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ABSTRACT

Trimmed mean has been considered a robust estimator of location parameters over the last
five decades. The issue of outlier detection has been considered using analytical and graph-
ical statistical tools. This article proposes a graphical device based on the trimmed mean
to check whether data has any outliers or not, and in the presence of outliers, the proposed
graphical device enables the estimation of the proportion of the outliers as well. The ex-
tension of the methodology to the high dimensional data is also outlined. Furthermore, the
proposed visualization toolkit is implemented on economic data and gives us an idea of the
presence/absence of influential observations/outliers.
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1 Introduction

Detecting outliers in the data is an important issue in any statistical analysis. The presence of outliers
in the data disturbs the optimal properties of the statistical tools which leads to impious, incorrect and
invalid statistical inferences. Various concepts have been deployed in the literature to identify the
outliers in the data. It becomes more challenging to identify the outliers in higher dimensional data
sets. The outlier detection can be performed using analytical and graphical devices. The graphical
devices have their advantages as they are easy to understand in many practical and complicated
situations in datasets. The concept of the trimmed mean can be used to detect the outliers in the
data; see |Pratap et al.| (2021]).

The trimmed mean is a well-known robust estimator for the location parameter. Specifically, it
can achieve good efficiency with a good breakdown point, which is an out-of-ordinary property of
any estimator. In this context, it is important to mention that the sample mean is the asymptotically
most efficient estimator of the location parameter when the data follow the normal distribution. In
contrast, the sample median is the asymptotically most efficient estimator when the data follow
the Laplace distribution. Note that the trimmed mean coincides with the sample mean when the
trimming proportion equals zero, whereas it coincides with the sample median when the trimming
proportion equals (1/2). Overall, the trimmed mean bridges the sample mean and the sample median
(see, e.g., Lehmann| (1983) for a detailed discussion).

In the literature, to the best of our knowledge, Tukey and McLaughlin| (1963)) first time proposed
the trimmed mean to use the trimmed version of ¢-statistic, and after a few years, [Hogg| (1967) also
used the concept of trimmed mean for some practical purposes. During the same period of time, the
asymptotic distribution of trimmed mean was derived by Bickel| (1965)), and [Stigler| (1973)) worked
on the same issue under weaker conditions. In the few years, many other works and applications
on trimmed mean had been done by Dhar and Chaudhuri| (2009)), Dhar and Chaudhuri| (2012), Dhar
(2016)), [Dhar et al.|(2022) and Dhar et al.|(2022) and a few references therein.

The outliers detection by signal subspace matching is considered in Wax and Adler| (2024), and
Farne and Vouldis|(2024) presented a conditional outlier detection methodology for high-dimensional
data. Further, |Song et al.|(2024) considered the outlier detection using penalized likelihood estima-
tion for general spatial models, Murph et al.[(2024)) presented visualisation and outlier detection for
probability density function ensembles, and [Hu et al.|(2024) described regularized Huber regression
for outlier detection. A gradient test statistic for outlier detection in generalized estimating equations
is discussed in|Osorio et al.|(2024), whereas |[Amin et al.| (2022) and Rashid et al.| (2022} considered
outlier detection in gamma regression, and in high-dimensional data using support vector regression,
respectively. A survey of outlier detection in high dimensional data streams is presented in[Souiden
et al.| (2022) and [Smiti| (2020). The nonparametric tests for detection of high dimensional outliers
are discussed in Modarres| (2022), and |Cabana et al.| (2021) presented outlier detection in a multi-
variate setup using robust Mahalanobis distance with shrinkage estimators. Besides outlier detection
in robust statistics point of view, [Fan et al.| (2021) studied a selective overview of recent advances in
high dimensional factor models in the presence of the outliers and their applications to statistics, and
a decade ago, Karoui et al,| (2013)) investigated regression model with high dimensional predictors
with outliers. The readers are referred to the references in|Karoui et al.|(2013)) as well in this context.
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In this paper, we propose a graphical device to detect the outliers using the concept of trimmed
mean. Let us now denote a € (0, %) as the trimming proportion of the trimmed mean, and it is a
well-known result in the literature (see, e.g., [Hampel et al.| (1985) and |Dhar and Chaudhuri| (2009))
that the asymptotic breakdown point of a-trimmed mean is . In other words, it indicates that the
a-trimmed mean won’t explode to infinity unless the proportion of outliers is larger than «, and this
fact follows from the gross error sensitivity of the population version of the a-trimmed mean as well
(see [Hampel et al.| (1985)). Using this idea, we propose a new graphical device and implement it
on well-known business data. Moreover, the theoretical justification of the graphical device is also
provided. The proposed idea is extended to high-dimensional data sets.

The rest of the article is organized as follows: The a-trimmed mean is defined, and its relevant
statistical properties are discussed in Section[2] Section [3|proposes the graphical device based on the
a-trimmed mean, and well-known economic data are analyzed using the proposed methodology in
Section[d] The extension of the proposed method to high-dimensional data is provided in Section 5.
Finally, some concluding remarks are presented in Section[6] The technical details and the Python
code used for all numerical studies are provided in the Appendix.

2 Trimmed Mean and Its Properties

Let X1, X5, ..., X, be arandom sample from a location-scale family with the form of distribution
F(X,6), where F is an absolutely continuous Lebesgue measurable distribution function, and 6 is
the unknown location parameter. The a-trimmed mean, which is introduced by [Tukey| (1948), based
on the random sample X1, Xo, ..., X, is defined as

—[na]

Xn"a Cn-— 2 [na] Z X(l)’

i=[na+1]
where X(;) is the i-th order statistic of the random sample X3, Xs,..., X, and a € (O, %) is
the trimming proportion. Here [-] denotes the largest integer contained in [-]. Further, observe that
)_(ma coincides with the sample mean when o« — 0 and with the sample median when o« — %
For details about the a-trimmed mean, the readers may refer to Dhar and Chaudhuri| (2009)), Dhar,
and Chaudhuri (2012), and a few references therein. The population version of the trimmed mean

(denoted as f(«)) can be defined as follows.
Fl(1-a)
O(a) = / xf(z)dx,
F=1(a)

where f(-) is the probability density function of F(.). Note that §(c) = 6 for all & € (0, 1) if and
only if f is a symmetric probability density function with center of symmetry = 0.

We now assume some technical conditions that will be required for some theoretical properties
of the trimmed mean.
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(A1) Let X1, Xo,..., X, be arandom sample from the distribution function F', where F' is contin-
uously differentiable, and the derivative of F' (i.e., f) is positive on the entire real line.
Theorem 1. Under (Al), forany 0 < a1 < as < %, we have sup | X, o —0(a)| = Op(nfé).
oy <a<oz

Theorem |1| asserts that )_(n,a can approximate 6(«) arbitrarily well for a sufficiently large sample
size over any open interval of (0, 3). In other words, the feature of 6(c) can be captured by Z, o
over any open interval of (0, %) when the sample size is large enough. This fact enables us to develop
the graphical device based on Z, .

We now would like to recall the concept of quantitative breakdown point (see, e.g., [Hampel et
al.| (1985)) of 6(a). The definition of the breakdown point of any functional is as follows: The
breakdown point of a functional 7" at a distribution P is defined as

(T, P,d) = inf{e > 0: |T(P) — T(Q)| = oo for some @ such that d(P,Q) < €},

where d is a suitable metric measuring the discrepancy between P and (). The following Theorem
states the breakdown point of 6(«).

Theorem 2. Under (Al), €*(0(«), F,d) = o, where d is a pseudo metric.

Theorem [2| asserts that the breakdown point of #(«) is a.. In other words, the trimmed mean func-
tional 6(«) will break down if the original distribution P and the contaminated distribution @) are
apart from each other by at least o. This idea, along with the assertion in Theorem [I] motivates
a graphical device to check whether the data has outliers or not, which will be studied in the next
section.

3 Graphical Device for Detecting Outliers

Note that the assertion in Theorem [I|indicates that Z,, , can approximate 6(«) arbitrary well for a
sufficiently large sample, and it follows from the assertion in Theoremthat 6(a) can break down
when the original distribution P and the contaminated distribution () are apart from each other by at
least «, i.e., in view of sample analogue, when the data generated from (@ has at least o proportion
of data, which are located far apart from the data cloud generated from P. Hence, as T, o can
approximate 0(c) arbitrary well for a sufficiently large sample, one can plot T,, o, with respect to o
(i.e., the trimming proportion) for a given data to estimate the proportion of outliers in data.

We conduct a simulation experiment using the data from different distributions to understand the
implementation of the proposed graphical device. Let us now consider the following three examples.

Example 3.1. Data are obtained from the following mixture of normal distributions (i) 0.7N (0, 1)+
0.3N(10,1) and (ii) 0.7N(0,1) +0.3N (100, 1). Here N (1, o) denotes the normal distribution with
location parameter u and the scatter parameter o.

Example 3.2. Data are obtained from the following mixture of Laplace distributions (i) 0.7L(0, 1)+
0.3L(10,1) and (ii) 0.7L(0,1) + 0.3L(100, 1) distributions. Here L(u, o) denotes the Laplace
distribution with location parameter 1 and the scatter parameter o.
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Example 3.3. Data are obtained from the following mixture of Cauchy distributions (i) 0.7C'(0, 1)+
0.3C(10,1) and (ii) 0.7C(0,1) + 0.3C(100, 1) distributions. Here C(u, o) denotes the Cauchy
distribution with location parameter  and the scatter parameter o.

Note that for all three examples, i.e., Examples 1, 2, and 3, the models are well-known location
contamination model (see, e.g., Dhar and Chaudhuri| (2012)). The choice contamination model (lo-
cation contamination model is a special case) has been used in the context of robust statistics since
1970s (see |Huber (1981), p. 9 and 11), and the same concept was used by |Dhar et al.| (2016)) (see
Section 2 in this article) in measuring the robustness of various association index. For a lucid under-
standing of this concept, let us consider the following example. Suppose that the data are generated
from 0.9N(0,1) + 0.1N(100, 1) distribution. That means with probability 0.9, the data are gener-
ated from N (0, 1), which is the main data cloud, and with probability 0.1, the data are generated
from N (100, 1) distribution, which are the outlier observations. Observe that for a sufficiently large
sample, 99.73% observations from the main data cloud are lying between —3 and 3 whereas 0.27%
observations (i.e., outliers) are lying between 97 and 103. For real data, concerning outliers, such a
location contamination model has been used in analyzing many real data sets including well-known
Crabs Study data and Wine data set. In the location contamination model (broader sense, mixture
of Gaussian distributions), these two data sets are analyzed in (Clark and McNicholas| (2024) (see
Sections 4.3 and 4.4 in this article). Besides, such type of mixture distribution has been used in
statistical modelling and forecasting as well (see, e.g.,|Shalabh et al.| (2024)).

The main data cloud is generated from standard normal, Laplace, and Cauchy distributions,
and the outliers in the data cloud are generated from the same distribution but non-zero location
parameter. The sample sizes considered are n = 50, 100, 200 and 500. Here we have taken the
values of the location parameter as 10 (see the diagrams of the first and the second rows in Figures
[11 2 and [3) and the location parameter as 100 (see the diagrams in the third and the fourth rows in
Figures|[I] [2]and [3). In general, the diagrams in Figures|T} [2]and 3} the values of z,,  is reasonably
large when « is smaller than 0.3 (approximately), and the values of z,, , is close to zero when « is
greater than 0.3 (approximately). This feature is more prominent in Figures[I]and 2] as normal and
Laplace distributions are light-tailed, whereas the Cauchy distribution is heavy-tailed. Moreover, in
each of Figures [T} [2]and 3] the change of curvature is sharper in the diagrams in the first and the
second rows compared to that in diagrams in the third and the fourth rows as the distributions with
the location parameter as 100 are more skewed than the distributions with the location parameter as
10. The sample sizes are denoted as num_sample inside the Figures[I] 2]and 3]

Therefore, our overall suggestion is the following to estimate the proportion of outliers in the
data:

Step 1 : For a given data, plot Z,, ,, for various choices of o € (0, %)

Step 2 : Check range of «, where Z,, o, is much larger than zero. Let [0, 5] be that range.
Step 3: The estimated proportion of outliers in the data is 5.

In this context, we would like to mention that the behavior of the trimmed mean for such cases
can be characterized by the second derivative of the trimmed mean with respect to the trimming
proportion, as considered in Dhar and Chaudhuri| (2012)) (see Section 3 in this article). Technically
speaking, suppose that 0" (c) denotes the second derivative of 6(), where () is the same as
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Figure 1:

Trimming Proportion

The diagrams of the first and the second rows plot T, o when the data obtained from

0.7N(0,1) + 0.3N (10, 1) for different choices of «, and the diagrams in the third and the fourth
rows plot Z., o, when the data obtained from 0.7N(0,1) 4+ 0.3N (100, 1) for different choices of c.

For details, see Example 1.
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Figure 2:  The diagrams in the first and the second rows plot T, o when the data obtained from
0.7L(0,1) + 0.3L(10, 1) for different choices of «, and the diagrams in the third and the fourth
rows plot T, ., when the data obtained from 0.7L(0,1) + 0.3L(100, 1) for different choices of c.

For details, see Example 2.
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Figure 3:

Trimming Proportion

The diagrams in the first and the second row plots T, o when the data obtained from

0.7C(0,1)+0.3C(10, 1) for different choices of o, and the diagrams in the third and the fourth row
plot Ty, o when the data obtained from 0.7C(0,1) + 0.3C(100, 1) for different choices of c. For

details, see Example 3.
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defined at the beginning of Section 2, and let " () be a consistent estimator of 6 («r). Suppose
that the estimator of 3, which is denoted by (3,,, is defined as

B, =arg max OA”(a),
a€lar,az]

where 0 < a1 < ag < % It follows from the assertion in Theorem 5 of |Dhar and Chaudhuri (2012)
that 3, will be a “good” estimator of 3 as long as 2{1 — H (%)} is small enough, where the form
of the location contamination model is (1 — 8)H(.) + SH(. — ¢). At present, to the best of our
knowledge, this is the best possible optimal property of Bn in estimating 3 known to us. In|Dhar and
Chaudhuri| (2012), we have also seen that Bn performs better than EM algorithm based estimator of
[ for many examples.

The next section will implement this graphical device on a real data set.

4 Real Data Analysis

Here, we implement the proposed graphical device on a well-known real data set described in the
following.

Bike sales data: The bike sales data set encompasses the data about the sales of bikes with dif-
ferent variables affecting the decision of sales data. This dataset contains variables like age, sex,
marital status, homeowner, children, and their bike sale decisions. The bike sales data set has 89
rows with diverse attributes, which is available at https://www.kaggle.com/datasets/
ratnarohith/uncleaned-bike—-sales—data. The data set is also available at https:
//home.iitk.ac.in/~shalab/dhar_shalabh_trim_graphical/uncleanedbikesalesdata.
x1sx. The data set provides comprehensive information, including the date of sale, customer de-
mographics (age, gender, age group), geographic details (country, state), and transaction specifics
(product category, sub-category, order quantity). In this study, the “Revenue” column is used as it
is expected to have a handful number of outliers. Figure [] illustrates the scatter plot of the data,
which indicates the presence of many outliers. Therefore, for this data set, to have an idea about
the average “Revenue”, using the sample mean will lead to a misleading result. However, as our
proposed graphical device reveals 42% (approximately) outliers in the data, one can use a highly
robust estimator of the center to get an idea about the average “Revenue” in the data set.

We now plot Z,, ., (here n = 89) with respect to « (i.e., trimming proportion) for this data data in
Figure[5| The diagram in Figure[5indicates that the curvature of Z,, , becomes parallel to horizontal
axis when the trimming proportion is larger than 0.42 (approximately), i.e., in other words, this data
set has approximately 42% outliers.

5 Extension to High Dimensional Data

In the recent past, due to the advancement of technology, we have been seeing a lot of high di-
mensional data in various fields like Medicine, Finance, Engineering, Robotics and so on. Here,


https://www.kaggle.com/datasets/ratnarohith/uncleaned-bike-sales-data
https://www.kaggle.com/datasets/ratnarohith/uncleaned-bike-sales-data
https://home.iitk.ac.in/~shalab/dhar_shalabh_trim_graphical/uncleanedbikesalesdata.xlsx
https://home.iitk.ac.in/~shalab/dhar_shalabh_trim_graphical/uncleanedbikesalesdata.xlsx
https://home.iitk.ac.in/~shalab/dhar_shalabh_trim_graphical/uncleanedbikesalesdata.xlsx
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Figure 4: Scatter plot of Bike sales data

we make an effort to address how the proposed methodology can be extended for high-dimensional
data.

Let X4,...,X,, be an n observed values of some d-dimensional random vector X, where the
dimension d can be larger than the sample size n, and it can be treated as one of the notions of high
dimensional data. Now, let X;.,,) be the i-th order statistic in {Xy,..., X} (herei = 1,...,n
and n € N), although the concept of ordering for high dimensional data (strictly speaking, any data
with dimension more than two) is not straightforward like linear ordering. Hence, one needs to
appropriately define X ;,,). In the following, we discuss the possibilities.

The most straightforward one is defining order statistics componentwise. However, there are two
fundamental issues involved in this procedure. Firstly, a particular componentwise order statistic
may not be a member of the sample, although defining the a-trimmed mean

—[na]

Z X (isn)

i=[na)+1

Xn,oz =

n—2na

is possible. Secondly, the more important issue is that the componenetwise order statistic cannot
capture the dependence structure among the components.

Another option is to define X ;.,,) through data depth, which a statistical toolkit to order a mul-
tivariate data For details on data depth, the readers are refereed to [Liu et al.| (1999). There are a
few well known versions of data depth, and among them, the spatial depth (see [Vardi and Zhang
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Figure 5: Plot of Z,, , for Bike sales data.

(2000)) and the half space depth (see[Zuo and Serfling| (2000)) are applicable for high dimensional
data as well. Strictly speaking, even when d > n, these two depth functions are computable, and in
particular, exact computation of the spatial depth is always possible regardless of the value of d. In
all, we can define spatial depth (SD) based a-trimmed mean as

n—[nal

[
Z X(SD;i;n)a

- 1
XSD,n,a = ﬁ[na]
i=[nal+1

where X (s p,;;n) is the i-th order spatial depth based order statistic in {X, ..., X, }. The definition
of the spatial depth is provided in the Appendix.

Conjectures: The assertions in Theorems and holds for X D.n,a

To summarize, one may use Xgp n, to estimate the proportion of outliers in high dimensional
data analogously as X, ,, is used in the case of univariate data for the same reason. Moreover,
we would like to mention that the trimmed mean can be defined in an infinite-dimensional setting
as long as the ordering can be defined in that setting, which follows from the definition of the
trimmed mean, and in the statistics literature, there are a few methodologies to order the data lying
in infinite dimensional space (see, e.g.,|[Lopez-Pintado and Romo|(2009)). Consequently, the concept
of this graphical device can be extended for infinite dimensional (e.g., functional data) as long as the
ordering can be defined.
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6 Concluding Remarks

In this article, we have proposed a new graphical device based on a well-known trimmed mean to
estimate the proportion of outliers in the data. As we often encounter, many data have outliers, and
using traditional estimators often leads to a wrong result as the presence of outliers was unknown
beforehand. To overcome this problem, one may use the proposed graphical device to check whether
the data has outliers or not, and if yes, then the proportion of the outliers can be estimated using
this visualization toolkit. Once this information is in hand, the practitioners will be able to make
decisions on how they will analyse the data. Next, we propose a future extension to the problem
considered in the article for further research. Suppose that f, is the estimated proportion of the
outliers in the data using the proposed graphical device, where 5 € (0, %) is the actual proportion of
outliers in the data. One may now check whether Bn converges in probability or almost surely to 3
or not, and it is needless to mention that such theoretical issues will be of interest for future research.
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Appendix A : Technical Details

Proof of Theorem [I} The arguments of the proof are similar to the proof of Theorem 1 inDhar and
Chaudhuri| (2012)). For the sake of completeness, the outline of the arguments is provided here.
It follows from DasGupta (2008]) that

Tn,o — 0()

_1 Z F (@)L @icri() + xil(Ffl(a)leiSF;(lfa)) ey |, (1) .
n — 2« Vn

Using (??) and Slutsky’s theorem, for any arbitrary choices of a1, . . ., a and arbitrary choices of

l1,...,l;, we have Zk: linv/n(Zn,a; — 0o, ) converges weakly to a certain Gaussian distribution.

Hence, for any arbitlr:aiy choices of a1, . .., gy VU (Tnyay — 0(01),s - -, Tna, — O(i)) converges

weakly to a k-dimensional multivariate normal distribution.

Now, in order to prove the tightness of /n(Z,, o — 6(c)), one needs to verify the two conditions in

Theorem 13.2 in Billingsley (1999). Condition 2 related to stochastic process /1 (%o — 6(c))

(o € (a1, a)) follows from Theorem A.1 in|Leger and Romano|(1990) considering Zn: L(z,<)
i=1

and F instead of G,, and F,, respectively. Next, Condition 1 holds for the stochastic process

V(T — 0()) (@ € (a1, a2)) because the T, o is the average of certain quantiles. Hence, the

stochastic process /n(Zn,o — 0()) (a0 € (a1, a2)) is tight.

Therefore, in view of the fact that for any arbitrary choices of a1, . . ., Ak, V1(ZTn,0, — 0(01), - ..,

T, — 0(au)) converges weakly to a k-dimensional multivariate normal distribution and the

stochastic process \/n(Zn,o — 0(c)) (@ € (a1, az)) is tight, we can conclude that the stochastic

process v/n(Zn,o — 0(a)) (o € (a1, a)) converges weakly to a Gaussian process under sup norm

topology. Hence, sup /n|X, o — 0(a)| = O,(1), which completes the proof. O
ayp<a<az
Proof of Theorem 2} See Example 3 in pp. 99-100 in[Hampel et al.| (1985). ]

Appendix B : Python Code

The Python code used to analyze business data in Section[d]is presented below.

import numpy as np

import matplotlib.pyplot as plt
from scipy import stats

import scipy

mean_sample = 0
mean_outliers =
std_dev_sample =
std_dev_outliers
num_samples = 200

100
1

1
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# Generate random samples from the normal distribution

samples = np.random.normal (mean_sample, std_dev_sample, int (num_samples*0.7))
outliers = np.random.normal (mean_outliers, std_dev_outliers, int (num_samplesx0.3))
all_samples = np.concatenate ((samples, outliers))

np.random.shuffle (all_samples)
plt.scatter (range(len(all_samples)), all_samples, color='blue’, marker="o0o’)
trim_value = np.arange(0, 0.5, 0.01)

# Calculate and store trimmed means for each trim percentage
trimmed_means = []
for val in trim value:
trimmed_mean = stats.trim_mean(all_samples, wval)
trimmed_means.append (trimmed_mean)

plt.plot (trim_value, trimmed_means, color = ’'black’)
plt.xlabel (! Trimming Proportion’)

plt.yticks ([])

plt.show ()

# 70% samples from N(0,1) and 30% samples from N(10,1)

mean_sample = 0

mean_outliers = 10
std_dev_sample = 1
std_dev_outliers =1

num_samples = [50, 100, 200, 500]

trim_value = np.arange(0, 0.5, 0.01)
trimmed_means_array = []

all samples_list = []

for n in num_samples:

samples = np.random.normal (mean_sample, std_dev_sample, int (nx0.7))
outliers = np.random.normal (mean_outliers, std_dev_outliers, int (n*x0.3))
all _samples = np.concatenate((samples, outliers))

all samples_list.append(all_samples)

trimmed_means = []

for val in trim_value:
trimmed_mean = stats.trim mean(all_samples, wval)
trimmed_means.append (trimmed_mean)



A New Graphical Device Based on Trimmed Mean 25

trimmed_means_array.append (trimmed_means)

plt.figure(figsize = (10, 8))
# Create a 2x2 grid of subplots
for i in range(len(num_samples)) :

plt.subplot (2, 2, i+1)

plt.plot (trim_value, trimmed_means_array([i], label="Line 1’, color='black’)
plt.xlabel (! Trimming Proportion’)

# plt.ylabel ('Y Axis’)

plt.yticks ([])

plt.title (' num_samples = ’+str (num_samples([i]))

# Adjust layout to prevent overlapping
plt.tight_layout ()

# Display the plot
plt.show ()

# 70% samples from N(0,1) and 30% samples from N(100,1)

mean_sample = 0

mean_outliers = 100
std_dev_sample = 1
std_dev_outliers = 1

num_samples = [50, 100, 200, 500]

trim_value = np.arange(0, 0.5, 0.01)
trimmed_means_array = []
all_samples_list = []

for n in num_samples:

samples = np.random.normal (mean_sample, std_dev_sample, int (nx0.7))
outliers = np.random.normal (mean_outliers, std_dev_outliers, int (n*x0.3))
all _samples = np.concatenate((samples, outliers))

all_samples_list.append(all_samples)

trimmed_means = []

for val in trim_value:
trimmed_mean = stats.trim mean(all_samples, wval)
trimmed_means.append (trimmed_mean)

trimmed_means_array.append (trimmed_means)

plt.figure(figsize = (10, 8))
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# Create a 2x2 grid of subplots
for i in range(len(num_samples)) :

plt.subplot (2, 2, i+1)

plt.plot (trim_value, trimmed_means_array[i], label='Line 1’,
plt.xlabel (' Trimming Proportion’)

# plt.ylabel ('Y Axis’)

plt.yticks ([])

plt.title (' num_samples = ’+str (num_samples[i]))

# Adjust layout to prevent overlapping
plt.tight_layout ()

# Display the plot
plt.show()

color='black’)

# 70% samples from Cauchy(0,1) and 30% samples from Cauchy(10,1)

num_samples = [50, 100, 200, 500]

trim_value = np.arange(0, 0.5, 0.01)
trimmed_means_array = []
all_samples_list = []

for n in num_samples:

samples = np.random.standard_cauchy (int (nx0.7))
outliers = stats.cauchy.rvs (10, 1, int (n%x0.3))
all_samples = np.concatenate ((samples, outliers))

all samples_list.append(all_samples)

trimmed_means = []

for val in trim value:
trimmed_mean = stats.trim_mean(all_samples, wval)
trimmed_means.append (trimmed_mean)

trimmed_means_array.append (trimmed_means)

plt.figure(figsize = (10, 8))
# Create a 2x2 grid of subplots
for i in range(len(num_samples)) :

plt.subplot (2, 2, i+1)

plt.plot (trim_value, trimmed_means_array[i], label='Line 1',
plt.xlabel (! Trimming Proportion’)

# plt.ylabel ('Y Axis’)

plt.yticks ([])

color='black’)
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plt.title (' num_samples = ’+str (num_samples[i]))

# Adjust layout to prevent overlapping
plt.tight_layout ()

# Display the plot
plt.show ()

70% samples from Cauchy (0,1) and 30% samples from
num_samples = [50, 100, 200, 500]

trim_value = np.arange(0, 0.5, 0.01)
trimmed_means_array = []
all_samples_list = []

for n in num_samples:

samples = np.random.standard_cauchy (int (nx0.7))
outliers = stats.cauchy.rvs (100, 1, int (nx0.3))
all samples = np.concatenate((samples, outliers))

all_samples_list.append(all_samples)

trimmed_means = []
for val in trim_value:

27

Cauchy (100, 1)

trimmed_mean = stats.trim mean(all_samples, wval)

trimmed_means.append (trimmed_mean)
trimmed_means_array.append (trimmed_means)
plt.figure(figsize = (10, 8))
# Create a 2x2 grid of subplots

for 1 in range (len (num_samples)) :

plt.subplot (2, 2, i+1)

plt.plot (trim_value, trimmed_means_array[i], label='"Line 1’,

plt.xlabel (' Trimming Proportion’)

# plt.ylabel ('Y Axis’)

plt.yticks ([])

plt.title (' num_samples = ’+str (num_samples([i]))

# Adjust layout to prevent overlapping
plt.tight_layout ()

# Display the plot
plt.show ()

color='black’)
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# 70% samples from Laplace(0,1) and 30% samples from Laplace(10,1)

num_samples = [50, 100, 200, 500]

trim_value = np.arange(0, 0.5, 0.01)
trimmed_means_array = []
all_samples_list = []

for n in num_samples:

samples = np.random.laplace (0, 1, int(nx0.7))
outliers = np.random.laplace (10, 1, int (n%x0.3))
all_samples = np.concatenate ((samples, outliers))

all samples_list.append(all_samples)

trimmed_means = []

for val in trim value:
trimmed_mean = stats.trim_mean(all_samples, wval)
trimmed_means.append (trimmed_mean)

trimmed_means_array.append (trimmed_means)
plt.figure(figsize = (10, 8))
# Create a 2x2 grid of subplots

for i in range(len(num_samples)) :

plt.subplot (2, 2, i+1)

plt.plot (trim_value, trimmed_means_array[i], label="Line 1’, color='"black’)

plt.xlabel (' Trimming Proportion’)

# plt.ylabel ('Y Axis’)

plt.yticks ([])

plt.title (' num_samples = ’+str (num_samples[i]))

# Adjust layout to prevent overlapping
plt.tight_layout ()

# Display the plot
plt.show()

# 70% samples from Laplace(0,1) and 30% samples from Laplace(100,1)

num_samples = [50, 100, 200, 500]

trim_value = np.arange (0, 0.5, 0.01)
trimmed_means_array = []
all_samples_list = []

for n in num_samples:
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samples = np.random.laplace (0, 1, int(nx0.7))
outliers = np.random.laplace (100, 1, int (n%x0.3))
all _samples = np.concatenate((samples, outliers))

all_samples_list.append(all_samples)

trimmed_means = []

for val in trim_value:
trimmed_mean = stats.trim mean(all_samples, wval)
trimmed_means.append (trimmed_mean)

trimmed_means_array.append (trimmed_means)
plt.figure(figsize = (10, 8))
# Create a 2x2 grid of subplots

for 1 in range (len (num_samples)) :

plt.subplot (2, 2, i+1)

plt.plot (trim_value, trimmed_means_array[i], label="Line 1’

plt.xlabel (' Trimming Proportion’)

# plt.ylabel ('Y Axis’)

plt.yticks ([])

plt.title (' num_samples = ’+str (num_samples[i]))

# Adjust layout to prevent overlapping
plt.tight_layout ()

# Display the plot
plt.show ()

# Bike bike sales dataset
import pandas as pd

def convert_dollar_to_numeric(value) :
if isinstance(value, str) and ’'$’ in value:
value = value.replace(’'$’, ’'’).replace(’',’, ')
try:
if isinstance(value, pd.Timestamp) :
return value # Return Timestamp as is
return float (value)
except ValueError:
return value

def read_excel_with_dollars(filename) :
try:
df = pd.read_excel (filename)

4
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for column in df.columns:
df [column] = df[column].apply(convert_dollar_ to_numeric)
return df
except Exception as e:
print (f"Error: {e}l")
return None

# Provide the path to your Excel file
file_path = ’/content/uncleaned bike sales data.xlsx’

data_frame = read_excel_with_dollars(file_path)

if data_frame is not None:
print (data_frame)

data_frame ["Revenue"]

trimmed_means = []

trim_value = np.arange(0, 0.5, 0.01)
for val in trim value:
trimmed_mean = stats.trim_mean (data_frame["Revenue"], wval)

trimmed_means.append (trimmed_mean)

plt.figure(figsize = (10, 8))

plt.plot (trim _value, trimmed_means, label=’'Line 1’, color="black’)
plt.xlabel (! Trimming Proportion’)

plt.yticks ([])

plt.title ("Business Data")

plt.show ()

Definition of Spatial Depth : For a given data X = {X,...,X,,}, where fori =1,...,n,
X, € R? (d > 1), the spatial depth at any fixed point x ¢ X is defined by

1Zn: X—Xi
n & k- Xl ||

For any fixed point x € X (say X;), the spatial depth is defined as

SD(z)=1-—

1 < X, — X,
SD(X;)=1-||— = ‘I
n ji: |1X: — X

j=1j#i
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