameter in the model, which creates flexibility in their nature.
Fisher (1934) introduced the concept of weighted distributions to study how the methods of ascertainment can
affect the form of the distribution of recorded observations. Later, Rao (1965) developed this concept in a
unified manner for problems where the observations fall in non-experimental, non-replicated, and non-random
categories. The weighted distributions are used as a tool in the selection of appropriate models for observed
data obviously when samples are drawn without a proper frame. The theory of weighted distribution provides
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integrative conceptualization for model stipulation and data representation problems. The weighted distribu-
tions occur especially if observations are recorded by an investigator in nature according to certain stochastic
model, the distribution of recorded observation will not have original distribution unless every observation is
given an equal chance of being recorded and hence they are recorded according to some weight function. The
weighted distributions provide a technique for fitting model to the unknown weight function even if the samples
can be taken both from original and developed distributions. The weighted distributions are applied in various
research areas related to reliability, biomedicine, ecology, Meta analysis, analysis of family data, analysis of
intervention data and other areas for the proper development of statistical models.

There are various authors who illustrated and developed some important weighted probability models along
with their statistical features and applications in various fields. Kersey (2010) presented the weighted inverse
Weibull distribution and beta-inverse Weibull distribution. Sarma and Das (2021) developed the weighted
inverse Nakagami distribution. Mudasir and Ahmad (2017) obtained characterization and information measure
of weighted Erlang distribution. Saghir et al. (2017) studies the weighted distributions with brief review,
perspective and characterizations. Gharaibeh (2022) developed the weighted Gharaibeh distribution with real
data applications. Al-Kadim and Mohammed (2018) introduced the weighted transmuted Pareto distribution.
Iqbal and Iqbal (2020) presented the mixiture of weighted exponential and weighted gamma distribution. Reshi
and Ahmed (2015) discussed the characterization and estimations of weighted generalized beta probability
distribution. Alqallaf et al. (2015) presented weighted exponential distribution and introduce its different
methods of estimations. Recently, Ganaie and Rajagopalan (2023) studied the weighted power quasi Lindley
distribution with properties and applications of lifetime data.

A generalized Akash distribution is a recently introduced two parametric lifetime distribution developed
by Shanker et al. (2018) of which one parameter Akash and exponential distribution are particular cases of
it. Its different statistical properties including moments, coefficient of variation, skewness, kurtosis, index of
dispersion, mean residual life function, hazard rate function, mean deviation, stochastic ordering, order statis-
tics, Bonferroni and Lorenz curves, Renyi entropy measures and stress-strength reliability has been described
and discussed. Further, its parameters have been estimated by using the method of moments and method of
maximum likelihood estimation.

2 Weighted Generalized Akash (WGA) Distribution
The probability density function of generalized Akash distribution is given by

f(x;λ, β) =
λ3

λ2 + 2β
(1 + βx2)e−λx; x > 0, λ > 0, β > 0, (1)

and the cumulative distribution function of generalized Akash distribution is given by

F (x;λ, β) = 1−
(
1 +

βλx(λx+ 2)

λ2 + 2β

)
e−λx; x > 0, λ > 0, β > 0. (2)

Consider X be the random variable following non-negative condition has probability density function . Let its
non-negative weight function be , then the probability density function of weighted random variable is given by

fw(x) =
w(x)f(x)

E(w(x))
, x > 0,
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where the non-negative weight function be w(x) and E(w(x)) =
∫
w(x)f(x) dx <∞.

In this paper, we have considered the weight function as w(x) = xα to obtain the weighted version of
the generalized Akash distribution, called the weighted generalized Akash distribution. Its probability density
function is given by

fw(x) =
xαf(x)

E(xα)
, (3)

E(xα) =

∫ ∞

0

xαf(x;λ, β) dx,

E(xα) =
λ2Γ(α+ 1) + βΓ(α+ 3)

λα(λ2 + 2β)
. (4)

Now by substituting the equations (1) and (4) in equation (3), we will obtain the required probability density
function of weighted generalized Akash distribution as

fw(x) =
xαλα+3

(λ2Γ(α+ 1) + βΓ(α+ 3))
(1 + βx2)e−λx, (5)

and the cumulative distribution function of weighted generalized Akash distribution can be obtained as

Fw(x) =

∫ x

0

fw(x) dx,

=

∫ x

0

xαλα+3

(λ2Γ(α+ 1) + βΓ(α+ 3))
(1 + βx2)e−λx dx,

=
1

(λ2Γ(α+ 1) + βΓ(α+ 3))

(
λα+3

∫ x

0

xαe−λx dx+ βλα+3

∫ x

0

xα+2e−λx dx

)
. (6)

Put λx = t ⇒ λ dx = dt ⇒ dx = dt
λ

and x = t
λ

when x → x, t → λx and when x → 0, t → 0. After
the simplification of equation (6), we will obtain the cumulative distribution function of weighted generalized
Akash distribution as

Fw(x) =
1

(λ2Γ(α+ 1) + βΓ(α+ 3))

(
λ2γ(α+ 1, λx) + βγ(α+ 3, λx)

)
. (7)

3 Survival Analysis
In this section, we will discuss the survival function, hazard rate function, reverse hazard rate function and
Mills ratio of the weighted generalized Akash distribution.

The survival function of weighted generalized Akash distribution can be determined as

S(x) = 1− Fw(x) = 1− 1

(λ2Γ(α+ 1) + βΓ(α+ 3))
(λ2γ(α+ 1, λx) + βγ(α+ 3, λx)).

The hazard function is also known as hazard rate or failure rate or force of mortality and is given by

h(x) =
fw(x)

S(x)
=

xαλα+3(1 + βx2)e−λx

(λ2Γ(α+ 1) + βΓ(α+ 3))− (λ2γ(α+ 1, λx) + βγ(α+ 3, λx))
.
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The reverse hazard rate function is given by

hr(x) =
fw(x)

Fw(x)
=

xαλα+3(1 + βx2)e−λx

(λ2γ(α+ 1, λx) + βγ(α+ 3, λx))
.

Mills Ratio is given by

M.R =
1

hr(x)
=

(λ2γ(α+ 1, λx) + βγ(α+ 3, λx))

xαλα+3(1 + βx2)e−λx
.

4 Order Statistics

Consider X(1), X(2), . . . , X(n) be the order statistics of a random sample X1, X2, . . . , Xn from a continuous
distribution with probability density function fX(x) and cumulative distribution function FX(x). Then, the
probability density function of the r-th order statistic X(r) is given by

fX(r)(x) =
n!

(r − 1)!(n− r)!
fX(x)(FX(x))r−1(1− FX(x))n−r. (8)
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Now by substituting the equations (5) and (7) in equation (8), we will obtain the probability density function of
r-th order statistics X(r)of weighted generalized Akash distribution as

fX(r)(x) =
n!

(r − 1)!(n− r)!

(
xαλα+3

(λ2Γ(α+ 1) + βΓ(α+ 3))
(1 + βx2)e−λx

)
×

(
1

(λ2Γ(α+ 1) + βΓ(α+ 3))
(λ2γ(α+ 1, λx) + βγ(α+ 3, λx))

)r−1

×
(
1− 1

(λ2Γ(α+ 1) + βΓ(α+ 3))
(λ2γ(α+ 1, λx) + βγ(α+ 3, λx))

)n−r

.

Therefore, the probability density function of higher order statistic X(n) of weighted generalized Akash distri-
bution can be determined as

fX(n)(x) =
nxαλα+3

(λ2Γ(α+ 1) + βΓ(α+ 3))
(1 + βx2)e−λx

×
(

1

(λ2Γ(α+ 1) + βΓ(α+ 3))
(λ2γ(α+ 1, λx) + βγ(α+ 3, λx))

)n−1

.
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and probability density function of first order statistic X(1) of weighted generalized Akash distribution can be
determined as

fX(1)
(x) =

nxαλα+3

(λ2Γ(α+ 1) + βΓ(α+ 3))
(1 + βx2)e−λx

×
(
1− 1

(λ2Γ(α+ 1) + βΓ(α+ 3))
(λ2γ(α+ 1, λx) + βγ(α+ 3, λx))

)n−1

.

5 Likelihood Ratio Test
Suppose the random sample X1, X2, . . . , Xn of size n from the weighted generalized Akash distribution. To
determine its significance the hypothesis is to be analyzed and tested

H0 : f(x) = f(x;λ, β) against H1 : f(x) = fw(x;λ, β, α).

In order to identify, either if the random sample of size n comes from the generalized Akash distribution or
weighted generalized Akash distribution, the given below test statistic procedure is employed.

∆ =
L1

L0
=

n∏
i=1

fw(x;λ, β, α)

f(x;λ, β)
,

=

n∏
i=1

(
xαi λ

α(λ2 + 2β)

(λ2Γ(α+ 1) + βΓ(α+ 3))

)
,

=

(
λα(λ2 + 2β)

λ2Γ(α+ 1) + βΓ(α+ 3)

)n n∏
i=1

xαi .

We should refuse to accept the null hypothesis, if

∆ =

(
λα(λ2 + 2β)

(λ2Γ(α+ 1) + βΓ(α+ 3))

)n n∏
i=1

xαi > k.

Equivalently, we should also refuse to retain the null hypothesis where

∆∗ =

n∏
i=1

xαi > k

(
(λ2Γ(α+ 1) + βΓ(α+ 3))

λα(λ2 + 2β)

)n

,

=

n∏
i=1

xαi > k∗, where k∗ = k

(
(λ2Γ(α+ 1) + βΓ(α+ 3))

λα(λ2 + 2β)

)n

.

Whether, if the sample is large of size n, 2 log∆ is distributed as a chi-square distribution with one degree of
freedom and also the p-value is determined by employing the chi-square distribution. Thus, we should refuse
to accept the null hypothesis, if the probability value is given by

p(∆∗ > θ∗),

where θ∗ =
∏n

i=1 x
α
i is lesser than a specified level of significance and

∏n
i=1 x

α
i is the observed value of the

statistic ∆∗.
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6 Statistical Properties

In this section, we will discuss different structural properties of weighted generalized Akash distribution which
include moments, harmonic mean, moment generating function and characteristic function.

Moments: Consider X be a random variable following the weighted generalized Akash distribution. Then
the rth order moment E(Xr) of the proposed weighted generalized Akash distribution can be obtained as

E(Xr) =

∫ ∞

0

xrfw(x) dx,

=

∫ ∞

0

xr
(

xαλα+3

(λ2Γ(α+ 1) + βΓ(α+ 3))
(1 + βx2)e−λx

)
dx,

=

∫ ∞

0

xα+rλα+3

(λ2Γ(α+ 1) + βΓ(α+ 3))
(1 + βx2)e−λx dx,

=
λα+3

(λ2Γ(α+ 1) + βΓ(α+ 3))

∫ ∞

0

xα+r(1 + βx2)e−λx dx,

=
λα+3

(λ2Γ(α+ 1) + βΓ(α+ 3))

(∫ ∞

0

x(α+r+1)−1e−λx dx+ β

∫ ∞

0

x(α+r+3)−1e−λx dx

)
. (9)

After the simplification of equation (9), we obtain

E(Xr) = µ′
r =

λ2Γ(α+ r + 1) + βΓ(α+ r + 3)

λr(λ2Γ(α+ 1) + βΓ(α+ 3))
. (10)

Now by substituting r = 1, 2, 3 and 4 in equation (10), we will obtain the first four moments of weighted
generalized Akash distribution as

E(X) = µ′
1 =

λ2Γ(α+ 2) + βΓ(α+ 4)

λ(λ2Γ(α+ 1) + βΓ(α+ 3))
,

E(X2) = µ′
2 =

λ2Γ(α+ 3) + βΓ(α+ 5)

λ2(λ2Γ(α+ 1) + βΓ(α+ 3))
,

E(X3) = µ′
3 =

λ2Γ(α+ 4) + βΓ(α+ 6)

λ3(λ2Γ(α+ 1) + βΓ(α+ 3))
,

E(X4) = µ′
4 =

λ2Γ(α+ 5) + βΓ(α+ 7)

λ4(λ2Γ(α+ 1) + βΓ(α+ 3))
.

and

Variance =
λ2Γ(α+ 3) + βΓ(α+ 5)

λ2(λ2Γ(α+ 1) + βΓ(α+ 3))
−

(
λ2Γ(α+ 2) + βΓ(α+ 4)

λ(λ2Γ(α+ 1) + βΓ(α+ 3))

)2

S.D(σ) =

√
λ2Γ(α+ 3) + βΓ(α+ 5)

λ2(λ2Γ(α+ 1) + βΓ(α+ 3))
−

(
λ2Γ(α+ 2) + βΓ(α+ 4)

λ(λ2Γ(α+ 1) + βΓ(α+ 3))

)2

.
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The harmonic mean of weighted generalized Akash distribution can be obtained as

H.M = E

(
1

x

)
=

∫ ∞

0

1

x
fw(x) dx,

=

∫ ∞

0

1

x

xαλα+3

λ2Γ(α+ 1) + βΓ(α+ 3)
(1 + βx2)e−λxdx,

=

∫ ∞

0

xα−1λα+3

(λ2Γ(α+ 1) + βΓ(α+ 3))
(1 + βx2)e−λx dx,

=
λα+3

(λ2Γ(α+ 1) + βΓ(α+ 3))

∫ ∞

0

xα−1(1 + βx2)e−λx dx,

=
λα+3

(λ2Γ(α+ 1) + βΓ(α+ 3))

(∫ ∞

0

x(α+1)−2e−λx dx+ β

∫ ∞

0

x(α+2)−1e−λx dx

)
. (11)

After the simplification of equation (11), we obtain

H.M =
λ (λΓ(α+ 1) + βΓ(α+ 2))

(λ2Γ(α+ 1) + βΓ(α+ 3))
.

Moment generating function and characteristic function is given by the random variable X follows a
weighted generalized Akash distribution with parameters λ, β, and α. Then the moment generating function of
the proposed new distribution can be determined as

MX(t) = E(etX) =

∫ ∞

0

etxfw(x) dx.

Using Taylor’s series, we obtain∫ ∞

0

etxfw(x) dx =

∫ ∞

0

(
1 + tx+

(tx)2

2!
+ · · ·

)
fw(x) dx =

∫ ∞

0

∞∑
j=0

tj

j!
xjfw(x) dx

=

∞∑
j=0

tj

j!
µ′
j =

∞∑
j=0

tj

j!

(
λ2Γ(α+ j + 1) + βΓ(α+ j + 3)

λj(λ2Γ(α+ 1) + βΓ(α+ 3))

)

MX(t) =
1

(λ2Γ(α+ 1) + βΓ(α+ 3))

∞∑
j=0

tj

j!λj

(
λ2Γ(α+ j + 1) + βΓ(α+ j + 3)

)
.

Similarly, the characteristic function of weighted generalized Akash distribution can be obtained as φX(t) =

MX(it), where

MX(it) =
1

(λ2Γ(α+ 1) + βΓ(α+ 3))

∞∑
j=0

itj

j!λj

(
λ2Γ(α+ j + 1) + βΓ(α+ j + 3)

)
.

7 Bonferroni and Lorenz Curves
The Bonferroni and Lorenz curves are also known as classical or income distribution curves which are mostly
applied in order to measure the distribution of inequality in income or poverty. The Bonferroni and Lorenz
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curves are given by

B(p) =
1

pµ′
1

∫ q

0

xf(x) dx and L(p) = pB(p) =
1

µ′
1

∫ q

0

xf(x) dx,

where

µ′
1 =

λ2Γ(α+ 2) + βΓ(α+ 4)

λ(λ2Γ(α+ 1) + βΓ(α+ 3))
q = F−1(p), and

B(p) =
λ(λ2Γ(α+ 1) + βΓ(α+ 3))

p(λ2Γ(α+ 2) + βΓ(α+ 4))

∫ q

0

x
xαλα+3

(λ2Γ(α+ 1) + βΓ(α+ 3))
(1 + βx2)e−λxdx

=
λ(λ2Γ(α+ 1) + βΓ(α+ 3))

p(λ2Γ(α+ 2) + βΓ(α+ 4))

∫ q

0

xα+1λα+3

(λ2Γ(α+ 1) + βΓ(α+ 3))
(1 + βx2)e−λx dx,

=
λα+4

p(λ2Γ(α+ 2) + βΓ(α+ 4))

∫ q

0

xα+1(1 + βx2)e−λx dx,

=
λα+4

p(λ2Γ(α+ 2) + βΓ(α+ 4))

(∫ q

0

x(α+2)−1e−λx dx+ β

∫ q

0

x(α+4)−1e−λx dx

)
.

After the simplification of above equation, we obtain

B(p) =
λα+4

p(λ2Γ(α+ 2) + βΓ(α+ 4))
(γ(α+ 2, λq) + βγ(α+ 4, λq))

L(p) =
λα+4

(λ2Γ(α+ 2) + βΓ(α+ 4))
(γ(α+ 2, λq) + βγ(α+ 4, λq)) .

8 Maximum Likelihood Estimation and Fisher’s Information
Matrix

In this section, we will discuss the method of maximum likelihood estimation to estimate the parameters of the
weighted generalized Akash distribution. LetX1, X2, . . . , Xn be a random sample of size n from the weighted
generalized Akash distribution. Then, the likelihood function can be written as

L(x) =

n∏
i=1

fw(x) =
n∏

i=1

(
xαi λ

α+3

λ2Γ(α+ 1) + βΓ(α+ 3)
(1 + βx2i )e

−λxi

)

L(x) =
λn(α+3)

(λ2Γ(α+ 1) + βΓ(α+ 3))n

n∏
i=1

(
xαi (1 + βx2i )e

−λxi

)
.

The log likelihood function is given by

logL = n(α+3) log λ−n log(λ2Γ(α+1)+βΓ(α+3))+α

n∑
i=1

log xi+

n∑
i=1

log(1+βx2i )−λ
n∑

i=1

xi. (12)
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Now, by differentiating the log likelihood equation (12) with respect to the parameters λ, β, and α, we must
satisfy the following normal equations

∂ logL

∂λ
=
n(α+ 3)

λ
− n

(
(2λΓ(α+ 1))

(λ2Γ(α+ 1) + βΓ(α+ 3))

)
−

n∑
i=1

xi = 0,

∂ logL

∂β
= −n

(
(Γ(α+ 3))

(λ2Γ(α+ 1) + βΓ(α+ 3))

)
+

n∑
i=1

(
(x2i )

(1 + βx2i )

)
= 0,

∂ logL

∂α
= n log λ− nψ(λ2Γ(α+ 1) + βΓ(α+ 3)) +

n∑
i=1

log xi = 0,

where ψ(·) is the digamma function. The above likelihood equations are too complicated to solve it alge-
braically. Therefore, we use numerical techniques like the Newton-Raphson method for estimating the required
parameters of the proposed distribution.

In order to determine the confidence interval, we use the asymptotic normality results. We have if θ̂ =

(λ̂, β̂, α̂) denotes the MLE of θ = (λ, β, α). We can obtain the results as

√
n(θ̂ − θ) −→ N3

(
0, I−1(θ)

)
,

where I−1(θ) is Fisher’s information matrix, i.e.

I(θ) = − 1

n


E
(

∂2 logL
∂λ2

)
E
(

∂2 logL
∂λ∂β

)
E
(

∂2 logL
∂λ∂α

)
E
(

∂2 logL
∂β∂λ

)
E
(

∂2 logL
∂β2

)
E
(

∂2 logL
∂β∂α

)
E
(

∂2 logL
∂α∂λ

)
E
(

∂2 logL
∂α∂β

)
E
(

∂2 logL
∂α2

)
 .

where, we can define

E

(
∂2 logL

∂λ2

)
= −n(α+ 3)

λ2
− n

(
(λ2Γ(α+ 1) + βΓ(α+ 3))(2Γ(α+ 1))− (2λΓ(α+ 1))(2λΓ(α+ 1))

(λ2Γ(α+ 1) + βΓ(α+ 3))2

)
,

E

(
∂2 logL

∂β2

)
= n

(
(Γ(α+ 3))(Γ(α+ 3))

(λ2Γ(α+ 1) + βΓ(α+ 3))2

)
−

n∑
i=1

(
E(x2i )

2

(1 + βx2i )
2

)
,

E

(
∂2 logL

∂α2

)
= −nψ′(λ2Γ(α+ 1) + βΓ(α+ 3)),

E

(
∂2 logL

∂λ∂β

)
= n

(
(2λΓ(α+ 1))(Γ(α+ 3))

(λ2Γ(α+ 1) + βΓ(α+ 3))2

)
,

E

(
∂2 logL

∂λ∂α

)
=
n

λ
− nψ

(
2λΓ(α+ 1)

(λ2Γ(α+ 1) + βΓ(α+ 3))

)
,

E

(
∂2 logL

∂β∂α

)
= −nψ

(
(Γ(α+ 3))

(λ2Γ(α+ 1) + βΓ(α+ 3))

)
,

where ψ(.)′ is the first order derivative of the digamma function. Since θ is not known, we estimate I−1(θ) by
I−1(θ̂) and this can be used to obtain asymptotic confidence intervals for λ, β, and α.
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9 Application

In this section, we have fitted a real life data set in weighted generalized Akash distribution to discuss its
goodness of fit and then comparison has been developed in order to show that the weighted generalized Akash
distribution provides a better fit over generalized Akash, quasi Akash and Akash distributions. To compute the
model comparison criterion values along with the estimation of unknown parameters, the R software technique
is applied to carry out its analysis. In order to compare the performance of the weighted generalized Akash
distribution over generalized Akash, quasi Akash, and Akash distributions, we consider criterion values AIC
(Akaike Information Criterion), BIC (Bayesian Information Criterion), AICC (Akaike Information Criterion
Corrected), and −2 logL. The distribution is better which shows lesser criterion values of AIC, BIC, AICC,
and −2 logL. For computing the criterion values like AIC, BIC, AICC, and −2 logL, the following formulas
are used.

AIC = 2k − 2 logL,

BIC = k logn− 2 logL,

AICC = AIC +
2k(k + 1)

n− k − 1
,

where n is the sample size, k is the number of parameters in the statistical model, and −2 logL is the maximized
value of the log-likelihood function under the considered model.

Table 1: Performance of Fitted Distributions

Distributions MLE S.E -2logL AIC BIC AICC

Weighted Generalized Akash β̂ = 0.927 β̂ = 1.427 180.361 186.361 192.930 186.748

λ̂ = 2.939 λ̂ = 0.508

α̂ = 5.437 α̂ = 1.531

Generalized Akash β̂ = 2391.659 β̂ = 121.885 204.470 208.470 212.849 208.660

λ̂ = 1.085 λ̂ = 0.000

Quasi Akash β̂ = 0.001 β̂ = 0.386 204.490 208.490 212.869 208.608

λ̂ = 1.085 λ̂ = 0.136

Akash λ̂ = 0.883 λ̂ = 0.060 230.676 232.676 234.865 232.738

From the results given above in Table 1, it has been clearly observed that the weighted generalized Akash
distribution has lesser AIC, BIC, AICC, and −2 logL values as compared to the generalized Akash, quasi
Akash, and Akash distributions. Hence, it can be concluded that the weighted generalized Akash distribution
leads to a better fit than the generalized Akash, quasi Akash, and Akash distributions.
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10 Conclusion
In the present paper, we have developed a new distribution called as weighted generalized Akash distribution
which has been introduced by using the weighted technique to baseline distribution. Its several statistical
features and characteristics such as shape of the behavior of pdf and cdf, moments, harmonic mean, order
statistics, survival function, hazard rate function, reverse hazard rate function, moment generating function,
Bonferroni and Lorenz curves have been discussed. Furthermore, its parameters have also been estimated
through maximum likelihood estimation and also its Fisher’s information matrix has been observed. Finally,
a real lifetime data set has been analyzed and examined to illustrate the significance of a new distribution and
hence it is concluded from the result that weighted generalized Akash distribution provides a quite satisfactory
results over generalized Akash, quasi Akash and Akash distributions.

References
Al-Aqtash, R., Lee, C., and Famoye, F. (2014). Gumbel-Weibull distribution: Properties and Applications.

Journal of Modern Applied Statistical Methods, 13, 201-225.

Al-kadim, K. A., and Mohammed, M. H. (2018). The weighted transmuted Pareto distribution. Al-Bahir
Quarterly Adjudicated Journal for Natural and Engineering Research and Studies, Vol. 17, No. 13 and
14, 73-81.

Alqallaf, F., Ghitany, M. E., and Agostinelli, C. (2015). Weighted exponential distribution: Different methods
of estimations. Applied Mathematics & Information Sciences, Vol. 9, No. 3, 1167-1173.

Fisher, R. A. (1934). The effects of methods of ascertainment upon the estimation of frequencies. Ann.
Eugenics, 6, 13-25.

Ganaie, R. A., and Rajagopalan, V. (2023). The weighted power quasi Lindley distribution with properties
and applications of lifetime data. Pak. J. Stat. Oper. Res., 19(2), 279-298.

Gharaibeh, M. M. (2022). Weighted Gharaibeh distribution with real data applications. Electronic Journal of
Applied Statistical Analysis, Vol. 15, Issue 02, 421-437.

Iqbal, T., and Iqbal, M. Z. (2020). On the mixture of weighted exponential and weighted gamma distribution.
International Journal of Analysis and Applications, 18(3), 396-408.

Kersey, J. X. (2010). Weighted inverse Weibull and Beta-inverse Weibull distribution. M.Sc Thesis, University
of Georgia Southern.

Mudasir, S., and Ahmad, S. P. (2017). Characterization and Information measures of weighted Erlang distri-
bution. Journal of Statistics Applications & Probability Letters, 4, No. 3, 109-122.

R Core Team (2019). R version 3.5.3: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rao, C. R. (1965). On discrete distributions arising out of method of ascertainment, in classical and Conta-
gious Discrete. G.P. Patiled; Pergamum Press and Statistical publishing Society, Calcutta. 320-332.

Reshi, J. A., and Ahmed, A. (2015). Characterization and estimations of weighted generalized beta probability
distributions. Journal of Statistics Applications & Probability, Vol. 4, No. 3, 513-525.



On Weighted Generalized Akash Distribution With Properties. . . 311

Saghir, A., Hamedani, G. G., Tazeem, S., and Khadim, A. (2017). Weighted distributions: A Brief review,
Perspective and Characterizations. International Journal of Statistics and Probability, Vol. 6, No. 3,
109-131.

Sarma, S., and Das, K. K. (2021). Weighted inverse Nakagami distribution. Thailand Statistician, 19(4),
698-720.

Shanker, R., Shukla, K. K., Shanker, R., and Pratap, A. (2018). A generalized Akash distribution. Biometrics
& Biostatistics International Journal, 7(1), 18-26.

A Appendix
A.1 R Code for PDF Plot

1 library(zipfR)
2 rm(list=ls(all=TRUE))
3 x=seq(0,8,0.000)
4 y=function(x,lambda=1.1,beta=0.6,alpha=0.4) {((xˆalpha)*(lambdaˆ(alpha+3)

)*(1+beta*xˆ2)*exp(-lambda*x)) / ((lambdaˆ2)*factorial(alpha)+(beta)*
factorial(alpha+2))}

5 plot(x,y(x),"l",col=1,lwd=2,ylab="f(x)",lty=1,ylim=c(0,0.4),sub="Fig.1:
Pdf plot of Weighted Generalized Akash Distribution")

6 y=function(x,lambda=1.3,beta=0.8,alpha=0.5) {((xˆalpha)*(lambdaˆ(alpha+3)
)*(1+beta*xˆ2)*exp(-lambda*x)) / ((lambdaˆ2)*factorial(alpha)+(beta)*
factorial(alpha+2))}

7 curve(y,add=T,col=2,lwd=2,lty=1)
8 y=function(x,lambda=1.5,beta=1.0,alpha=0.6) {((xˆalpha)*(lambdaˆ(alpha+3)

)*(1+beta*xˆ2)*exp(-lambda*x)) / ((lambdaˆ2)*factorial(alpha)+(beta)*
factorial(alpha+2))}

9 curve(y,add=T,col=3,lwd=2,lty=1)
10 y=function(x,lambda=1.7,beta=1.2,alpha=0.7) {((xˆalpha)*(lambdaˆ(alpha+3)

)*(1+beta*xˆ2)*exp(-lambda*x)) / ((lambdaˆ2)*factorial(alpha)+(beta)*
factorial(alpha+2))}

11 curve(y,add=T,col=4,lwd=2,lty=1)
12 y=function(x,lambda=1.9,beta=1.4,alpha=0.8) {((xˆalpha)*(lambdaˆ(alpha+3)

)*(1+beta*xˆ2)*exp(-lambda*x)) / ((lambdaˆ2)*factorial(alpha)+(beta)*
factorial(alpha+2))}

13 curve(y,add=T,col=6,lwd=2,lty=1)
14 legend("topright",legend=c(
15 expression(paste(lambda==1.1,",",beta==0.6,",",alpha==0.4)),
16 expression(paste(lambda==1.3,",",beta==0.8,",",alpha==0.5)),
17 expression(paste(lambda==1.5,",",beta==1.0,",",alpha==0.6)),
18 expression(paste(lambda==1.7,",",beta==1.2,",",alpha==0.7)),
19 expression(paste(lambda==1.9,",",beta==1.4,",",alpha==0.8))),
20 lwd=2,col=c(1,2,3,4,6),text.width=3.0,cex=0.9,fill=c(1,2,3,4,6))
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A.2 R Code for CDF Plot

1 library(zipfR)
2 rm(list=ls(all=TRUE))
3 x=seq(0,10,0.01)
4 y=function(x,lambda=0.8,beta=0.5,alpha=0.1) {
5 ((lambdaˆ2)*Igamma(alpha+1,lambda*x,lower=TRUE)+(beta)*Igamma(alpha+3,

lambda*x,lower=TRUE)) /
6 ((lambdaˆ2)*factorial(alpha)+(beta)*factorial(alpha+2))
7 }
8 plot(x,y(x),"l",col=2,lwd=2,ylab="F(x)",lty=1,ylim=c(0,1),sub="Fig.2:Cdf

plot of Weighted Generalized Akash Distribution")
9 y=function(x,lambda=1.0,beta=0.7,alpha=0.2) {((lambdaˆ2)*Igamma(alpha+1,

lambda*x,lower=TRUE)+(beta)*Igamma(alpha+3,lambda*x,lower=TRUE)) / ((
lambdaˆ2)*factorial(alpha)+(beta)*factorial(alpha+2))}

10 curve(y,add=T,col=3,lwd=2,lty=1)
11 y=function(x,lambda=1.2,beta=0.9,alpha=0.3) {((lambdaˆ2)*Igamma(alpha+1,

lambda*x,lower=TRUE)+(beta)*Igamma(alpha+3,lambda*x,lower=TRUE)) / ((
lambdaˆ2)*factorial(alpha)+(beta)*factorial(alpha+2))}

12 curve(y,add=T,col=4,lwd=2,lty=1)
13 y=function(x,lambda=1.4,beta=1.1,alpha=0.4) {((lambdaˆ2)*Igamma(alpha+1,

lambda*x,lower=TRUE)+(beta)*Igamma(alpha+3,lambda*x,lower=TRUE)) / ((
lambdaˆ2)*factorial(alpha)+(beta)*factorial(alpha+2))}

14 curve(y,add=T,col=5,lwd=2,lty=1)
15 legend("bottomright",legend=c(
16 expression(paste(lambda==0.8,",",beta==0.5,",",alpha==0.1)),
17 expression(paste(lambda==1.0,",",beta==0.7,",",alpha==0.2)),
18 expression(paste(lambda==1.2,",",beta==0.9,",",alpha==0.3)),
19 expression(paste(lambda==1.4,",",beta==1.1,",",alpha==0.4))),
20 lwd=2,col=c(1,2,3,4,6),text.width=4.0,cex=1.0,fill=c(1,2,3,4,6))

A.3 R Code for Survival Plot

1 library(zipfR)
2 rm(list=ls(all=TRUE))
3 x=seq(0,10,0.01)
4 y=function(x,lambda=0.8,beta=0.5,alpha=0.1) {1-((lambdaˆ2)*Igamma(alpha

+1,lambda*x,lower=TRUE)+(beta)*Igamma(alpha+3,lambda*x,lower=TRUE))/
((lambdaˆ2)*factorial(alpha)+(beta)*factorial(alpha+2))}

5 plot(x,y(x),"l",col=2,lwd=2,ylab="S(x)",lty=1,ylim=c(0,1),sub="Fig.3:
Survival plot of Weighted Generalized Akash Distribution")

6 y=function(x,lambda=1.0,beta=0.7,alpha=0.2) {1-((lambdaˆ2)*Igamma(alpha
+1,lambda*x,lower=TRUE)+(beta)*Igamma(alpha+3,lambda*x,lower=TRUE))/
((lambdaˆ2)*factorial(alpha)+(beta)*factorial(alpha+2))}

7 curve(y,add=T,col=3,lwd=2,lty=1)
8 y=function(x,lambda=1.2,beta=0.9,alpha=0.3) { 1-((lambdaˆ2)*Igamma(alpha

+1,lambda*x,lower=TRUE)+(beta)*Igamma(alpha+3,lambda*x,lower=TRUE))
/((lambdaˆ2)*factorial(alpha)(beta)*factorial(alpha+2))}
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9 curve(y,add=T,col=4,lwd=2,lty=1)
10 y=function(x,lambda=1.4,beta=1.1,alpha=0.4){1((lambdaˆ2)*Igamma(alpha+1,

lambda*x,lower=TRUE(beta)*Igamma(alpha+3,lambda*x,lower=TRUE))/((
lambdaˆ2)*factorial(alpha)+(beta)*factorial(alpha+2))}

11 curve(y,add=T,col=5,lwd=2,lty=1)
12 legend("topright",legend=c(
13 expression(paste(lambda==0.8,",",beta==0.5,",",alpha==0.1)),
14 expression(paste(lambda==1.0,",",beta==0.7,",",alpha==0.2)),
15 expression(paste(lambda==1.2,",",beta==0.9,",",alpha==0.3)),
16 expression(paste(lambda==1.4,",",beta==1.1,",",alpha==0.4))),
17 lwd=2,col=c(1,2,3,4,6),text.width=4.0,cex=1.0,fill=c(1,2,3,4,6))

A.4 R Code for Hazard Plot

1 library(zipfR)
2 rm(list=ls(all=TRUE))
3 x = seq(0, 1, 0.000)
4 y = function(x, lambda = 0.6, beta = 0.3, alpha = 0.2) {((xˆalpha)(lambda

ˆ(alpha+3))(1 +betaxˆ2)exp(-lambdax)) /((lambdaˆ2)factorial(alpha) +
(beta)factorial(alpha+2)) -((lambdaˆ2)Igamma(alpha + 1, lambdax,
lower = TRUE) +(beta)Igamma(alpha + 3, lambdax, lower= TRUE))}

5 plot(x, y(x), "l", col = 1, lwd = 2, ylab = "h(x)", lty = 1, ylim = c(0,
0.20),

6 sub = "Fig.4: Hazard plot of Weighted Generalized Akash Distribution")
7 y = function(x, lambda = 0.7, beta = 0.4, alpha = 0.2) {((xˆalpha)(lambda

ˆ(alpha+3))(1 +betaxˆ2)exp(-lambdax)) /((lambdaˆ2)factorial(alpha) +
(beta)factorial(alpha+2)) -((lambdaˆ2)Igamma(alpha + 1, lambdax,
lower = TRUE) +(beta)Igamma(alpha + 3, lambdax, lower = TRUE))}

8 curve(y, add = TRUE, col = 2, lwd = 2, lty = 1)
9 y = function(x, lambda = 0.8, beta = 0.5, alpha = 0.2) {((xˆalpha)(lambda

ˆ(alpha+3))(1 +betaxˆ2)exp(-lambdax)) /((lambdaˆ2)factorial(alpha) +
(beta)factorial(alpha+2)) -((lambdaˆ2)Igamma(alpha + 1, lambdax,
lower = TRUE) +(beta)Igamma(alpha + 3, lambdax, lower = TRUE))}

10 curve(y, add = TRUE, col = 3, lwd = 2, lty = 1)
11 y = function(x, lambda = 0.9, beta = 0.6, alpha = 0.2) {((xˆalpha)(lambda

ˆ(alpha+3))(1 +betaxˆ2)exp(-lambdax)) /((lambdaˆ2)factorial(alpha) +
(beta)factorial(alpha+2)) -((lambdaˆ2)Igamma(alpha + 1, lambdax,
lower = TRUE) +(beta)Igamma(alpha + 3, lambdax, lower= TRUE))}

12 curve(y, add = TRUE, col = 4, lwd = 2, lty = 1)
13 y = function(x, lambda = 1.0, beta = 0.7, alpha = 0.2) {((xˆalpha)(lambda

ˆ(alpha+3))(1 + beta*xˆ2)exp(-lambdax)) /((lambdaˆ2)*factorial(alpha)
+ (beta)*factorial(alpha+2)) -((lambdaˆ2)Igamma(alpha + 1, lambdax,

lower = TRUE) +(beta)Igamma(alpha + 3, lambdax, lower= TRUE))}
14 curve(y, add = TRUE, col = 6, lwd = 2, lty = 1)
15 legend("topright", legend = c(
16 expression(paste(lambda == 0.6, ",", beta == 0.3, ",", alpha == 0.2)),
17 expression(paste(lambda == 0.7, ",", beta == 0.4, ",", alpha == 0.2)),
18 expression(paste(lambda == 0.8, ",", beta == 0.5, ",", alpha == 0.2)),
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19 expression(paste(lambda == 0.9, ",", beta == 0.6, ",", alpha == 0.2)),
20 expression(paste(lambda == 1.0, ",", beta == 0.7, ",", alpha == 0.2))
21 ), lwd = 2, col = c(1, 2, 3, 4, 6), text.width = 0.4, cex = 0.9, fill = c

(1, 2, 3, 4, 6))

B R Code for Application

B.1 Weighted Generalized Akash Distribution

1 strength_data = c(0.39, 0.85, 1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69,
1.80, 1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12, 2.35, 2.41, 2.43,
2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.79,
2.81, 2.82, 2.85, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 3.09, 3.11,
3.11, 3.15, 3.15, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33,
3.39, 3.39, 3.56, 3.60, 3.65, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42,
4.70, 4.90)

2 dburr = function(x, alpha, lambda, beta) {(xˆalpha * (lambdaˆ(alpha+3)) *
(1 + betaxˆ2)exp(-lambdax)) /(lambdaˆ2 * factorial(alpha) + (beta) *
factorial(alpha + 2))}

3 library(MASS)
4 MLE_lambda_beta_alpha = fitdistr(x = strength_data, densfun = dburr,start

= list(beta = 0.5, lambda = 0.91, alpha = 1.3),lower = c(0.001,
0.001, 0.001), upper = c(Inf, Inf, Inf))

5 MLE_lambda_beta_alpha
6 Minus_2_logL1 = -2 * fitdistr(x = strength_data, densfun = dburr,start =

list(beta = 0.5, lambda = 0.91, alpha = 1.3),lower = c(0.001, 0.001,
0.001), upper = c(Inf, Inf, Inf))$loglik

7 Minus_2_logL1
8 AIC(MLE_lambda_beta_alpha)
9 BIC(MLE_lambda_beta_alpha)

10 dburr = function(x, beta = 5.478, lambda = 7.489, alpha = 3.467) {(xˆ
alpha (lambdaˆ(alpha+3)) * (1 + betaxˆ2) * exp(-lambdax)) /(lambdaˆ2

* factorial(alpha) + (beta) * factorial(alpha + 2))}
11 curve(dburr(x), add = TRUE, col = 3, lwd = 2)
12 legend("topright", legend = c("Weighted Generalized Akash Distribution","

Generalized Akash Distribution","Quasi Akash Distribution","Akash
Distribution"),pt.cex = 13, cex = 0.9, lty = 2:3, fill = 2:3, lwd =
2)

13 strength_data=c(0.39, 0.85, 1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69,
1.80, 1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12, 2.35, 2.41, 2.43,
2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.79,
2.81, 2.82, 2.85, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 3.09, 3.11,
3.11, 3.15, 3.15, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33,
3.39, 3.39, 3.56, 3.60, 3.65, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42,
4.70, 4.90)
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B.2 Generalized Akash Distribution

1 dburr = function(x, lambda, beta) {((lambdaˆ3) * (1 + betaxˆ2) * exp(-
lambdax)) /((lambdaˆ2) + 2 * beta)}

2 library(MASS)
3 MLE_lambda_beta = fitdistr(x = strength_data, densfun = dburr,
4 start = list(beta = 0.5, lambda = 0.91),
5 lower = c(0.001, 0.001), upper = c(Inf, Inf))
6 MLE_lambda_beta
7 Minus_2_logL = -2 * fitdistr(x = strength_data, densfun = dburr,start =

list(beta = 0.5,lambda = 0.91),
8 lower = c(0.001, 0.001), upper = c(Inf, Inf))$loglik
9 Minus_2_logL

10 AIC(MLE_lambda_beta)
11 BIC(MLE_lambda_beta)
12 hist(strength_data, probability = TRUE, breaks = 20, col = "skyblue",

main = "Histogram of Strength Data",xlab = "Strength", ylab = "
Density")

13 curve(dburr(x, lambda = MLE_lambda_beta$estimate[1], beta =
MLE_lambda_beta$estimate[2]),add = TRUE, col = "red", lwd = 2)

14 strength_data=c(0.39, 0.85, 1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69,
1.80,

15 1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12, 2.35, 2.41, 2.43, 2.48, 2.50,
16 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.79, 2.81, 2.82, 2.85,
17 2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19,
18 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39, 3.56, 3.60, 3.65,
19 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 4.70, 4.90)

B.3 Quasi Akash Distribution

1 dburr=function(x,lambda,beta) (lambdaˆ2*(beta+lambda*xˆ2)*exp(-lambda*x))
/(beta*lambda+2)

2 library(MASS)
3 MLE_lambda_beta=fitdistr(x = strength_data,densfun = dburr,start = list(

beta=0.5,lambda=0.91),lower=c(0.001,0.001),upper=c(Inf,Inf))
4 MLE_lambda_beta
5 Minus_2_logL=-2*fitdistr(x = strength_data,densfun = dburr,start = list(

beta=0.5,lambda=0.91),lower=c(0.001,0.001),upper=c(Inf,Inf))$loglik
6 Minus_2_logL
7 AIC(MLE_lambda_beta)
8 BIC(MLE_lambda_beta)
9 hist(strength_data,prob=TRUE,density=c(15),main="Fig.5:Fitting of W.G.

Akash Distt, G.Akash Distt, Quasi Akash and Akash distribution to the
relief time data given in table.1",xlab= "observed")

10 dburr=function(x,beta=5.478,lambda=7.489) (lambdaˆ2*(beta+lambda*xˆ2)*exp
(-lambda*x))/(beta*lambda+2)

11 curve(dburr(x),add=TRUE,col=3,lwd=2)
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B.4 Akash Distribution

1 dburr=function(x,lambda) (lambdaˆ3*(1+xˆ2)*exp(-lambda*x))/(lambdaˆ2+2)
2 library(MASS)
3 MLE_lambda=fitdistr(x = strength_data,densfun = dburr,start = list(lambda

=0.91),lower=c(0.001),upper=c(Inf))
4 MLE_lambda
5 Minus_2_logL=-2*fitdistr(x = strength_data,densfun = dburr,start = list(

lambda=0.91),lower=c(0.001),upper=c(Inf))$loglik
6 Minus_2_logL
7 AIC(MLE_lambda)
8 BIC(MLE_lambda)
9 hist(strength_data,prob=TRUE,density=c(15),main="Fig.5:Fitting of W.G.

Akash Distt, G.Akash Distt, Quasi Akash and Akash distribution to the
relief time data given in table.1",xlab= "observed")

10 dburr=function(x,lambda=7.489) (lambdaˆ3*(1+xˆ2)*exp(-lambda*x))/(lambda
ˆ2+2)

11 curve(dburr(x),add=TRUE,col=3,lwd=2)
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