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SUMMARY

Understanding the impact of women’s employment on children’s nutrition is crucial for
informing effective public health policies. This study examines the relationship between
mothers’ employment status and the dietary diversity of their children, aged 6 months to 5
years, in Bangladesh. The Nutritional Variety Score (NVS) is used as a measure of dietary
diversity, capturing the consumption of various food groups, including eggs, meat, bread,
potatoes, vegetables, fruits, fish, beans, and dairy products. To explore this relationship,
advanced statistical methods were employed, including causal forest models with cluster
identifiers and mixed-effects multilevel logistic regression for propensity scores. The anal-
ysis utilized data from the 2022 Bangladesh Demographic and Health Survey (BDHS),
a comprehensive dataset encompassing information on women’s employment, household
characteristics, and children’s dietary intake. The models controlled for several confound-
ing variables, including the number of children, partner’s education and employment status,
type of residence, wealth index, and mother’s education level. The results reveal that chil-
dren of employed mothers have a higher NVS than those of non-employed mothers, with
an estimated average treatment effect (ATE) of 0.532 (95% CI: 0.365-0.699). This find-
ing suggests that working mothers may have better access to resources or opportunities to
provide a more diverse diet for their children. The statistically significant ATE confirms a
positive causal relationship between women’s employment and children’s nutritional vari-
ety. This study contributes to the literature by offering robust evidence on how maternal
employment affects child nutrition in Bangladesh.
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1 Introduction

The relationship between women’s employment status and their children’s nutritional outcomes is
a critical focus of public health research. Evidence suggests that women’s empowerment through
employment can improve economic conditions and increase autonomy, which may, in turn, lead
to improved child nutrition (Galiè et al., 2019; Onah, 2021; Shroff et al., 2009). However, this
relationship is complex and influenced by factors such as socioeconomic status, cultural norms, and
household dynamics. For example, women’s control over household income and decision-making
has been positively associated with improved child nutrition in some contexts, although poverty
can moderate these effects (Bernal Rivas and Lorenzana Albert, 2003; Onah, 2021). Additionally,
time constraints resulting from employment may reduce caregiving time, potentially compromising
dietary diversity and health outcomes in children (Galiè et al., 2019; Shroff et al., 2009).

This study investigates the causal effect of maternal employment on children’s nutrition in
Bangladesh. Understanding this relationship is essential for policymakers and health practitioners
designing interventions to support both women’s employment and children’s nutritional well-being.
The primary independent variable is the mother’s employment status, categorized as working or not
working, while the dependent variable is the child’s Nutritional Variety Score (NVS), which cap-
tures dietary diversity. Several confounding variables, including the number of children, partner’s
education and employment status, type of residence (urban/rural), wealth index, and the mother’s
education level, are considered to ensure the accuracy of the causal inference.

To estimate the causal effect, this study employs a causal forest approach combined with a
mixed-effects multilevel logistic regression model for propensity score estimation. The causal for-
est method is well-suited to this analysis as it accommodates high-dimensional data and complex
interactions. The dataset for this study comes from the 2022 Bangladesh Demographic and Health
Survey (BDHS), which provides detailed information on women’s employment, household charac-
teristics, and children’s nutritional intake.

The primary objective of this research is to estimate the Average Treatment Effect (ATE) of
maternal employment on children’s NVS. The findings will offer insights into whether employment
positively or negatively influences children’s dietary diversity, accounting for socio-economic and
demographic factors. This study contributes to the existing literature on women’s empowerment
and child nutrition by providing robust causal evidence. It also offers a methodological template by
combining causal forest modeling with cluster-specific propensity scores, which may be valuable
for future research in similar contexts.

1.1 Literature review

An increasing presence of women in the workforce is associated with improved dietary options for
families (Malapit et al., 2013). Employed mothers often have greater financial capacity to provide
their children with nutritious food, underscoring the significant role mothers play in managing their
children’s health and nutrition. However, evidence from South Asia indicates that low levels of
women’s empowerment can negatively affect children’s dietary diversity, leading to high rates of
undernutrition (Cunningham et al., 2015). Furthermore, household wealth has been found to have
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a strong influence on children’s growth and development, with wealthier households being more
likely to provide adequate nutrition (Hong et al., 2006). Thus, reducing poverty and ensuring ac-
cess to essential services for low-income households is important for improving child nutrition in
Bangladesh.

Dietary diversity is essential for meeting daily nutritional needs, yet among low-income popula-
tions in developing countries, diets are often dominated by starchy staples with limited consumption
of animal products, fruits, and vegetables (Arimond and Ruel, 2004). Greater dietary diversity is
positively correlated with improved nutritional status (Arimond and Ruel, 2002). Different foods
provide distinct nutrients that are essential for children’s growth. According to the 2022 BDHS,
children under five years old in Bangladesh consume various types of food such as eggs, liver, red
meat, chicken, and fruits. This study aggregates data on these individual food items to construct the
NVS, capturing a comprehensive measure of dietary variety.

The concept of women’s empowerment has been extensively studied. Empowerment refers to
an individual’s ability to make life choices that were previously unavailable to them (Schuler and
Rottach, 2010). It is a complex social process that enables individuals to gain greater control over
their lives (Mandal, 2013). One study using DHS data identified five key dimensions of women’s
empowerment: (i) working status, (ii) apprehension, (iii) self-respect, (iv) self-confidence, and (v)
participation in decision-making (Soharwardi and Ahmad, 2020). Empowerment is thus charac-
terized by the capacity or freedom to act as they wish, control over resources, involvement in the
workplace, and self-respect. A child’s development is heavily influenced by the mother’s well-being
and behavior. Therefore, factors that empower women are also likely to impact key aspects of child
development, including nutrition.

Brand et al. (2023) highlight how machine learning enhances causal inference in sociological re-
search by improving effect estimation, understanding group variations, analyzing causal pathways,
and accounting for social interactions over time and space. Integrating machine learning with tra-
ditional methods reduces bias and enhances accuracy. Machine learning techniques like deep rep-
resentation learning, adversarial networks, and balancing methods help manage high-dimensional
data, while stable learning improves model robustness under changing data distributions. These
advancements have practical applications, particularly in healthcare, aiding better decision-making
(Cui et al., 2020)

In this study, the application of causal forests enables the estimation of treatment effects while
accounting for the hierarchical cluster structure of the data. Incorporating cluster-specific propensity
scores helps address clustering effects and ensures more reliable estimates of the causal relationship
between maternal employment and child nutrition. The use of mixed-effects multilevel logistic
regression models ensures that both individual-level and cluster-level covariates are controlled for,
yielding more robust and unbiased treatment effect estimates (Suk et al., 2021). This approach
underscores the importance of considering both individual and contextual factors when investigating
the effects of maternal employment on child outcomes.
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2 Data Source and Variables

2.1 Data

The 2022 Bangladesh Demographic and Health Survey (BDHS) provides comprehensive data on
household members, individual households, women aged 15–49, and children under five (NIPORT
and ICF, 2022). This rich dataset serves as a crucial resource for demographic and health research in
Bangladesh. For more detailed analysis, two core datasets are utilized: one covering every women
aged 15–49 and another focusing on children under five years old. These datasets are merged us-
ing shared identifiers such as cluster numbers, household numbers, and respondent line numbers,
preserving the hierarchical cluster structure of the data and ensuring proper alignment of variables
across different sources.

The BDHS organizes its data into a clustered and stratified design, following three distinct hier-
archical levels: clusters, households within clusters, and individuals (represented by respondent line
numbers) within households. Each level is uniquely identified to reflect the nested structure of the
data. At the highest level, clusters represent geographic areas, followed by households within these
clusters, and finally individual respondents. This multi-level structure allows for nuanced analysis
across various levels of aggregation, facilitating the exploration of how community, household, and
individual characteristics interact to influence outcomes.

The hierarchical nature of the BDHS data offers researchers the ability to investigate complex
relationships between variables. By preserving this nested structure, the analysis can account for
interactions across multiple levels, such as the influence of community-level factors on individual
outcomes. This structure also supports more precise statistical modeling, helping researchers derive
a holistic understanding of demographic and health trends in Bangladesh. Furthermore, the clustered
and stratified design enhances the representativeness of the sample, accounting for the diverse socio-
economic and geographical variations across the country. As a result, the findings from this study
can be generalized to the broader population with greater confidence.

2.2 Variables

In merging the datasets for women and children, specific variables were selected to capture both
exposures and outcomes related to children’s nutritional status. Particular attention was given to
identifying determinants of good growth in children, especially their nutritional intake. To measure
dietary diversity, respondents (mothers) were asked whether they had given their children a variety
of foods in the last 24 hours, including eggs, meat, bread or noodles, potatoes or cassava, pumpkins
or carrots, leafy vegetables, mangoes or papayas, other fruits, fish or shellfish, beans or peas, and
cheese, yogurt, or other milk products. For this study, only observations with binary responses (0
or 1) for these food variables were included. These binary responses were summed to create a new
variable: the Nutritional Variety Score (NVS). This score, ranging from 0 to 11, reflects the number
of different food categories provided to children under five. The NVS offers a straightforward mea-
sure of dietary diversity, which is crucial for assessing the nutritional intake necessary for healthy
child development.
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Alongside the food-related variables, several socio-economic and demographic variables related
to women were included to explore their influence on children’s nutrition. These variables include
the woman’s working status and number of living children, husband or partner’s education, husband
or partner’s working status, type of residence, wealth index, and women’s education. These variables
provide a comprehensive view of the socio-economic and educational landscape that can influence
children’s nutritional outcomes. By incorporating these variables, this approach ensures a nuanced
understanding of the complex interplay between socio-economic factors and children’s health in
Bangladesh.

3 Methodology

The foundational model for this study is based on Suk et al. (2021), which presents an adaptation
of the random forest model into a causal forest framework. This causal forest model is specifically
designed to incorporate the hierarchical structure of multilevel clustered data, making it particularly
suitable for datasets like the BDHS which are inherently clustered. By accounting for this cluster
structure, the causal forest model is well-suited for drawing causal inference from observational
data.

Causal forests are a machine learning technique developed for causal inference, aiming to esti-
mate treatment effects from observational data (Athey et al., 2019; Wager and Athey, 2018). While
traditional random forests (Ho, 1995) are primarily used for predictive purposes, causal forests ex-
tend this approach to focus on estimating the impact of a treatment variable on an outcome, control-
ling for potential confounders (Suk et al., 2021).

3.1 Honest estimation approach

Causal forests use an honest estimation approach to improve the reliability of treatment effect es-
timates by reducing overfitting. In this approach, the data is divided into two separate parts: one
for constructing the tree structure (splitting nodes) and the other for estimating the treatment effects
within the leaves of the tree. The separation is random and a varying portion of the data is left out
for estimating the treatment effects.

First, a portion of the data is used to build the tree. This involves splitting the data into various
nodes based on different characteristics (covariates) so that each node represents a group of similar
observations. The goal here is to form clusters of data points that are alike in terms of these charac-
teristics. Once the tree structure is ready, the remaining data is used to estimate the treatment effects
within the leaves of the tree. Each leaf now has a bunch of similar observations, and the treatment
effect is calculated for these groups. Here the conditional exchangeability or unconfoundedness
assumption is used due to the homogeneity of the observations within those leaves. The process
ensures that the treatment effect estimation isn’t biased by the same data used to create the tree,
helping to avoid overfitting and providing a more accurate estimation. Essentially, the data is first
organized into a meaningful structure, and then the effects of the treatment are analyzed within this
well-organized framework, making the findings more robust and trustworthy.
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The honest estimation approach offers several benefits. By separating the data used for tree
construction and effect estimation, the approach avoids the overfitting that can occur when the same
data is used for both purposes. It ensures that the treatment effect estimates are more reliable and
valid because they are not biased by the tree construction process. Additionally, the estimates are
more likely to generalize well to new data, making them more useful for real-world causal inference
applications.

3.2 Conditional average treatment effect (CATE)

The Conditional Average Treatment Effect (CATE) in causal forests is calculated through a struc-
tured process involving several key steps. First, decision trees are grown using a subset of the data.
The data is partitioned recursively based on the selected covariates to create homogeneous groups.
Within each leaf node of these trees, which is a partition of data, the treatment effect is estimated
by comparing the outcomes of treated and control units. These treatment effect estimates are then
aggregated across all trees, weighted by their contribution, to derive the CATE for each of the ob-
servation.

To calculate the CATE, the process begins by estimating the conditional mean of the outcome,
denoted as m̂−i(x,w), and the propensity score, denoted as ê−i(x,w), for each observation. The
estimate, m̂−i(x,w) are obtained using a ”honest approach” in the modified random forest algo-
rithm known as causal forest, ensuring that the estimate for each observation does not include that
observation’s own data, which is known as out-of-bag estimation (OOB). The conditional mean of
the outcome, denoted as m̂−i(x,w), mathematically,

m−i(x,w) = E[Y | X = x,W = w].

This represents the expected value of the outcome variable Y given the covariates X and W , when
the ith observation is excluded from the estimation process. This can be thought of as predicting the
average outcome for a given set of conditions while deliberately leaving out one specific observation
to ensure the prediction is not influenced by that observation.

The estimate ê−i(x,w), also referred to as P (Z | L), represents the probability of receiving
the treatment Z given a set of confounding variables L, where the ith observation is excluded from
the estimation process. This propensity score is calculated using a mixed-effects multilevel logistic
model with a random intercept, tailored for data with a three-level hierarchical structure, such as that
found in the BDHS. The hierarchical structure accounts for clustering within three distinct levels,
allowing for more accurate estimation of the treatment probabilities by considering the nested nature
of the data. The following mixed-effects multilevel logistic model is fitted to estimate the propensity
score.

log

(
π1

π0

)
= Xβ + b1 + b2 + b3,

where the random intercepts, b1, b2, b3, account for the hierarchical levels of clustering: clusters,
households and respondent line numbers, respectively.

Next, the residualized outcome, Ỹij = Yij − m̂−i(Xij ,Wj) and the residualized treatment,
Z̃ij = Zij − ê−i(Xij ,Wj) are computed. These residualized values represent the deviations of the
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actual outcomes and treatments from their expected values. The residuals, Z̃ij and Ỹij play a crucial
role in isolating the part of the outcome that is solely due to the treatment effect. By subtracting the
expected outcome and treatment values (which are predicted based on the covariates) from the actual
values, residuals highlight the variations directly caused by the treatment. This process ensures that
the estimation of the treatment effect is more precise, as it focuses on the differences attributable to
the treatment itself, rather than being confounded by other variables.

The core of the CATE estimation involves performing a weighted linear regression of the resid-
ualized outcome on the residualized treatment. The formula for the CATE at a specific covariate
value (x,w) is:

τ̂(x,w) =

∑
ij αij(x,w)(ỸijZ̃ij)∑
ij αij(x,w)(Z̃2

ij)
,

where αij(x,w) are weights that indicate the contribution of each observation ij to the estimation
of the treatment effect at covariate value (x,w). These weights are determined using a recursive
partitioning algorithm that divides the data into subsets (nodes) based on covariates. The partition-
ing aims to maximize the variance of pseudo-outcomes within each subset, forming a binary tree
structure where each leaf represents a localized region of the covariate space.

This recursive partitioning is repeated across multiple bootstrap samples to construct a forest of
trees. The estimates of the treatment effect from each tree are then aggregated to create an estimate of
the CATE for every observation, and these estimates are averaged to produce the final ATE estimate.
This ensemble approach helps to stabilize the estimates and reduce variance.

The causal forest approach relies on several key assumptions:

1. Unconfoundedness/Conditional Exchangeability: The treatment assignment is independent of
the potential outcomes given the observed covariates:

Y (1), Y (0) ⊥ Z | X,W

2. Positivity: For all values of the covariates, there is a positive probability of receiving each
treatment:

0 < Pr(Z = 1 | X = x,W = w) < 1

3. Stable Unit Treatment Value Assumption (SUTVA): The potential outcomes for any unit do
not vary with the treatment assignments of other units, and there are no different versions of
the treatment:

Yi = Yi(Zi) and it does not depend on Zi′ , i
′ ̸= i

4. Consistency: The observed outcome for each unit is equal to the potential outcome under the
treatment that the unit actually received:

Yi = Yi(Zi)
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3.3 Pseudo-outcomes

To calculate the pseudo-outcomes for each observation, the algorithm adjusts the outcome Yij and
the treatment Zij for their respective means and propensity scores. The pseudo-outcome qij is
typically calculated as

qij =
Z̃ij · Ỹij

ê−i(Xij ,Wj) · (1− ê−i(Xij ,Wj))
,

where e−i(Xij ,Wj) represents the out-of-bag estimate of the propensity score. The next step in-
volves finding the optimal splits in the data which are called nodes. The algorithm searches for ways
to divide the data so that the variance of the pseudo-outcomes within the nodes are minimized, while
the variance between the nodes is maximized. This process helps in identifying splits that best cap-
ture differences in treatment effects. Maximizing the variance of pseudo-outcomes between nodes,
or equivalently minimizing it within nodes, ensures that each split made by the tree is informative
about the treatment effect. By focusing on splits that create subsets with different pseudo-outcomes,
the algorithm effectively identifies regions of the covariate space where the treatment effect varies.
This leads to a more accurate and nuanced estimate of the CATE.

3.4 Average treatment effect (ATE)

The Average Treatment Effect (ATE) is defined as the average linear contrast between the two po-
tential outcomes Yij(1) and Yij(0), where Yij(1) is the outcome if an individual ij receives the
treatment, and Yij(0) is the outcome if the same individual does not receive the treatment. ATE
is calculated by taking the average of the CATE estimates taken from the large number of boot-
straps made from the dataset. This averaging process aggregates the individual-specific treatment
effects to provide an overall measure of the treatment effect for the population. The ATE can also
be considered to be a measure of risk difference:

ˆATE = E(τ̂(Xi,Wj)).

3.5 Propensity scores in causal forest

The introduction of propensity scores into causal forests significantly enhances the accuracy and
reliability of treatment effect estimates. Propensity scores represent the probability of receiving a
treatment given a set of covariates, and their integration helps create balanced groups. This balance
ensures that comparisons between treated and control groups are fair and not skewed by underlying
differences in covariates, thereby reducing bias due to confounding variables. One practical benefit
of using propensity scores in causal forests is evident during the tree-building process. By incor-
porating these scores, the splits in decision trees are guided to create more homogeneous groups
concerning treatment propensity. This leads to more accurate treatment effect estimates within each
leaf of the tree.

The honest estimation approach in causal forests further benefits from the use of propensity
scores. By separating the data used for constructing tree splits from the data used for estimating
treatment effects, the influence of covariate imbalances is minimized. This separation results in less
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biased and more reliable estimates of treatment effects. Overall, the integration of propensity scores
into causal forests makes the method more robust and reliable for observational studies.

3.6 Accounting for cluster effects

In a multi-stage stratified cluster sampling design, the population is divided into distinct strata based
on characteristics like region and within each stratum, smaller groups (clusters) are randomly se-
lected for data collection. This existence of clustering requires careful consideration of what the
statistical approach should be, as it is known that the observation within a cluster are correlated.
Mixed-effects multilevel logistic regression for propensity score, with random intercepts for clus-
ters and including the clusters into the causal forest model help incorporate the cluster structure of
the complex survey data in the proposed statistical approach. During recursive partitioning, cluster
labels guide the splitting process, ensuring that the model accounts for variations across clusters.
This improves the interpretability of CATE estimates, revealing how treatment effects vary across
different contexts. Adjusting for cluster effects also enhances the generalizability and robustness
of policy recommendations. Failing to account for cluster effects can introduce bias, as treatment
effects may be incorrectly attributed to differences across clusters or due to the correlation within
the clusters. Thus, including these effects ensures that the estimated treatment impact accurately
reflects the true causal relationship.

4 Analysis and Results

4.1 Exploratory analysis

This study offers an overview of the variables using exploratory data analysis methods. Frequency
and percentage distributions are provided for categorical variables, and for one continuous variable,
the median and interquartile range are reported. Table 1 presents the list of food variables along with
their frequency distributions. It shows that certain food items are less frequently given to children,
such as cheese, with only 4.6% of children receiving it, and meat, consumed by 12% of children. In
contrast, 61% of children had bread, noodles, or other grain-based foods, suggesting a reliance on
grains in children’s diets.

Table 2 provides the distribution of the Nutritional Variety Score (NVS) for children under 6
months and those aged 6 months to 5 years. According to the World Health Organization, children
under six months old should be exclusively breastfed, without any other foods, (World Health Or-
ganization and UNICEF, 2003). The data reveals that 87.7% of children under 6 months did not
consume any of the specified food items in the past 24 hours. To avoid potential bias from this zero
inflation, the analysis will focus exclusively on children, aged 6 months to 5 years. This subgroup
includes 3,206 children, with a median age of 27 months. Notably, 15.63% of children in this age
range reported no intake of the listed food items in the past 24 hours, potentially reflecting issues
such as poverty, food insecurity, or restricted access to diverse dietary options.

Table 3 summarizes the distribution of maternal employment status and other confounding vari-
ables among children aged 6 months to 5 years. In this table, it is seen that only 26% of mothers
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Table 1: Food variables given to children aged 6 months to 5 years

Serial No. Food Category No (Percent) Yes (Percent)

1 Eggs 2,205 (67%) 1,076 (33%)

2 Bread, noodles, other made from grains 761 (23%) 2,524 (77%)

3 Potatoes, cassava, or other tubers 1,591 (48%) 1,689 (51%)

4 Meat (beef, pork, lamb, chicken, etc) 2,764 (84%) 515 (16%)

5 Pumpkin, carrots, squash (yellow or orange inside) 2,954 (90%) 323 (9.8%)

6 Any dark green leafy vegetables 2,435 (74%) 844 (26%)

7 Mangoes, papayas, other vitamin A fruits 2,928 (89%) 349 (11%)

8 Any other fruits 2,449 (75%) 824 (25%)

9 Fish or shellfish 2,243 (68%) 1,035 (31%)

10 Food made from beans, peas, lentils 2,403 (73%) 876 (27%)

11 Hard or Soft Cheese 3,102 (94%) 173 (5.3%)

Table 2: Distribution of Nutritional Variety Score (NVS) for Children Under 6 Months and Those
Aged 6 Months to 5 Years

NVS Children Under 6 Months Children Aged 6 Months to 5 Years

0 841 (87.70%) 501 (15.63%)

1 61 (6.36%) 306 (9.54%)

2 24 (2.50%) 471 (14.69%)

3 16 (1.67%) 557 (17.37%)

4 6 (0.63%) 526 (16.41%)

5 5 (0.52%) 415 (12.94%)

6 1 (0.10%) 229 (7.14%)

7 1 (0.10%) 119 (3.71%)

8 2 (0.21%) 60 (1.87%)

9 0 (0.00%) 16 (0.50%)

10 1 (0.10%) 6 (0.18%)

11 1 (0.10%) 0 (0.00%)

Total (n) 959 3206
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are employed, and the majority of families reside in rural areas (67%). Household wealth is split
with 44% of families classified as poor, 19% as middle income, and 37% as rich. Additionally, 34%
of husbands/partners have secondary education, while a substantial 98% are employed, potentially
highlighting an economic dependency on male income in these households.

Table 3: Distribution of Maternal Employment Status and Other Potential Confounding Variables
Among Children Aged 6 Months to 5 Years

Characteristic Frequency (Percent)

Working Status 2,032 (26%)

Number of Living Children 2.00 (1.00, 3.00)1

Husband/Partner Education

Higher 1,448 (19%)

No Education 1,226 (16%)

Primary 2,409 (31%)

Secondary 2,570 (34%)

Husband/Partner Working Status

Not Working 138 (1.8%)

Working 7,521 (98%)

Residence Type

Rural 5,220 (67%)

Urban 2,564 (33%)

Wealth Index

Middle 1,512 (19%)

Poor 3,429 (44%)

Rich 2,843 (37%)

Education

Higher 1,362 (17%)

No Education 514 (6.6%)

Primary 1,887 (24%)

Secondary 4,021 (52%)

Total 7,784 (100%)

[1] The number of living children is presented as a median with the interquartile range.
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4.2 Results from causal forest modelling

Figure 1: Directed Acyclic Graph (DAG) illustrating factors influencing children’s Nutritional Vari-
ety Score

In this study, the outcome variable is the children’s Nutritional Variety Score (NVS), and the
treatment variable is the women’s working status. The analysis focuses on controlling for sev-
eral potential confounding variables that are not directly in the causal pathway of interest but have
an impact on both the treatment and the outcome variables. Figure 1 shows the Directed Acyclic
Graph (DAG), illustrating the confounding variables that influence the NVS, including the number
of children, husband’s education, husband’s employment status, residence type, wealth index, and
women’s education level. While these variables are not the focus of the causal analysis, their influ-
ence on both the treatment and the outcome makes it important to account for them to avoid biased
estimates of the effect of women’s working status on children’s nutritional outcomes. By doing so,
the study aims to isolate the true causal effect of the treatment variable while minimizing the impact
of confounding influences.

The analysis begins by constructing the outcome variable, the NVS, which is computed by sum-
ming 11 binary indicators representing whether a child consumed specific food items in the last 24
hours or not. A generalized linear mixed-effects model (GLMM) is then employed to estimate the
propensity scores for women’s employment status. This model incorporates random effects to cap-
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ture the hierarchical structure inherent in the data, which is nested by geographical region (cluster),
household, and individual respondent (identified by respondent line number).

A causal forest model is subsequently applied to estimate the Average Treatment Effect (ATE)
of women’s employment status on children’s NVS. The ATE is estimated by taking an average of
the CATE across all the observation. Table 4 shows the heterogeneity of the CATE across the obser-
vation. The covariates used in the causal forest model align with those employed in the propensity
score estimation model. The causal forest model accommodates clustering by integrating cluster
IDs. The causal forest has all of the tunable parameters optimized by cross-validation and Table 5
shows the estimated ATE, its standard error and the 95% confidence interval.

Following the approach of Venkatasubramaniam et al. (2023), Table 6 presents a robustness
check of the causal forest model. This analysis examines the stability of the estimated ATE and its
associated 95% confidence interval by varying the number of trees in the causal forest. The results
demonstrate that the ATE estimates remain largely stable despite changes in the number of trees,
with only minor fluctuations observed.

For this study, the missing data has been addressed by conducting a complete case analy-
sis (CCA), assuming that the missing data mechanism follows a Missing Completely at Random
(MCAR) pattern. All analysis were conducted using the R programming language (R Core Team,
2024). Key packages included grf, which was used to implement the causal forest model, and
lme4, which was employed to fit the mixed-effects multilevel logistic regression model for propen-
sity score estimation (Tibshirani et al., 2024; Bates et al., 2015).

Table 4: The frequency distribution of Conditional Average Treatment Effect (CATE) across the
observations

CATE Range Frequency

[0.328, 0.375] 54

(0.375, 0.422] 342

(0.422, 0.469] 411

(0.469, 0.516] 535

(0.516, 0.563] 506

(0.563, 0.61] 297

(0.61, 0.657] 151

(0.657, 0.704] 423

(0.704, 0.751] 410

(0.751, 0.798] 41
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Table 5: Estimated Average Treatment Effect (ATE) on children’s Nutritional Variety Score (NVS)

Variable ATE Standard Error 95% CI

Women’s Employment 0.532 0.085 0.365 - 0.699

Table 6: Robustness checks: Estimated average treeatment effect with the change of the number of
trees in the causal forest algorithm.

Number of Trees ATE 95% Confidence Interval

10 0.507 [0.338, 0.676]

100 0.500 [0.331, 0.669]

1000 0.495 [0.326, 0.664]

2000 0.493 [0.324, 0.662]

5000 0.499 [0.330, 0.668]

4.3 Hypothesis test

The following hypothesis investigates whether a causal relationship, represented by the Average
Treatment Effect (ATE), exists between women’s employment status and their children’s Nutritional
Variety Score (NVS).

H0 : ATE = 0 (Causal effect does not exist)

H1 : ATE ̸= 0 (Causal effect does exist)

The estimate of the ATE and its standard error was derived using the bootstrap method. These
estimates can also be used to construct confidence intervals. Under the assumption that the ATE
follows a normal distribution, which is reasonable given that the ATE is aggregated from Conditional
Average Treatment Effects (CATE) across numerous trees in the causal forest. The application of
the central limit theorem ensures that with a sufficiently large sample size, the sampling distribution
of the ATE converges to normality. Thus, the 95% confidence interval for the ATE is [0.365, 0.699],
indicating a significant causal effect of women’s employment status on the nutritional variety score
of children.

5 Discussion and Conclusion

The relationship between women’s employment and children’s nutritional outcomes is complex, but
this study provides valuable insights into the impact of mothers’ working status on their children’s
dietary diversity in Bangladesh. By employing advanced statistical techniques, such as the causal
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forest model with cluster identifiers and a mixed-effects multilevel logistic model for propensity
score, this study has been able to rigorously analyze this relationship and offer robust conclusions.

The findings indicate that children, aged 6 months to 5 years, of employed mothers have a
slightly higher Nutritional Variety Score (NVS) than those of non-employed mothers, with an esti-
mated Average Treatment Effect (ATE) of 0.532 and a standard error of 0.085. This suggests that
working mothers may have greater access to financial resources or information, enabling them to
provide a more diverse diet for their children. However, the modest effect size implies that addi-
tional socio-economic factors also play a crucial role in shaping children’s nutritional outcomes.

These findings carry important policy implications. They highlight the need for greater employ-
ment opportunity for women such that they can ensure greater nutritional diversity and nutritional
intake for their children. They also highlight the need for supportive interventions such as access
to affordable childcare, flexible work environments, and nutrition education programs. Such initia-
tives can simultaneously enhance women’s economic participation and promote better nutrition for
children. This study also illustrates the value of integrating causal inference methods with compre-
hensive survey data, offering a methodological framework for future research in similar settings. By
addressing confounding factors more effectively, these methods yield clearer insights into the causal
link between maternal employment and child nutrition.

While this study offers important insights, several limitations should be acknowledged. First, the
cross-sectional nature of the Bangladesh Demographic and Health Survey (BDHS) data limits our
ability to establish definitive causality. Although advanced techniques such as causal forest models
and cluster-specific propensity scores help infer causal relationships, the possibility of unmeasured
confounders remains. Second, the Nutritional Variety Score, although informative, is based on
binary indicators that capture only the presence or absence of food items, without accounting for the
quantity or quality of food consumed. Future research could incorporate these dimensions to provide
a more holistic understanding of dietary diversity. Furthermore, the generalizability of these findings
may be limited. While the results are relevant to Bangladesh, they may not directly apply to other
regions with different socio-economic and cultural contexts. Comparative studies across multiple
countries would help determine whether similar patterns exist elsewhere. Third, the reliance on
self-reported data introduces potential reporting biases, as variables such as women’s employment
status and children’s dietary intake may not be accurately reported. Future studies could benefit
from validating self-reports with objective measures. Additionally, this study focuses on short-
term outcomes; longitudinal research would be beneficial to explore how the relationship between
women’s employment and child nutrition evolves over time, capturing any delayed effects.

In conclusion, although women’s employment positively affects their children’s nutritional va-
riety, this is only part of a broader narrative. Encouraging maternal employment alone may not be
sufficient to significantly improve child nutrition. A more holistic policy approach, addressing var-
ious aspects of the family’s socio-economic context, is essential to achieve lasting improvements.
Future public health interventions must be designed with a comprehensive understanding of the mul-
tifaceted realities faced by families. This study offers a foundation for such efforts, underscoring the
importance of integrated policies that support both women’s workforce participation and children’s
nutritional health.
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