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SUMMARY

Survival prediction models are often used in healthcare to estimate the prognosis of pa-
tients, guide treatment decisions, and allocate resources effectively. When developing a
survival prediction model or updating the model with a new predictor or novel marker, it is
important to evaluate their performance with measures that facilitate natural and intuitive
interpretations and are sensitive to the correct value added by the new predictor. Concor-
dance statistic (C-statistic) is frequently used to assess the predictive performance, espe-
cially discriminatory power of the models. Although multiple estimators for C-statistic,
such as Harrell’s, Uno’s and Gonen & Heller’s estimators, are available in literature, their
performance under different survival data conditions, such as varying levels of censoring,
and the added predictive value from a new predictor remains unclear. To address these as-
pects, this paper first showed an application of some popular C-statistics using two different
datasets to describe how these C-statistics can be estimated and interpreted in practice, and
secondly investigated their comparative performance using an extensive simulation study.
The aim is to evaluate the robustness of these measures to varying degrees of censoring and
their sensitivity to the added predictive value of a new predictor in the model, providing
practical recommendations for their use. The findings revealed that Gonen & Heller’s C-
statistic was comparatively more robust to increasing levels of censoring than both Harrell’s
and Uno’s estimators, with Uno’s estimator performing moderately better than Harrell’s.
Additionally, Gonen & Heller’s estimator proved to be more sensitive to the added predic-
tive value of a new predictor, regardless of the type of predictor or the level of censoring.
The paper concludes with recommendations for selecting the most effective C-statistics
to evaluate the performance of survival prediction models across various real-world data
scenarios.
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1 Introduction

Survival prediction models are frequently used in healthcare research to predict the status of a pa-
tient’s health outcome such as death, state of illness or recovery from disease in a given time and
guide both clinicians and patients for taking joint decisions on the future course of treatment (Moons
et al., 2012; Collett, 2014). For example, in oncology, clinicians are often interested to predict the
5-years survival probability of a cancer patient, and in cardiology, to predict the risk of developing
cardiac disease etc (Omar et al., 2004). Given the importance of survival prediction models in clin-
ical research, it is essential to evaluate the predictive ability of the models (Royston and Altman,
2013). In particular, it is often of interest to asses how well the predictions obtained from a model
match with reality and how much additional value gained by inclusion of a new predictor when
updating a model (Rahman and Rumana, 2019). This can be addressed using different arguments,
resulting in different metrics for assessing model performance. For prediction models, it is common
to assess its predictive performance by quantifying ‘discrimination’ and ‘calibration’ (Van Klaveren
et al., 2023). Discrimination refers to the model’s ability to correctly distinguish the two groups,
i.e., subjects who experienced events have higher predicted probabilities compared to those who
did not (D’Agostino and Nam, 2003). Calibration refers to “the agreement between the observed
and predicted outcomes” (Steyerberg et al., 2010). Of these two aspects, assessing ‘discrimination’
of a model is relatively more important because re-calibration of the model is possible whereas
improving its discrimination is not (Schmid and Potapov, 2012; Pencina et al., 2012b). In the con-
text of developing and validating prediction models for survival data, where the outcome pertains
to “time-to-event” and provides information about both the survival duration of subjects and their
event status, the presence of censoring further complicates the scenario. Consequently, evaluating
the performance of survival prediction models becomes even more challenging.

One commonly used metric to evaluate the performance of survival prediction models, especially
for assessing the discriminatory power is the concordance statistic (C-index or C-statistic) (McLer-
non et al., 2023). The concordance statistic represents the proportion of concordant pairs (where
the prediction and observed data are consistent) among all comparable pairs (pairs in which at least
one subject experienced the event). A value of 0.5 indicates no discriminatory power, equivalent to
random chance, while a value of 1 indicates perfect discrimination by the model (Heller and Mo,
2016). Given the widespread acceptance and straightforward interpretation of the C-statistic, it has
been extensively studied in the literature as a measure of performance for survival prediction mod-
els, leading to the development of various estimation techniques. Notably, the estimator proposed
by Harrell et al. (1982) is “a rank-correlation measure” that brings up a crucial concern about how to
order survival times when censoring is present in the data. Later, Harrell’s estimator was extensively
studied and extended by Uno et al. (2011) incorporating “inverse probability weighting” to account
for the effect of censoring, where weight is calculated from the Kaplan-Meier survival probability
of censoring distribution. These rank-based approaches have the limitation of not considering the
magnitude of the difference in survival times for pairwise comparisons. To address this, Gönen and
Heller (2005) introduced an alternative method for estimating concordance probability, specifically
for the Cox proportional hazard model (Cox, 1972) by using its properties and solely based on the
estimated regression coefficients and the observed covariates.
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Although a number of estimators of the concordance statistic have been proposed in the litera-
ture, it remains unclear which estimator is generally preferred across all aspects of survival predic-
tion models. These aspects include developing a new prediction model, updating an existing model
by adding a new predictor, or assessing the incremental value of a novel biomarker (Pencina et al.,
2012a; Newson, 2010). Some studies have devoted considerable attention to examining the robust-
ness of the concordance statistic to sample size and censoring, providing practical recommendations
for its use in developing models for survival data (Rahman et al., 2017; Gerds et al., 2014). In
prediction research, it is common practice to update existing models by integrating new predictors
into them (Collett, 2014; Ohno-Machado, 2001), and as a result, the sensitivity of the concordance
statistic to improvements in predictive ability has become an important area of concern (Pencina
et al., 2012a; Mihaescu et al., 2010; Austin and Steyerberg, 2012).

However, the C-statistic has faced significant criticism for its lack of sensitivity to the inclusion
of new predictors, particularly when updating models (Biswas et al., 2019; Newson, 2010). This
insensitivity can lead to misleading conclusions, making the evaluation of the model’s performance
questionable (Seshan et al., 2013). Additionally, sample size and the presence of censoring in sur-
vival data may further distort the estimation of the C-statistic value (Wang and Long, 2016). With
this background, the paper aims to evaluate the performance of three widely used C-statistic mea-
sures for survival prediction models developed in the Cox proportional hazard (PH) model frame-
work (Cox, 1972). These measures are selected on the basis of their ease of interpretation, com-
munication and availability or ease of implementation in commonly used statistical software. The
C-statistic measures are evaluated with respect to the robustness to the degree of censoring and
sensitivity to the added predictive value from the inclusion of a new predictor or risk factor and
provide some practical recommendations. This is achieved by first applying the C-statistics to two
real datasets with different levels of censoring to demonstrate how these estimators can be calculated
and interpreted in practice. Subsequently, an extensive simulation study is conducted across diverse
scenarios and discussed the recommendations for using them in practice.

2 Methodology

2.1 Notations and the model

Let (ti, δi,xi) (i = 1, 2, . . . , n) represent the observed survival data for the ith subject from a cohort
of individuals, where ti = min(Ti, Ci), with Ti denoting the failure time and Ci the censoring
time, δi is the event indicator (1 for failure time and 0 for censoring time), and xi is a vector of k
predictors. The Cox PH model can be defined as

h(ti|xi) = h0(ti) exp(xiβ),

where the hazard h(ti|xi) at time t is a product of a baseline hazard h0(ti) and the exponential of
the linear predictor xiβ = β1x1 + . . .+ βkxk. The predictive form of this model can be written in
terms of the survival function as

S(ti|xi) = S0(ti)
exp(xiβ),
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where S(ti|xi) is the probability of surviving beyond time t given predictors x, and S0(ti) =

exp[−
∫ ti
0

h0(u)du] is the baseline survivor function at time t. To make predictions at time t, one
uses estimates β̂ and Ŝ0(ti).

2.2 Concordance statistics for Cox PH models

Concordance probability is based on the property that a survival model should be able to predict a
longer survival time for a subject who fails later in life than the subject who fails earlier (Pencina
et al., 2012b). Based on the property, the concordance probability is essentially the fraction of
concordant pairs among all comparable pairs. A necessary criterion for comparability is that the
pair can be ranked, implying that the subject with shorter observed time can not be a censored
observation, as in such scenario it will be ambiguous to determine which subject failed first. A
comparable pair is also concordant if the prediction and the observed data go in consistent direction;
that is, the model-based survival probability will be higher for the longer event-free individual.
Estimating concordance for the Cox PH model requires ranking the survival functions for every
comparable pair. This comes down to only comparing the linear predictor values in the case of the
Cox PH model because one-to-one correspondence holds between the predicted survival time and
the survival probability. For a randomly selected pair of subjects (i, j), the concordance probability
can be defined as

C = Pr
[
Si(t|xi) < Sj(t|xj)|ti < tj

]
= Pr

[
(S0(t|xi))

exp(xiβ) < (S0(t|xj))
exp(xjβ)|ti < tj

]
= Pr

[
xiβ > xjβ|ti < tj

]
.

The following sub-sections describe the estimation of three concordance measures considered under
study.

2.2.1 Harrell’s C-statistic

Harrell’s estimator involves calculating the proportion of concordance pairs among the comparable
pairs (Harrell et al., 1982) and can be estimated as

ĈH =

∑n
i̸=jI(xiβ̂ > xjβ̂|ti < tj , δi = 1)∑n

i̸=jI(ti < tj , δi = 1)
,

where I(·) denotes the logical indicator function and n is the number of observations. In the presence
of censoring, not all subject pairs are comparable; a pair is said to be comparable if the shorter of
the two survival times corresponds to an event. This implies that the value of the CH depends on
the censoring mechanism (Pencina et al., 2012b). Another limitation of this estimator is that it uses
rank-based approach and disregards the magnitude of differences in survival times when conducting
pairwise comparisons.
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2.2.2 Uno’s C-statistic

To address the shortcoming of Harrell’s estimator, Uno et al. (2011) proposed a modified estimator
for the C-statistic taking the censoring distribution into account by incorporating “inverse probability
weighting” technique (Cheng et al., 1995). The proposed modified estimator can be expressed as

ĈU =

∑n
i̸=jG(ti)

−2I(xiβ̂ > xjβ̂|ti < tj , ti < τ, δi = 1)∑n
i̸=jG(ti)−2I(ti < tj , ti < τ, δi = 1)

,

where G(ti) is the Kaplan-Meier estimator of the censoring distribution, and τ is introduced to
overcome instability in the tail part of the survival function and should be chosen as any time upto
and including the last event time.

2.2.3 Gonen & Heller’s C-statistic

Gonen & Heller proposed an alternative definition of concordance probability under Cox PH as-
sumption. They argued that for a randomly chosen pair of subjects (i, j), the subject with the higher
estimated log relative risk (xiβ) is expected to have the shorter survival time, assuming that the
subjects are ordered according to increasing values of log relative risks derived from the model.
Accordingly, the concordance probability can be defined as:

C(β) = Pr [ti < tj |xiβ ≥ xjβ]

=

∫ ∞

0

S(tj |xj ,β)dS(ti|xi,β)

=
1

1 + exp(xjβ − xiβ)
.

Based on the above definition, Gönen and Heller (2005) obtained an analytical formula for concor-
dance probability under Cox PH model, and the estimator is defined as

ĈGH =
∑
i<j

2

n(n− 1)

{
I(xiβ̂ > xjβ̂)

1 + exp(xjβ̂ − xiβ̂)
+

I(Xjβ̂ > xiβ̂)

1 + exp(xiβ̂ − xjβ̂)

}
.

Unlike Harrell’s CH , Gonen and Heller’s estimator, CGH , does not directly use the observed event
and censoring times; rather, it is a function of the model parameters and the predictor distribution,
using all pairs of patients in its calculation. Since the partial likelihood estimator of β from Cox PH
model is asymptotically unbiased even for high censoring, the CGH is expected to provide unbiased
estimate across different level of censoring.

3 Illustration Using Two Clinical Datasets

This section aims to illustrate an application of the concordance statistics under study using two
clinical datasets with different level of censoring and risk profiles. For each dataset, several survival
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prediction models were developed under the Cox PH framework with an aim to see whether there is
any difference in the estimates across the measures and models with diverse predictive abilities and
also to see how these estimates can be interpreted in the clinical contexts. The following subsections
describe the illustrations, starting with primary biliary cirrhosis data, followed by prostate cancer
data.

3.1 Primary biliary cirrhosis data

Primary biliary cirrhosis (PBC) is a chronic liver disease with limited treatment options, the most
effective being liver transplantation. The data under consideration originates from the Mayo Clinic’s
trial on primary biliary cirrhosis conducted between 1974 and 1984 (Mayo Clinic’s official web por-
tal). This study considers the first 312 participants in the dataset who participated in the randomized
trial. The outcome of interest is time to death or liver transplantation with 59% censoring. The
details of the study design and variables available in the dataset can be found in the work of Mur-
taugh et al. (1994). For illustration purposes, a base model was first developed using age as the only
predictor. Subsequently, the model was updated by sequentially adding the following predictors one
by one: serum bilirubin, albumin, and prothrombin time. It is important to note that the predictors
were selected based on the literature and exploratory analysis of the data. Since some of the con-
tinuous predictors exhibited a non-linear relationship with the outcome, they were log-transformed
before being incorporated into the model. For each model, all types of concordance statistics were
estimated. The sensitivity to the addition of a new predictor was assessed by calculating the relative
changes in the estimates of the concordance statistics. These relative changes were computed for
the updated model by comparing its estimates with those from the base model. To account for the
effect of censoring, adjustments were made by balancing Harrell’s and Uno’s estimates, eliminating
the difference between their estimates and Gonen and Heller’s estimate for the base model.

Table 1: Relative change in C-statistic for inclusion of risk-factors in PBC data. The relative changes
were computed by eliminating the difference between the two estimates for the base-model, thereby
adjusting for the effect of censoring.

Harrell’s Uno’s Gonen & Heller’s

Model ĈH Relative
Change(%)

ĈU Relative
Change(%)

ĈGH Relative
Change(%)

Base model: Age 0.625 - 0.598 - 0.615 -

Added predictor

Serum bilirubin 0.761 21.7 0.734 22.7 0.751 22.1

Albumin 0.779 24.6 0.752 25.7 0.769 25.0

Prothrombin 0.782 25.1 0.755 26.2 0.772 25.5

Note: Risk-factors were included ‘one-at-a-time’ to the model.

https://www.mayo.edu/research/documents/pbchtml/doc-10027635
https://www.mayo.edu/research/documents/pbchtml/doc-10027635
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The results in Table 1 reveal a remarkable difference in the estimates of the three C-statistics for
all models, indicating the influence of censoring on the estimates. Further analysis was conducted to
assess the sensitivity of the concordance measures to the addition of a predictor to the base model.
The results demonstrate differences in the relative changes in the C-statistic values, suggesting that
not all C-statistics under study are equally sensitive to the inclusion of a predictor in the base model.
Therefore, further investigation through a simulation study is warranted.

3.2 Prostate cancer data

The second illustration is based on the prostate cancer dataset, which is primarily available in the
public domain (https://hbiostat.org/data/repo/prostate). The outcome of interest from 502 cancer pa-
tients is time-to-death with 29% censoring. The dataset contains a mixture of both demographic and
clinical predictors. Similar to the previous illustration using the PBC data, to explore the sensitivity
of the concordance measures to the addition of a predictor, we began with a base model containing
a single predictor (stage). We then successively added more predictors and computed the relative
changes.

Table 2: Relative change in C-statistic for inclusion of risk-factors in prostate cancer data. The
relative changes were computed by eliminating the difference between the two estimates for the
base-model, thereby adjusting for the effect of censoring.

Harrell’s Uno’s Gonen & Heller’s

Model ĈH Relative
Change(%)

ĈU Relative
Change(%)

ĈGH Relative
Change(%)

Base model: Stage 0.693 - 0.653 - 0.654 -

Added predictor

Serum Hemoglobin 0.733 5.8 0.693 6.1 0.694 6.2

Size of Primary Tumor 0.763 10.1 0.723 10.7 0.724 10.7

Combined Index of Size & Grade 0.772 11.4 0.732 12.1 0.733 12.1

Note: Risk-factors were included ‘one-at-a-time’ to the model.

The results in Table 2 show that there is difference in the estimates of the three concordance
measures for the same model, suggesting the influence of censoring. Furthermore, difference in
the changes to adding a predictor across the measures is also observed. These results suggest fur-
ther investigation through simulation study to identify which concordance measure is actually more
sensitive to the inclusion of a new predictor.
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4 Simulation Study

Two simulation series were carried out: (i) the first one to examine the impact of censoring under
different level of sample size, and (ii) the second one to evaluate the sensitivity of concordance
measures to the added predictive value gained by introducing a new predictor to an existing model.

4.1 Simulation design

In the first simulation series, several simulation scenarios were considered varying the level of cen-
soring and sample size n = 50, 100, 200, 500. We considered a wide range of censoring rates: 0%,
20%, 50%, and 80% to assess their impact (i.e. for high censoring) on C-statistics for each of the
sample size scenarios. For interpretation, we considered censoring rates below 50% as low and
those are 50% or above as high, following the discussion in Hendry (2014). In the second simu-
lation series, we evaluated the sensitivity of all the C-statistic measures under study by measuring
the additional predictive value gained by increasing the effect size associated with the predictor of
the model, following the work of Austin and Steyerberg (2013). While the sensitivity was assessed
for one predictor, the value of the other predictor was fixed. The sensitivity was assessed for both
the binary and continuous predictors under two different situations: one while they are independent
and the other when they are correlated themselves. Further, the sensitivity was assessed for a dis-
crete count-type predictor to see if there is any difference in the performance from the earlier two
predictors.

For independent predictors scenario, we generated binary predictor Bernoulli distribution with
probability of 0.5 and the continuous predictor was independently generated from standard normal
distribution. For the correlated predictors, we generated two variates from a bivariate normal distri-
bution with correlation coefficient ρ = 0.2, of which the first variate was considered as continuous
predictor and the second variate is considered as a latent variable in the case of binary predictor. The
binary predictor was then created from the latent variable, fixing its mean as the threshold value. For
the count type predictor, it was generated from the Poisson distribution with mean = 5. For each of
the scenarios, the survival times were generated from the Weibull distribution as follows

Ti =
(− log ui

λi

)1/γ

i = 1, 2, . . . , n,

where λi = exp(xiβ) is a scale parameter with a vector of regression coefficients β = (β0, β1)

associated with the predictors and γ as the shape parameter of value 1.2, and u is a uniformly dis-
tributed random variable on (0, 1). To introduce random censoring, additional Weibull distributed
censoring times were simulated using Ci = (− log ui/α)

1/γ where different choices of the scalar α
were used to produce different proportions of censoring. A subject was then considered to be cen-
sored if their censoring time was shorter than their survival time. For the first simulation scenarios
with different levels of censoring, the values of the regression coefficients were fixed at β1 = 1.5 and
β2 = 0.75. In the second simulation scenarios when sensitivity was assessed for each predictor sep-
arately, the value of the regression coefficient associated with the predictor was varied in the interval
(−2, 2) fixing the value of the regression coefficients of the other predictors. For each scenario, we
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simulated 1000 datasets using the above procedure. For each dataset, we fitted the Cox PH model
using the maximum likelihood approach and calculated concordance measures for the fitted model.
The average over 1000 simulations was reported for each measure. The sensitivity was measured as
the mean change in concordance measures due to the added value of the regression coefficient from
the previous value.

4.2 Simulation results

Table 3 shows the results of the first simulation series. The results revealed that all the concordance
measures are affected by the degree of censoring, by increasing bias with the increasing degree
of censoring. However, the amount of bias due to censoring is quite similar for any sample size
scenario considered here. Of the measures, Gonen and Heller’s C-statistic (CGH ) has shown to be
more robust to the degrees of censoring by providing relatively less amount of bias compared to the
other measures under study.

Figure 1 shows the sensitivity of the C-statistics for independent binary and continuous pre-
dictors separately under 0% and 30% censoring. The results demonstrate that Gonen and Heller’s
C-statistic appear to show greater sensitivity compared to the other measures for both binary and
continuous predictors across all scenarios of censoring. However, Harrell’s and Uno’s C-statistics
(CH , CU ) showed very similar performance. Gonen and Heller’s C-statistic (CGH ) also showed
greater sensitivity for the scenario with correlated predictors under 0% and 30% censoring as shown
in Figure 2, however, the performance of the CGH almost close to the other measures. Similar
results appear when sensitivity was assessed for an independent count-type predictor in Figure 3.

5 Discussion and Conclusion

The paper assessed the performance of some concordance metrics for survival prediction models,
focusing on their robustness to the degree of censoring and sensitivity to the added predictive value
due to the inclusion of a new predictor with the aim to provide some practical recommendations. The
paper first showed an application of the concordance measures to two clinical datasets, each with
different levels of censoring and predictive value, to illustrate the performance of these metrics. The
results showed that these concordance measures performed differently for the same model developed
from a given dataset. This led us to conduct a simulation study to determine which measures actually
outperform others and under what conditions in censored survival data.

The simulation study revealed that all concordance measures were affected by censoring, show-
ing increasing bias as the level of censoring increased. Among the measures, Gonen & Heller’s
estimator outperformed the others by exhibiting a negligible amount of bias compared to Harrell’s
and Uno’s estimators, regardless of the level of censoring, indicating its robustness to censoring.
These results held true for any sample size, and sample size did not affect the bias. When examining
sensitivity, Gonen & Heller’s estimator exhibited the highest sensitivity to the added predictive value
of a new predictor. Harrell’s and Uno’s estimators were nearly identical at 0% censoring but showed
slight differences at moderate levels of censoring (30%).
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Table 3: C-statistic for varying percentage of censored data and sample size with true value of
concordance statistic 0.791

Harrell’s Uno’s Gonen & Heller’s

Sample
size

Cens
(%)

ĈH SE Rel.
bias(%)

ĈU SE Rel.
bias(%)

ĈGH SE Rel.
bias(%)

0 0.792 0.034 0.126 0.792 0.034 0.126 0.794 0.030 0.379

50 20 0.826 0.033 4.425 0.826 0.033 4.425 0.820 0.028 3.666

50 0.887 0.030 12.137 0.892 0.030 12.769 0.851 0.026 7.585

80 0.954 0.023 20.607 0.959 0.031 21.239 0.897 0.035 13.401

0 0.792 0.022 0.126 0.792 0.022 0.126 0.792 0.020 0.126

100 20 0.822 0.024 3.919 0.823 0.023 4.046 0.814 0.020 2.908

50 0.884 0.021 11.757 0.891 0.022 12.642 0.845 0.018 6.827

80 0.951 0.016 20.228 0.957 0.024 20.986 0.884 0.023 11.757

0 0.792 0.016 0.126 0.792 0.016 0.126 0.792 0.014 0.126

200 20 0.822 0.016 3.919 0.823 0.016 4.046 0.814 0.014 2.908

50 0.883 0.015 11.631 0.891 0.015 12.642 0.842 0.013 6.448

80 0.950 0.011 20.101 0.958 0.015 21.113 0.876 0.015 10.746

0 0.791 0.009 0.000 0.791 0.009 0.000 0.791 0.008 0.000

500 20 0.822 0.010 3.919 0.823 0.010 4.046 0.813 0.009 2.781

50 0.882 0.010 11.504 0.891 0.010 12.642 0.840 0.008 6.195

80 0.949 0.007 19.975 0.959 0.009 21.239 0.870 0.010 9.987

Note: The reported results are mean of 1000 iterations.

The simulation findings align with the results from both illustrations using the two clinical
datasets. For instance, Gonen and Heller’s estimator demonstrated slightly greater sensitivity to
the addition of new predictors when updating an existing model, which is consistent with the sim-
ulation findings under the scenario with 30% censoring, particularly in the case of correlated pre-
dictors. Both the simulation and real-data applications suggest that the level of censoring influences
the degree of sensitivity in the concordance measures. Therefore, the level of censoring should be
carefully investigated before selecting an appropriate concordance measure.

The reason for Gonen & Heller’s outperformance is that it is a model-based estimator, i.e., it
is a function of the regression coefficient, and retains all desirable statistical properties as long as
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Figure 1: Sensitivity of C-statistics to the added value of the regression coefficient associated with
a predictor that is independent of the other predictor in the model. The results are summarized for
both 0% and 30% censoring.

the Cox PH model is correctly specified and estimated. As the effect of censoring on the regression
coefficient is mediated through the partial-likelihood estimation, this concordance estimator is not
affected by the censoring (Gönen and Heller, 2005). Moreover, since the estimator is completely de-
pendent on the regression coefficient, larger changes in the coefficient result in greater sensitivity in
the concordance estimator. In contrast, both Harrell’s and Uno’s estimators are based on the ranking
of predicted risk given the observed data. Therefore, the rank order is less affected by changes in the
predicted risk derived from the linear combination of the predictors and their coefficients(Rahman
et al., 2017). However, the only common characteristic available among these concordance mea-
sures is that all these measures can be easily computed and programs or codes are available in the
standard statistical softwares such as R and Stata.

Based on the findings of the study, some practical guidelines for selecting concordance measures
when developing a survival prediction model are discussed as follows: Before selecting a concor-
dance measure, it is recommended to assess the level of censoring in the data and determine whether
a Cox proportional hazards (PH) model can be appropriately fitted while holding the PH assump-
tion. If the Cox PH model is suitable for the data, we strongly recommend using Gonen & Heller’s



380 Alauddin and Rahman

Figure 2: Sensitivity of C-statistics to the added value of the regression coefficient associated with a
predictor that is correlated with the existing predictor in the model. The results are summarized for
both 0% and 30% censoring.

C-statistic at any level of censoring. This recommendation is based on the estimator’s robustness
to censoring and its high sensitivity to the added predictive value from the model. A concordance
measure with good sensitivity is particularly important when an existing model is being updated
with new risk factors. In contrast, Uno’s estimator is recommended if the Cox PH assumption does
not hold and the predictive model is developed using a survival model framework other than the Cox
PH framework.
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Figure 3: Sensitivity of C-statistics to the added value of the regression coefficient associated with a
count-type predictor in the model. The results are summarized for both 0% and 30% censoring.
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