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SUMMARY

In this paper, we introduce a new class of generalized Aradhana distribution with suitable
R code termed as area biased generalized Aradhana distribution. The proposed new dis-
tribution is a special case of broader weighted distribution family. Its several structural
properties have been explored thoroughly and furthermore its parameters have also been
estimated based on maximum likelihood estimation. To assess its supremacy, a real life-
time data set has been fitted in proposed new distribution to determine its flexibility and
superiority in comparison to existing classical distribution.
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1 Introduction
The theory of weighted distribution has retained a prominent place because it provides a significant role in
handling different lifetime data sets occurring from various applied fields like engineering, medical sciences,
finance, insurance etc. The idea of weighted distribution was proposed by Fisher (1934) in connection with his
studies on how the methods of ascertainment can influence the form of distribution of recorded observations.
Later, Rao (1965) developed this concept in a unified manner in association with modeling statistical data
were the routine practice of employing classical distributions for the purpose was found to be inappropriate.
The weighted distribution gives a method for fitting model to unknown weight function when samples can be
taken both from original and developed distribution. The weighted distributions are remarkable for efficient
modeling of statistical data and prediction obviously when existing distributions are not appropriate. The
weighted distribution reduces to length biased distribution when the weight function considers only length of
the units of interest.The concept of length biased sampling was introduced by Cox (1969) and Zelen (1974).
The statistical interpretation of length biased distribution was originally introduced by Cox (1962) in renewal
theory.The length biased and area biased distributions are special cases of weighted distributions and hence
may be defined as when sample observations have unequal probability of selection, then we apply weights to
the distribution to model the bias. The area biased distributions have been employed largely for sampling in
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forestry, medical sciences, psychology etc. Length biased sampling situation occurs in clinical trials, reliability
theory and population studies were a proper sampling frame is absent.

There are various authors who developed some important area biased weighted probability models along
with their illustrations and applications in various fields. Bashir and Mahmood (2019) developed multivariate
area biased Lindley distribution with properties and applications. Eyob et al. (2019) presented weighted quasi
Akash distribution and obtain its properties and applications. Bashir and Rasul (2018) discussed on the area
biased Rayleigh distribution with properties and applications on lifetime data. Beghriche and Zeghdoudi (2019)
obtained size biased gamma Lindley distribution.Aijaz et al. (2022) introduced poisson area biased Ailamujia
distribution with its applications in environmental and medical sciences. Reyadet al. (2017) proposed length
biased weighted frechet distribution with properties and estimation.Elangovan and Mohanasundari (2019) pre-
sented the area biased Aradhana distribution with applications in cancer data. Ade et al.(2020) proposed area
biased generalized uniform distribution with some statistical properties. Perveen et al. (2016) presented area
biased weighted weibull distribution. Sharma et al. (2018) discussed on the length and area biased Maxwell
distribution.Fazal (2018) obtained the area-biased poisson exponential distribution with applications. Bashir
and Rasul (2016) presented poisson area-biased Lindley distribution with applications on biological data.

A generalized Aradhana distribution is two parametric continuous lifetime distribution introduced by Wel-
day and Shanker (2018) which is a special case of one parameter exponential and Aradhana distribution. Its
different statistical properties like hazard rate function, mean residual life function, shapes of pdf for varying
values of parameters, stochastic ordering, mean deviations, stress-strength reliability, coefficient of variation,
skewness, kurtosis, index of dispersion, bonferroni and lorenz curves have been discussed. Its parameters have
also been estimated by using the maximum likelihood estimation.

2 Area Biased Generalized Aradhana Distribution
The probability density function of generalized Aradhana distribution is given by

f(x; θ, α) =
θ3

θ2 + 2αθ + 2α2
(1 + αx)2e−θx; x > 0, θ > 0, α ≥ 0, (1)

and the cumulative distribution function of generalized Aradhana distribution is given by

F (x; θ, α) = 1−
(
1 +

αθx(2θ + αθx+ 2α)

θ2 + 2αθ + 2α2

)
e−θx; x > 0, θ > 0, α ≥ 0. (2)

Let X be a random variable representing a non-negative condition with probability density function fX(x).
Let its non-negative weight function be w(x). Then the probability density function of the weighted random
variable Xw is given by

fw(x) =
w(x)f(x)

E(w(x))
, x > 0,

where w(x) is a non-negative weight function and E(w(x)) =
∫
w(x)f(x) dx < ∞.

Depending upon various forms of weight function w(x), specifically when w(x) = xc,the resulting distri-
bution is termed as weighted distribution. In this paper, we study area biased version of generalized Aradhana
distribution known as area biased generalized Aradhana distribution.For the weight function w(x) = x2, the
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resulting distribution is termed as area biased distribution with probability density function given by

fa(x) =
x2f(x)

E(x2)
, (3)

where

E(x2) =

∫ ∞

0

x2f(x; θ, α) dx =
(2θ2 + 24α2 + 12αθ)

θ2(θ2 + 2αθ + 2α2)
. (4)

Now using equations (1) and (4) in equation (3), we get the required probability density function of area biased
generalized Aradhana distribution for α = β and θ = λ,

fβ(x) =
x2λ5

(2λ2 + 24β2 + 12βλ)
(1 + βx)2e−λx. (5)

The cumulative distribution function of area biased generalized Aradhana distribution can be determined
as

F (x) =

∫ x

0

fβ(x) dx =

∫ x

0

x2λ5

(2λ2 + 24β2 + 12βλ)
(1 + βx)2e−λx dx

=
1

(2λ2 + 24β2 + 12βλ)

∫ x

0

x2β5(1 + βx)2e−λx dx

=
λ5

(2λ2 + 24β2 + 12βλ)

(∫ x

0

x2e−λx dx+ β2

∫ x

0

x4e−λx dx+ 2β

∫ x

0

x3e−λx dx

)
. (6)

After simplification of equation (6), we get the cumulative distribution function of area biased generalized
Aradhana distribution as

Fβ(x) =
1

(2λ2 + 24β2 + 12βλ)

(
λ2Γ(3, λx) + β2Γ(5, λx) + 2βλΓ(4, λx)

)
. (7)

3 Reliability Measures
In this section, we will derive the reliability function, hazard rate function, reverse hazard rate function and
Mills ratio of the developed area biased generalized Aradhana distribution.

The reliability function, also termed as survival function, of area biased generalized Aradhana distribution
can be computed as

R(x) = 1− Fa(x) = 1− 1

(2λ2 + 24β2 + 12βλ)

(
λ2Γ(3, λx) + β2Γ(5, λx) + 2βλΓ(4, λx)

)
.

The hazard function, also known as hazard rate or failure rate or force of mortality, is given by

h(x) =
fβ(x)

R(x)
=

x2λ5(1 + βx)2e−λx

(2λ2 + 24β2 + 12βλ)− (λ2Γ(3, λx) + β2Γ(5, λx) + 2βλΓ(4, λx))
.

The reverse hazard rate function is given by

hr(x) =
fβ(x)

Fβ(x)
=

x2λ5(1 + βx)2e−λx

λ2Γ(3, λx) + β2Γ(5, λx) + 2βλΓ(4, λx)
.

The Mills Ratio is given by

M.R. =
1

hr(x)
=

(λ2γ(3, λx) + β2γ(5, λx) + 2βλγ(4, λx))

x2λ5(1 + βx)2e−λx
.
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4 Order Statistics

Order statistics play a key role in statistical sciences and have a wide range of applications in the fields of
modeling auctions, car races, insurance, finance, etc. Consider X(1), X(2), . . . , X(n) to be the order statistics
of a random sample X1, X2, . . . , Xn from a continuous population with probability density function fX(x)

and cumulative distribution function FX(x). Then the probability density function of the r-th order statistic
X(r) is given by

fX(r)
(x) =

n!

(r − 1)!(n− r)!
fX(x)(FX(x)])r−1(1− FX(x))n−r. (8)

Now, by substituting the equations (5) and (7) into equation (8), we obtain the required probability density
function of the r-th order statistic X(r) of the weighted generalized Aradhana distribution as

fx(r)(x) =
n!

(r − 1)!(n− r)!

(
x2λ5

(2λ2 + 24β2 + 12βλ)
(1 + βx)2e−λx

)
×
(

1

(2λ2 + 24β2 + 12βλ)

(
λ2γ(3, λx) + β2γ(5, λx) + 2βλγ(4, λx)

))r−1

×
(
1− 1

(2λ2 + 24β2 + 12βλ)

(
λ2γ(3, λx) + β2γ(5, λx) + 2βλγ(4, λx)

))n−r

.
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Therefore, the probability density function of higher order statistic X(n) of area biased generalized Aradhana
distribution can be determined as

fx(n)(x) =
nx2λ5

(2λ2 + 24β2 + 12βλ)
(1 + βx)2e−λx

×
(

1

(2λ2 + 24β2 + 12βλ)

(
λ2γ(3, λx) + β2γ(5, λx) + 2βλγ(4, λx)

))n−1

,

and the probability density function of first order statistic X(1) of area biased generalized Aradhana distribution
can be determined as

fx(1)(x) =
nx2λ5

(2λ2 + 24β2 + 12βλ)
(1 + βx)2e−λx

×
(
1− 1

(2λ2 + 24β2 + 12βλ)

(
λ2γ(3, λx) + β2γ(5, λx) + 2βλγ(4, λx)

))n−1

.

5 Likelihood Ratio Test
Suppose we have the random sample X1, X2, . . . , Xn of size n drawn from the generalized Aradhana or area
biased generalized Aradhana distribution. To analyze its significance, we consider testing the hypothesis

H0 : f(x) = f(x;λ, β) against H1 : f(x) = fβ(x;λ, β).
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To determine whether the random sample of size n comes from the generalized Aradhana distribution or area
biased generalized Aradhana distribution, the below test statistic procedure is used.

∆ =
L1

Lo
=

n∏
i=1

fβ(x;λ, β)

f(x;λ, β)
=

n∏
i=1

(
x2
iλ

2
(
λ2 + 2βλ+ 2β2

)
(2λ2 + 24β2 + 12βλ)

)
=

(
λ2
(
λ2 + 2βλ+ 2β2

)
(2λ2 + 24β2 + 12βλ)

)n n∏
i=1

xi
2.

We should refuse to retain the null hypothesis if

∆ =

(
λ2
(
λ2 + 2βλ+ 2β2

)
(2λ2 + 24β2 + 12βλ)

)n n∏
i=1

x2
i > k.

Equivalently, we should reject the null hypothesis if

∆∗ =

n∏
i=1

x2
i > k

(
λ2
(
λ2 + 2βλ+ 2β2

)
(2λ2 + 24β2 + 12βλ)

)−n

,

or

∆∗ =

n∏
i=1

x2
i > k∗, where k∗ = k

(
λ2
(
λ2 + 2βλ+ 2β2

)
(2λ2 + 24β2 + 12βλ)

)−n

.

As 2 log∆ is distributed as chi-square with one degree of freedom if the sample size n is large, the p-value is
determined by employing the chi-square distribution. Thus we should reject the null hypothesis if the probabil-
ity p (∆∗ > λ∗), where λ∗ =

∏n
i=1 xi

2, is lower than a given level of significance.

6 Statistical Properties
In this section, we discuss different statistical properties of area biased generalized Aradhana distribution, which
include moments, harmonic mean, moment generating function and characteristic function.

6.1 Moments
Let X be the random variable following area biased generalized Aradhana distribution with parameters θ and
α. Then the rth order moment of the distribution can be determined as

E (Xr) = µ′
r =

∫ ∞

0

xrfa(x) dx =

∫ ∞

0

xr x2λ5

(2λ2 + 24β2 + 12βλ)
(1 + βx)2e−λx dx

=

∫ ∞

0

xr+2λ5

(2λ2 + 24β2 + 12βλ)
(1 + βx)2e−λx dx

=
λ5

(2λ2 + 24β2 + 12βλ)

∫ ∞

0

xr+2(1 + βx)2e−λx dx

=
λ5

(2λ2 + 24β2 + 12βλ)

∫ ∞

0

xr+2 (1 + β2x2 + 2βx
)
e−λx dx

=
λ5

(2λ2 + 24β2 + 12βλ)

×
(∫ ∞

0

x(r+3)−1e−λx dx+ α2

∫ ∞

0

x(r+5)−1e−λx dx+ 2β

∫ ∞

0

x(r+4)−1e−λx dx

)
. (9)
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After simplification, equation (9) gives

E (Xr) = µ′
r =

λ2Γ(r + 3) + λ2Γ(r + 5) + 2βλΓ(r + 4)

λr (2λ2 + 24β2 + 12βλ)
. (10)

Now substituting r = 1, 2, 3 and 4 in equation (10), we get the first four moments of the area biased generalized
Aradhana distribution as

E(X) = µ′
1 =

6λ2 + 120β2 + 48βλ

λ (2λ2 + 24β2 + 12βλ)
,

E
(
X2) = µ′

2 =
24λ2 + 720β2 + 240βλ

λ2 (2λ2 + 24β2 + 12βλ)
,

E
(
X3) = µ′

3 =
120λ2 + 5040β2 + 1440βλ

θ3 (2λ2 + 24β2 + 12βλ)
, and

E
(
X4) = µ′

4 =
720λ2 + 40320β2 + 10080βλ

λ4 (2λ2 + 24β2 + 12βλ)
.

Then the Variance,

V =
24λ2 + 720β2 + 240βλ

λ2 (2λ2 + 24β2 + 12βλ)
−
(

6λ2 + 120β2 + 48βλ

λ (2λ2 + 24β2 + 12βλ)

)2

,

and Standard Deviation,

S.D =

√
24λ2 + 720β2 + 240βλ

λ2 (2λ2 + 24β2 + 12βλ)
−
(

6λ2 + 120β2 + 48βλ

λ (2λ2 + 24β2 + 12βλ)

)2

.

6.2 Harmonic mean

The harmonic mean for developed area biased generalized Aradhana distribution can be determined as

H.M. = E(1/x) =

∫ ∞

0

1

x
fa(x) dx =

∫ ∞

0

1

x

x2λ5

(2λ2 + 24β2 + 12βλ)
(1 + βx)2e−λx dx

=

∫ ∞

0

xλ5

(2λ2 + 24β2 + 12βλ)

(
1 + β2x2 + 2βx

)
e−λx dx

=
λ5

(2λ2 + 24β2 + 12βλ)

∫ ∞

0

x
(
1 + β2x2 + 2βx

)
e−λx dx

=
λ5

(2λ2 + 24β2 + 12βλ)

×
(∫ ∞

0

x(3)−2e−λx dx+ β2

∫ ∞

0

x(4)−1e−λx dx+ 2β

∫ ∞

0

x(3)−1e−λx dx

)
. (11)

After simplification, equation (11) gives

H.M.=
λ
(
2λ+ 6β2 + 4βλ

)
(2β2 + 24β2 + 12βλ)

.
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6.3 Moment generating function and characteristic function
Suppose the random variable X follows a weighted generalized Akash distribution with parameters λ, β, and
α. Then the moment generating function of the proposed new distribution can be determined as

MX(t) = E(etX) =

∫ ∞

0

etxfw(x) dx.

Using Taylor’s series, we obtain

MX(t) =

∫ ∞

0

(
1 + tx+

(tx)2

2!
+ · · ·

)
fw(x) dx =

∫ ∞

0

∞∑
j=0

tj

j!
xjfw(x) dx =

∞∑
j=0

tj

j!
µ′
j

=

∞∑
j=0

tj

j!

(
λ2Γ(α+ j + 1) + βΓ(α+ j + 3)

λj(λ2Γ(α+ 1) + βΓ(α+ 3))

)

=
1

(λ2Γ(α+ 1) + βΓ(α+ 3))

∞∑
j=0

tj

j!λj

(
λ2Γ(α+ j + 1) + βΓ(α+ j + 3)

)
.

Similarly, the characteristic function of the weighted generalized Akash distribution can be obtained as

φX(t) = MX(it) =
1

(λ2Γ(α+ 1) + βΓ(α+ 3))

∞∑
j=0

itj

j!λj

(
λ2Γ(α+ j + 1) + βΓ(α+ j + 3)

)
.

7 Bonferroni and Lorenz Curves
The Bonferroni and Lorenz curves, also termed as classical curves, are mostly employed to study the distribu-
tion of inequality in income or poverty. The Bonferroni and Lorenz curves can be defined as

B(p) =
1

pµ′
1

∫ q

0

xf(x) dx and L(p) = pB(p) =
1

µ′
1

∫ q

0

xf(x) dx,

where µ′
1 = 6θ2+120α2+48αθ

θ(2θ2+24α2+12αθ)
and q = F−1(p). After some algebra

B(p) =
θ
(
2θ2 + 24α2 + 12αθ

)
p (6θ2 + 120α2 + 48αθ)

∫ q

0

x
x2θ5

(2θ2 + 24α2 + 12αθ)
(1 + αx)2e−θx dx

=
θ
(
2θ2 + 24α2 + 12αθ

)
p (6θ2 + 120α2 + 48αθ)

∫ q

0

x3θ5

(2θ2 + 24α2 + 12αθ)

(
1 + α2x2 + 2αx

)
e−θx dx

=
θ6

p (6θ2 + 120α2 + 48αθ)

∫ q

0

x3 (1 + α2x2 + 2αx
)
e−θx dx

=
θ6

p (6θ2 + 120α2 + 48αθ)

(∫ q

0

x(4)−1e−θx dx+ α2

∫ q

0

x(6)−1e−θx dx+ 2α

∫ q

0

x(5)−1e−θx dx

)
.

After simplification, we obtain

B(p) =
θ6

p (6θ2 + 120α2 + 48αθ)

(
γ(4, θq) + α2γ(6, θq) + 2αγ(5, θq)

)
L(p) =

θ6

(6θ2 + 120α2 + 48αθ)

(
γ(4, θq) + α2γ(6, θq) + 2αγ(5, θq)

)
.
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8 Maximum Likelihood Estimation and Fisher’s Information
Matrix

In this section, we discuss the maximum likelihood method to estimate the parameters of the area-biased gen-
eralized Aradhana distribution. Let X1, X2, . . . , Xn be a random sample of size n from the area-biased gener-
alized Aradhana distribution. Then the likelihood function is obtained as

L(x) =

n∏
i=1

fβ(x) =

n∏
i=1

(
x2
iλ

5

2λ2 + 24β2 + 12βλ
(1 + βxi)

2e−λxi

)

=

n∏
i=1

(
x2
iλ

5

2λ2 + 24β2 + 12βλ

(
1 + β2x2

i + 2βxi

)
e−λxi

)

L(x) =

n∏
i=1

(
x2
iλ

5

(2λ2 + 24β2 + 12βλ)

(
1 + β2x2

i + 2βxi

)
e−λxi

)

=
λ5n

(2λ2 + 24β2 + 12βλ)n

n∏
i=1

(
x2
i

(
1 + β2x2

i + 2βxi

)
e−λxi

)
.

The log-likelihood function is given by

logL = 5n log λ− n log
(
2λ2 + 24β2 + 12βλ

)
+ 2

n∑
i=1

log xi +

n∑
i=1

log
(
1 + β2x2

i + 2βxi

)
− λ

n∑
i=1

xi.

Now, differentiating the log-likelihood with respect to parameters λ and β, we obtain the normal equations,

∂ logL

∂λ
=

5n

λ
− n

(
4λ+ 12β

2λ2 + 24β2 + 12βλ

)
−

n∑
i=1

xi = 0,

∂ logL

∂β
= −n

(
48β + 12λ

2λ2 + 24β2 + 12βλ

)
+

n∑
i=1

(
2βx2

i + 2xi

1 + β2x2
i + 2βxi

)
= 0.

Because of the complicated form of the above likelihood equations, algebraically it is very difficult to solve the
system of nonlinear equations. Therefore, we use numerical techniques like the Newton-Raphson method for
estimating the parameters of the proposed distribution.

In order to use the asymptotic normality results for determining the confidence interval, we have that if
λ̂ = (θ̂, α̂) denotes the MLE of λ = (θ, α), then we can show

√
n(λ̂− λ)

d−→ N2

(
0, I−1(λ)

)
,

where I−1(λ) is the Fisher’s information matrix, i.e.,

I(λ) = − 1

n

E
(

∂2 logL
∂θ2

)
E
(

∂2 logL
∂θ∂α

)
E
(

∂2 logL
∂α∂θ

)
E
(

∂2 logL
∂α2

)
 ,

and where

E

(
∂2 logL

∂θ2

)
= −5n

θ2
− n

(
4
(
2θ2 + 24α2 + 12αθ

)
− (4θ + 12α)2

(2θ2 + 24α2 + 12αθ)2

)
,
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E

(
∂2 logL

∂α2

)
= n

((
2θ2 + 24α2 + 12αθ

)
(48)− (48α+ 12θ)2

(2θ2 + 24α2 + 12αθ)2

)

+

n∑
i=1

((
1 + α2x2

i + 2αxi

) (
2x2

i

)
−
(
2αx2

i + 2xi

)2
(1 + α2x2

i + 2αxi)
2

)
, and

E

(
∂2 logL

∂θ∂α

)
= −n

((
2θ2 + 24α2 + 12αθ

)
(12)− (4θ + 12α)(48α+ 12θ)

(2θ2 + 24α2 + 12αθ)2

)
.

Since λ is unknown, we estimate I−1(λ) by I−1(λ̂), and this can be used to obtain asymptotic confidence
intervals for θ and α.

9 Application
In this section, we have used a real lifetime data set in the area biased generalized Aradhana distribution to
determine its goodness of fit. We then compare this distribution to the generalized Aradhana, quasi Aradhana,
Aradhana, and Lindley distributions.

The following real lifetime data set given in Table 1 represents remission time (in months) of 50 breast can-
cer women subjected to treatment using trastzuzumab as medication reported by the cancer registry department
of the University of Benin teaching hospital, Benin, Edo. To estimate the model parameters, the R software is

Table 1: Data regarding remission time (in months) of 50 breast cancer women using trastuzumab
as medication reported by the University of Benin, Cancer Registry Department

50 74 35 39 21 37 27 35 30 35

26 38 34 34 26 41 61 33 33 26

25 41 35 34 34 33 60 61 42 30

80 31 24 49 26 31 28 41 37 41

61 33 26 34 50 73 45 80 39 21

employed. In order to compare the performance of the area biased generalized Aradhana distribution over gen-
eralized Aradhana, quasi Aradhana, Aradhana and Lindley distributions, we use the AIC (Akaike Information
Criterion),BIC (Bayesian Information Criterion), AICC (Akaike Information CriterionCorrected)and −2 logL.
The distribution is better for smaller values of AIC,BIC, AICC and −2 logL, where

AIC = 2k − 2 logL,

BIC = k logn− 2 logL,

AICC = AIC +
2k(k + 1)

n− k − 1
, and

where n is the sample size, k is the number of parameters in the statistical model, and −2 logL is the maximized
value of the log-likelihood function under the considered model.

From Table 2, it is clear that the area biased generalized Aradhana distribution has smaller AIC, BIC, AICC
and -2logL values, as compared to generalized Aradhana, quasi Aradhana, Aradhana and Lindley distributions.
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Table 2: Performance of Fitted Distributions

Distributions MLE S.E -2logL AIC BIC AICC

Area Biased λ = 1.262631 λ = 7.985160 404.4966 408.4966 412.3206 408.7519

Generalized Aradhana β = 7.324041 β = 1.186340

Generalized Aradhana λ = 7.575677 λ = 6.184947 419.3825 423.3825 427.2066 423.6378

β = 3.572997 β = 5.305860

Quasi Aradhana λ = 0.07573918 λ = 0.009935162 419.4027 423.4027 427.2267 423.6580

β = 0.001000000 β = 0.413967627

Aradhana λ = 0.073900753 λ = 0.006033229 421.2996 423.2996 425.2117 423.3829

Lindley λ = 0.049318007 λ = 0.00493249 437.2288 439.2288 441.1409 439.3121

Hence it can be concluded that the area biased generalized Aradhana distribution leads to a better fit over
generalized Aradhana, quasi Aradhana, Aradhana and Lindley distributions.

10 Conclusion
In the present article, a novel distribution termed as area biased generalized Aradhana distribution has been
introduced and compared to its baseline and other distributions. Its different statistical properties like moments,
shape of the pdf and cdf, harmonic mean, survival function, hazard rate function, reverse hazard rate function,
moment generating function, order statistics, Bonferroni and Lorenz curves have been thoroughly studied and
explored. Furthermore, its parameters have also been estimated by using the technique of maximum likelihood
estimation. Finally, an application of the new distribution has been presented by using a real lifetime data
set to demonstrate its significance and supremacy. Hence it is revealed from the result that the proposed area
biased generalized Aradhana distribution provides quite satisfactory results over generalized Aradhana, quasi
Aradhana, Aradhana and Lindley distributions.
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A Appendix: R Code

1 library(zipfR)
2 rm(list=ls(all=TRUE))
3 x=seq(0,15,0.0001)
4 y=function(x,theta=0.7,alpha=0.6)((xˆ2)*(thetaˆ5)*(1+alpha*x)ˆ2*exp(-

theta*x))/(2*(thetaˆ2)+24*(alphaˆ2)+12*alpha*theta)
5 plot(x,y(x),"l",col=1,lwd=2,ylab="f(x)",lty=1,ylim=c(0,0.4),sub="Fig.1:

Pdf plot of Area Biased Generalized Aradhana Distribution")
6 y=function(x,theta=1.0,alpha=0.8)((xˆ2)*(thetaˆ5)*(1+alpha*x)ˆ2*exp(-

theta*x))/(2*(thetaˆ2)+24*(alphaˆ2)+12*alpha*theta)
7 curve(y,add=T,col=2,lwd=2,lty=1)
8 y=function(x,theta=1.3,alpha=1.0)((xˆ2)*(thetaˆ5)*(1+alpha*x)ˆ2*exp(-

theta*x))/(2*(thetaˆ2)+24*(alphaˆ2)+12*alpha*theta)
9 curve(y,add=T,col=3,lwd=2,lty=1)

10 y=function(x,theta=1.6,alpha=1.2)((xˆ2)*(thetaˆ5)*(1+alpha*x)ˆ2*exp(-
theta*x))/(2*(thetaˆ2)+24*(alphaˆ2)+12*alpha*theta)

11 curve(y,add=T,col=4,lwd=2,lty=1)
12 y=function(x,theta=1.9,alpha=1.4) ((xˆ2)*(thetaˆ5)*(1+alpha*x)ˆ2*exp(-

theta*x))/(2*(thetaˆ2)+24*(alphaˆ2)+12*alpha*theta)
13 curve(y,add=T,col=6,lwd=2,lty=1)
14 legend("topright",legend=c(
15 expression(paste(theta==0.7,",",alpha==0.6)),
16 expression(paste(theta==1.0,",",alpha==0.8)),
17 expression(paste(theta==1.3,",",alpha==1.0)),
18 expression(paste(theta==1.6,",",alpha==1.2)),
19 expression(paste(theta==1.9,",",alpha==1.4))),lwd=2,col=c(1,2,3,4,6),text

.width=3.6,cex=0.9,fill=c(1,2,3,4,6))
20
21 library(zipfR)
22 rm(list=ls(all=TRUE))
23 x=seq(0,10,0.01)
24 y=function(x,theta=1.6,alpha=0.9) ((thetaˆ2)*Igamma(3,theta*x,lower=TRUE)

+(alphaˆ2)*Igamma(5,theta*x,lower=TRUE)+(2*alpha*theta)*Igamma(4,
theta*x,lower=TRUE))/(2*(thetaˆ2)+24*(alphaˆ2)+12*(alpha)*(theta))

25 plot(x,y(x),"l",col=2,lwd=2,ylab="F(x)",lty=1,ylim=c(0,1),sub="Fig.2:Cdf
plot of Area Biased Generalized Aradhana Distribution")

26 y=function(x,theta=1.9,alpha=1.2) ((thetaˆ2)*Igamma(3,theta*x,lower=TRUE)
+(alphaˆ2)*Igamma(5,theta*x,lower=TRUE)+(2*alpha*theta)*Igamma(4,
theta*x,lower=TRUE))/(2*(thetaˆ2)+24*(alphaˆ2)+12*(alpha)*(theta))

27 curve(y,add=T,col=3,lwd=2,lty=1)
28 y=function(x,theta=2.2,alpha=1.5) ((thetaˆ2)*Igamma(3,theta*x,lower=TRUE)

+(alphaˆ2)*Igamma(5,theta*x,lower=TRUE)+(2*alpha*theta)*Igamma(4,
theta*x,lower=TRUE))/(2*(thetaˆ2)+24*(alphaˆ2)+12*(alpha)*(theta))

29 curve(y,add=T,col=4,lwd=2,lty=1)
30 y=function(x,theta=2.5,alpha=1.8) ((thetaˆ2)*Igamma(3,theta*x,lower=TRUE)

+(alphaˆ2)*Igamma(5,theta*x,lower=TRUE)+(2*alpha*theta)*Igamma(4,
theta*x,lower=TRUE))/(2*(thetaˆ2)+24*(alphaˆ2)+12*(alpha)*(theta))

31 curve(y,add=T,col=5,lwd=2,lty=1)
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32 legend("bottomright",legend=c(
33 expression(paste(theta==1.6,",",alpha==0.9)),
34 expression(paste(theta==1.9,",",alpha==1.2)),
35 expression(paste(theta==2.2,",",alpha==1.5)),
36 expression(paste(theta==2.5,",",alpha==1.8))),lwd=2,col=c(1,2,3,4,6),text

.width=2.4,cex=0.9,fill=c(1,2,3,4,6))
37
38 library(zipfR)
39 rm(list=ls(all=TRUE))
40 x=seq(0,10,0.01)
41 y=function(x,theta=1.6,alpha=0.9) 1-((thetaˆ2)*Igamma(3,theta*x,lower=

TRUE)+(alphaˆ2)*Igamma(5,theta*x,lower=TRUE)+(2*alpha*theta)*Igamma
(4,theta*x,lower=TRUE))/(2*(thetaˆ2)+24*(alphaˆ2)+12*(alpha)*(theta))

42 plot(x,y(x),"l",col=2,lwd=2,ylab="R(x)",lty=1,ylim=c(0,1),sub="Fig.3:
Reliability plot of Area Biased Generalized Aradhana Distribution")

43 y=function(x,theta=1.9,alpha=1.2) 1-((thetaˆ2)*Igamma(3,theta*x,lower=
TRUE)+(alphaˆ2)*Igamma(5,theta*x,lower=TRUE)+(2*alpha*theta)*Igamma
(4,theta*x,lower=TRUE))/(2*(thetaˆ2)+24*(alphaˆ2)+12*(alpha)*(theta))

44 curve(y,add=T,col=3,lwd=2,lty=1)
45 y=function(x,theta=2.2,alpha=1.5) 1-((thetaˆ2)*Igamma(3,theta*x,lower=

TRUE)+(alphaˆ2)*Igamma(5,theta*x,lower=TRUE)+(2*alpha*theta)*Igamma
(4,theta*x,lower=TRUE))/(2*(thetaˆ2)+24*(alphaˆ2)+12*(alpha)*(theta))

46 curve(y,add=T,col=4,lwd=2,lty=1)
47 y=function(x,theta=2.5,alpha=1.8) 1-((thetaˆ2)*Igamma(3,theta*x,lower=

TRUE)+(alphaˆ2)*Igamma(5,theta*x,lower=TRUE)+(2*alpha*theta)*Igamma
(4,theta*x,lower=TRUE))/(2*(thetaˆ2)+24*(alphaˆ2)+12*(alpha)*(theta))

48 curve(y,add=T,col=5,lwd=2,lty=1)
49 legend("topright",legend=c(
50 expression(paste(theta==1.6,",",alpha==0.9)),
51 expression(paste(theta==1.9,",",alpha==1.2)),
52 expression(paste(theta==2.2,",",alpha==1.5)),
53 expression(paste(theta==2.5,",",alpha==1.8))),lwd=2,col=c(1,2,3,4,5),text

.width=2.4,cex=0.9,fill=c(1,2,3,4,5))
54
55 library(zipfR)
56 rm(list=ls(all=TRUE))
57 x=seq(0,0.4,0.0001)
58 y=function(x,theta=1.0,alpha=0.1) ((xˆ2)*(thetaˆ5)*(1+alpha*x)ˆ2*exp(-

theta*x))/(2*(thetaˆ2)+24*(alphaˆ2)+12*(alpha)*(theta))-((thetaˆ2)*
Igamma(3,theta*x,lower=TRUE)+(alphaˆ2)*Igamma(5,theta*x,lower=TRUE)
+2*(alpha)*(theta)*Igamma(4,theta*x,lower=TRUE))

59 plot(x,y(x),"l",col=1,lwd=2,ylab="h(x)",lty=1,ylim=c(0,0.03),sub="Fig.4:
Hazard plot of Area Biased Generalized Aradhana Distribution")

60 y=function(x,theta=1.2,alpha=0.1) ((xˆ2)*(thetaˆ5)*(1+alpha*x)ˆ2*exp(-
theta*x))/(2*(thetaˆ2)+24*(alphaˆ2)+12*(alpha)*(theta))-((thetaˆ2)*
Igamma(3,theta*x,lower=TRUE)+(alphaˆ2)*Igamma(5,theta*x,lower=TRUE)
+2*(alpha)*(theta)*Igamma(4,theta*x,lower=TRUE))

61 curve(y,add=T,col=2,lwd=2,lty=1)
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62 y=function(x,theta=1.4,alpha=0.1) ((xˆ2)*(thetaˆ5)*(1+alpha*x)ˆ2*exp(-
theta*x))/(2*(thetaˆ2)+24*(alphaˆ2)+12*(alpha)*(theta))-((thetaˆ2)*
Igamma(3,theta*x,lower=TRUE)+(alphaˆ2)*Igamma(5,theta*x,lower=TRUE)
+2*(alpha)*(theta)*Igamma(4,theta*x,lower=TRUE))

63 curve(y,add=T,col=3,lwd=2,lty=1)
64 y=function(x,theta=1.6,alpha=0.1) ((xˆ2)*(thetaˆ5)*(1+alpha*x)ˆ2*exp(-

theta*x))/(2*(thetaˆ2)+24*(alphaˆ2)+12*(alpha)*(theta))-((thetaˆ2)*
Igamma(3,theta*x,lower=TRUE)+(alphaˆ2)*Igamma(5,theta*x,lower=TRUE)
+2*(alpha)*(theta)*Igamma(4,theta*x,lower=TRUE))

65 curve(y,add=T,col=4,lwd=2,lty=1)
66 y=function(x,theta=1.8,alpha=0.1) ((xˆ2)*(thetaˆ5)*(1+alpha*x)ˆ2*exp(-

theta*x))/(2*(thetaˆ2)+24*(alphaˆ2)+12*(alpha)*(theta))-((thetaˆ2)*
Igamma(3,theta*x,lower=TRUE)+(alphaˆ2)*Igamma(5,theta*x,lower=TRUE)
+2*(alpha)*(theta)*Igamma(4,theta*x,lower=TRUE))

67 curve(y,add=T,col=6,lwd=2,lty=1)
68 legend("topleft",legend=c(
69 expression(paste(theta==1.0,",",alpha==0.1)),
70 expression(paste(theta==1.2,",",alpha==0.1)),
71 expression(paste(theta==1.4,",",alpha==0.1)),
72 expression(paste(theta==1.6,",",alpha==0.1)),
73 expression(paste(theta==1.8,",",alpha==0.1))),lwd=2,col=c(1,2,3,4,6),text

.width=0.1,cex=0.9,fill=c(1,2,3,4,6))
74
75 strength_data=c(50, 74, 35, 39, 21, 37, 27, 35, 30, 35, 26, 38, 34, 34,

26, 41, 61, 33, 33, 26, 25, 41, 35, 34, 34, 33, 60, 61, 42, 30, 80,
31, 24, 49, 26, 31, 28, 41, 37, 41, 61, 33, 26, 34, 50, 73, 45, 80,
39, 21)

76 dburr=function(x,theta,alpha) ((xˆ2)*(thetaˆ5)*(1+alpha*x)ˆ2*exp(-theta*x
))/(2*(thetaˆ2)+24*(alphaˆ2)+12*alpha*theta)

77 library(MASS)
78 MLE_theta_alpha=fitdistr(x = strength_data,densfun = dburr,start = list(

alpha=0.5,theta=0.91),lower=c(0.001,0.001),upper=c(Inf,Inf))
79 MLE_theta_alpha
80 Minus_2_logL1=-2*fitdistr(x = strength_data,densfun = dburr,start = list(

alpha=0.5,theta=0.91),lower=c(0.001,0.001),upper=c(Inf,Inf))$loglik
81 Minus_2_logL1
82
83 AIC(MLE_theta_alpha)
84 BIC(MLE_theta_alpha)
85 dburr=function(x,alpha=5.478,theta=7.489) ((xˆ2)*(thetaˆ5)*(1+alpha*x)ˆ2*

exp(-theta*x))/(2*(thetaˆ2)+24*(alphaˆ2)+12*alpha*theta)
86 curve(dburr(x),add=TRUE,col=3,lwd=2)
87 legend("topright",legend=c("Area Biased Generalized Aradhana Distribution

","Generalized Aradhana Distribution","Quasi Aradhana Distribution","
AradhanaDistribution","Lindley Distribution"),pt.cex=13,cex=0.9,lty
=2:3,fil=2:3,lwd=2)

88 dburr=function(x,theta,alpha) ((thetaˆ3)*(1+alpha*x)ˆ2*exp(-theta*x))/((
thetaˆ2)+2*alpha*theta+2*(alphaˆ2))

89
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90 library(MASS)
91 MLE_theta_alpha=fitdistr(x = strength_data,densfun = dburr,start = list(

alpha=0.5,theta=0.91),lower=c(0.001,0.001),upper=c(Inf,Inf))
92 MLE_theta_alpha
93 Minus_2_logL=-2*fitdistr(x = strength_data,densfun = dburr,start = list(

alpha=0.5,theta=0.91),lower=c(0.001,0.001),upper=c(Inf,Inf))$loglik
94 Minus_2_logL
95
96 AIC(MLE_theta_alpha)
97 BIC(MLE_theta_alpha)
98
99 hist(strength_data,prob=TRUE,density=c(15),main="Fig.5:Fitting of ABGAD,

GAD, Quasi Aradhana, Aradhana and Lindley distribution to the relief
time data given in table.1",xlab= "observed")

100
101 dburr=function(x,alpha=5.478,theta=7.489) ((thetaˆ3)*(1+alpha*x)ˆ2*exp(-

theta*x))/((thetaˆ2)+2*alpha*theta+2*(alphaˆ2))
102 curve(dburr(x),add=TRUE,col=3,lwd=2)
103
104 dburr=function(x,theta,alpha) (theta*(alpha+theta*x)ˆ2*exp(-theta*x))/((

alphaˆ2)+2*alpha+2)
105
106 library(MASS)
107 MLE_theta_alpha=fitdistr(x = strength_data,densfun = dburr,start = list(

alpha=0.5,theta=0.91),lower=c(0.001,0.001),upper=c(Inf,Inf))
108 MLE_theta_alpha
109 Minus_2_logL=-2*fitdistr(x = strength_data,densfun = dburr,start = list(

alpha=0.5,theta=0.91),lower=c(0.001,0.001),upper=c(Inf,Inf))$loglik
110 Minus_2_logL
111 AIC(MLE_theta_alpha)
112 BIC(MLE_theta_alpha)
113 hist(strength_data,prob=TRUE,density=c(15),main="Fig.5:Fitting of ABGAD,

GAD, Quasi Aradhana, Aradhana and Lindley distribution to the relief
time data given in table.1",xlab= "observed")

114 dburr=function(x,alpha=5.478,theta=7.489) (theta*(alpha+theta*x)ˆ2*exp(-
theta*x))/((alphaˆ2)+2*alpha+2)

115 curve(dburr(x),add=TRUE,col=3,lwd=2)
116
117 dburr=function(x,theta) (thetaˆ3*(1+x)ˆ2*exp(-theta*x))/(thetaˆ2+2*theta

+2)
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