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SUMMARY

In this paper, we propose a new class of modified skew-normal distribution as a special
case of the modified skew-normal distribution proposed by Kumar and Anusree (2014) is
considered. We explore some of its key properties by deriving explicit expressions for its
distribution function, characteristic function, and other relevant aspects using special func-
tions and simplified moment expressions. Also, its distributional and structural properties
are investigated. Additionally, we address the estimation of parameters for this general
class of distributions.
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1 Introduction
The normal or Gaussian distribution is symmetric and is widely accepted as the basis of many statis-
tical work. But normal distribution is not suitable for the situation when the data is not symmetric.
There has been a renewed interest in the development of asymmetric versions of normal distribu-
tion during the last three decades. For details, see Azzalini (1985), Genton (2004). Azzalini (1985)
introduced the skew normal distribution and has received much attention due to its flexibility and
mathematical tractability. The probability distribution of the Azzalini’s skew normal distribution has
the following form. For x ∈ R, λ ∈R,

f(x, λ) = 2ϕ(x)Φ(λx), (1.1)

where ϕ(·)and Φ(·)are respectively the probability density function (p.d.f.) and cumulative distri-
bution function (c.d.f.) of a standard normal variate. The density is unimodal and is also having
both positive and negative skewness. Following the work of Azzallini (1985) several generaliza-
tions came forward see, Azzalini (1986), Azzalini and Dalla-Valle (1996), Azzalini and Capitanio
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(1999), Kumar and Anusree (2011, 2014), Shakil et. al (2014), Ahsanullah et. al (2015), Mondal
et.al (2024) and several others. In this article, we study the key properties of a special class of
distributions, which is a subclass of the skew normal distribution proposed by Kumar and Anusree
(2014). Our attention relies on special functions and moment expressions, which play a crucial role
in adjusting tail behavior and enhancing flexibility in modeling asymmetric data. These distributions
have significant applications in risk modeling, actuarial science, and survival analysis, where skew-
ness is an essential factor. Moreover, special functions enable controlled skewness while preserving
the fundamental structure of the normal distribution.The paper is organized as follows: Section 2
introduces the modified skew normal distribution and discuss its fundamental properties, including
the distribution function, characteristic function, moment-generating function, raw moments, skew-
ness, and kurtosis. Section 3 explores information measures, such as Shannon entropy and Mille’s
ratio, for this class of distributions. Section 4 presents a location-scale extension of the distribution
and examines the maximum likelihood estimation (MLE) of its parameters. Section 5, provides a
numerical example to illustrate the practical usefulness of this new class of distributions, also sum-
mary and conclusion are included in section 6. Throughout our study, we utilize special functions
and lemmas established by Gupta et al. (2013), which are essential for deriving key results.

(i) For the standard normal density function, the characteristic function is given by

Ψ(t) = e−
t2

2

(ii) The special function erf(·), which finds some relationship with ...

1. the normal distribution is erf(z) = 2√
2π

∫ z

0
e−

t2

2 dt

2. the hypergeometric function is erf(z) = 2ze−
z2

2√
π 1F 1(1, 3/2, z

2) or
erf(z) = 2z√

π 1F 1(1/2, 3/2,−z2), where 1F 1(.)is the hypergeometric function and is defined
by

1F 1(a1, a2, . . . , ap; b1, b2, . . . bq; z) =

∞∑
k=0

(a1){k}(a2){k} . . . (ap){k}z
k

(b1){k}(b1){k} . . . (bq){k}k!
,

where a{k} = a(a+1) . . . (a+k−1), a{k} = a(a−1) . . . (a−k+1) with a{0} = a{0} = 1

3. the infinite power series is erf(z) = 2√
π

∑∞
k=0

(−1)kz2k+1

k!(2k+1) and

erf(z) = 2√
π
e−z2 ∑∞

k=0
2kz2k+1∏k

j=0 k!(2j+1)

Lemma 1.1. The c.d.f. of the normal distribution can be expressed as

Φ(x) =
1

2

[
1 + erf

(
x− µ

σ/
√
2

)]
,

where µ ∈ R, σ > 0.
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Lemma 1.2. Let u = exp(t2/2), which is the moment generating function of a standard normal
variable, then

E[Zk] =


k!

2k/2(k/2)!
, if k is even

0, if k is odd

Lemma 1.3. Let u = exp(t2/2), the moment generating function of a standard normal variable,
then

E[Zk] =
1 + (−1)k

2

Γ (k + 1)

2k/2Γ (k/2 + 1)
.

Lemma 1.4. If u = exp(t2/(2β)) and ν = exp( − β(z − t/β)2/2), then dk

dtk
(uv) = zkuv

2 Modified Skew Normal Distribution

In this section, we consider the definition of the modified generalized skew normal distribution and
discuss the properties of its special case, known as the modified skew normal distribution. First we
define the modified generalized skew normal distribution as in the following. A random variable
Z is said to have a modified generalized skew normal distribution, (MGSND) if its p.d.f. takes the
following form, in which z ∈ R, λ1 ∈ R,λ2 ≥ 0 and , α ∈ [0, 1]

Definition 2.1.

h(z;λ1, λ2, α) = ϕ(z)

[
α+ 2(1− α)Φ

(
λ1z√

1 + λ2
2z

2

)]
. (2.1)

Definition 2.2. A random variable Z is said to have a modified skew normal distribution, (MSND)
if its p.d.f. takes the following form, in which z ∈ R, λ ∈ Rand α ∈ [0, 1]

h(z;λ, α) = ϕ(z) [α+ 2(1− α)Φ(λz)] . (2.2)

A distribution with p.d.f.(2.2) hereafter we written as MSND (λ, α). For particular values of λ
and α, the MSND (λ, α) reduces to the following special cases.
Properties

1. h(z;λ, α) modifies the base pdf ϕ(z) by incorporating its own cdf Φ(λz).

2. the term α+ 2 (1− α)Φ (λz)acts as a weight adjustment that depends on Φ(λz)

3. when α =1, h(z;λ, α) = ϕ(z), meaning no modification and

4. when α =0, the weight depends purely on Φ(λz), amplifying or suppressing parts of ϕ(z).

The p.d.f. of the MSND (λ, α) given in (2.2) is plotted for particular choice of λ and α and
compared with the p.d.f. of normal distribution are presented in Figure 1.
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Figure 1: Probability plots of normal distribution and modified skew normal distribution

Result 2.1. If Z follows MSND (λ, α), then its c.d.f., H(z;λ, α) is the following

H(z;λ, α) = Φ(z) +
λ

π
(1− α)Ψ

(
λz/

√
2
)

Where Ψ
(
λz/

√
2
)
=
∫ z

−∞ te−(1+λ2)t2/2
1F 1(1, 3/2, (λt/

√
2))dt.

Proof. The c.d.f. of MSND(λ, α) can be obtained in the following way

H(z;λ, α) =

∫ z

−∞
h(t;λ, α)dt

=

∫ z

−∞
ϕ(t) [α+ 2(1− α)Φ(λt)] dt

= α

∫ z

−∞
ϕ(t)dt+ 2(1− α)

∫ z

−∞
ϕ(t)Φ(λt)dt

= αΦ(z) + 2(1− α)

∫ z

−∞

e−
t2

2

2
√
2π

[
1 + erf

(
λt√
2

)]
dt

= αΦ(z) + (1− α)Φ(z) + (1− α)

∫ z

−∞

e−
t2

2

√
2π

erf
(

λt√
2

)
dt

= Φ(z) + (1− α)

∫ z

−∞

e−
t2

2

√
2π

erf
(

λt√
2

)
dt

= Φ(z) + (1− α)

∫ z

−∞

e−
t2

2

√
2π

2

(
λt√
2

)
e
−
(

λt√
2

)2

1F 1

(
1,

3

2
,

(
λt√
2

)2
)

erf
(

λt√
2

)
dt

= Φ(z) + (1− α)
λ

π
Ψ

(
λz√
2

)
,

where Ψ
(
λz/

√
2
)
=
∫ z

−∞ te−
t2

2 (1+λ2)
1F 1

(
1, 3/2,

(
λt√
2

)2)
dt.
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Figure 2: CDF plots of g(t) = h(z;λ, α) for λ = 1 and α = 0.2, 0.5, and 0.8

Result 2.2. If Z follows MSND (λ, α), then its hazard function HD(z;λ, α) is the following

HD(z;λ, α) =
ϕ(z) [α+ 2(1− α)Φ(λz)]

1− Φ(z) + λ
π (1− α)Ψ

(
λz√
2

)
where Ψ

(
λz/

√
2
)
=
∫ z

−∞ te−(1+λ2)t2/2
1F 1(1, 3/2, (λt/

√
2))dt.

Proof. Proof follows from the definition of hazard function and failure rate.

Figure 3: Plots of hazard function, r(t)= HD(t;λ, α)

It exhibits a bell-shaped curve, indicating that the failure rate increases to a peak and then declines.

Result 2.3. If Z follows MSND (λ, α), then its characteristic function can take any of the following
two forms,

(i). Ψ1(t) = e−
t2

2 + iτ(δt)e−
t2

2 (ii). Ψ2(t) = e−
t2

2 +
(1− α)λ

π
Ω1(t),
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Where Ω1(t) =
∫∞
−∞ ze

− (1+λ2)
2

(
z− it

1+λ2

)2

1F1

(
1, 3/2, λ

2z2/
2

)
dz

Proof. By the definition of characteristic function,

Ψ1(t) =
∫∞
−∞ eitzϕ(z) [α+ 2(1− α)Φ(λz)] dz

= αe−
t2

2 + (1− α)e−
t2

2 [1 + iτ(δt)]

= e−
t2

2 + iτ(δt)e−
t2

2 .

In the light of the expressions given in Pewsey (2000) and τ(x) =
∫ x

0

√
2
π e

−u2

2 du, x > 0, δ =
λ√

1+λ2
, τ(−x) = τ(x) which simplifies (i). Also,

Ψ2(t) =

∫ ∞

−∞
eitzϕ(z) [α+ 2(1− α)Φ(λz)] dz

= αe−
t2

2 + (1− α)

∫ ∞

−∞
2eitzϕ(z)Φ(λz)dz

= αe−
t2

2 + (1− α)

∫ ∞

−∞
2eitzϕ(z)

[
1 + erf

(
λz√
2

)]
dz

= e−
t2

2 + (1− α)

∫ ∞

−∞
eitz

e−
z2

2

√
2π

2√
π

(
λz√
2

)
e−

λ2z2

2 1F1

(
1,

3

2
,
λ2z2

2

)
dz, by Lemma 1.4

= e−
t2

2 + (1− α)
λ

π

∫ ∞

−∞
ze

− 1+λ2

2

(
z− it

1+λ2

)2

1F1

(
1,

3

2
,
λ2z2

2

)
dz

= e−
t2

2 + (1− α)
λ

π
Ω1(t).

Simplifies (ii) in which Ω1(t) =
∫∞
−∞ ze

− (1+λ2)
2

(
z− it

1+λ2

)2

1F1

(
1, 3/2, λ

2z2/
2

)
dz.

Result 2.4. If Z follows MSND(λ, α), then the rth moment of any integer order k>-2 is given by

µ′
r =

 µ1(k), k is even

µ2(k), k is odd
(2.3)

Proof. By differentiating the moment generating function ‘r’ times and then putting t=0 gives the
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rth raw moment.

E(Zk) =
dk

dtk
[MZ(t)]t=0

=
dk

dtk
(et

2/2) +
(1− α)λ

π

dk

dtk
(et

2/2)

∫
R

ze−
(z−t)2

2 1F 1

(
1/2, 3/2,−λ2z2

2

)
dz

= I1(t) + I2(z, t;λ, α)

Now,

I1(t) =
dk

dtk
(e

t2

2 )t=0 = µ1(k) =


k!

2
k
2 (k/2)!

, k is even

0, k is odd

(2.4)

I2(z, t;λ, α) = (1− α)
λ

π

dk

dtk

∫
R
ze−

(z−t)2

2 e
t2

2 1F1

(
1

2
,
3

2
,−λ2z2

2

)
dz

= (1− α)
λ

π

dk

dtk

∫
R
z1F1

(
1

2
,
3

2
,−λ2z2

2

)
e−

(z−t)2

2 e
t2

2 dz

= (1− α)
λ

π

∫
R
z1F1

(
1

2
,
3

2
,−λ2z2

2

)
dk

dtk
e−

(z−t)2

2 e
t2

2 dz

= (1− α)
λ

π

dk

dtk

∫
R
z1F1

(
1

2
,
3

2
,−λ2z2

2

)
zke−

(z−t)2

2 e
t2

2 dz, by Lemma 1.4

By Lemma 1.3, the expected value can be written in terms of gamma functions, therefore,

I2(z, t;λ, α)t=0 =
(1− α)λ

√
2π

π

∞∑
j=0

Γ (j + 1/2)Γ(3/2)

(
−λ2

)j
j!2j

1 + (−1)2j+k+1

2

Γ (2j + k + 2)

2(2j+k+1)/2Γ [(2j + k + 1)/2 + 1]

using the gamma duplication formula

Γ (2y)
√
π = 22y−1Γ (y)Γ (y + 1/2)

with y = j + k/2 + 1 to get,

I2(z, t;λ, α)t=0 =
(1− α)λ

√
2π

π

∞∑
j=0

Γ (j + 1/2)Γ (3/2)

Γ (1/2)Γ (j + 3/2)

(
−λ2

)j
j!

1 + (−1)2j+k+1

2

22(j+k/2+1)−1

Γ (j + k/2 + 1)

2j2j+k/2+1/2
√
π

=
(1− α)λ

π
2

k
2+1Γ

(
k

2
+ 1

)
1 + (−1)k+1

2
2F 1({1/2, k/2 + 1}, 3/2,−λ2) = µ2(k)

Substituting (2.5) and (2.6) in (2.4) gives (2.3).
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Result 2.5. If Z follows MSND(λ, α), then the rth moment of any integer order k is the following,
provided λ > 0.

E(Zk) = E(Z1) + (1− α)λ

√
2

π

∞∑
j=0

Γ (j + 1/2)Γ (3/2)(−λ2)jE(Z1
2j+k+1)

Γ (1/2)Γ (j + 3/2)j!2j
, (2.5)

where Z1 follows the standard normal p.d.f.

Proof. For any real order k,

E(Zk) =

∫ ∞

−∞
zkϕ(z) [α+ 2(1− α)Φ(λz)] dz

= α

∫ ∞

−∞
zkϕ(z)dz + (1− α)

∫ ∞

−∞
2zkϕ(z)Φ(λz)dz

= αE(Zk
1 ) + (1− α)

∫ ∞

−∞
2zkϕ(z)

1

2

[
1 + erf

(
λz√
2

)]
dz

= αE(Zk
1 ) + (1− α)

∫ ∞

−∞
zkϕ(z)dz + (1− α)

∫ ∞

−∞
zkϕ(z)erf

(
λz√
2

)
dz

= E(Zk
1 ) + (1− α)

∫ ∞

−∞
zkϕ(z)

2λz
√
π
√
2
1F1

(
1

2
,
3

2
,−λ2z2

2

)
dz

= E(Zk
1 ) + (1− α)

√
2√
π

∞∑
j=0

Γ(j + 1/2)Γ(3/2)(−λ2)j

Γ(1/2)Γ(j + 3/2)j!2j

∫ ∞

−∞
z2j+k+1ϕ(z)dz

= E(Zk
1 ) + (1− α)

√
2√
π

∞∑
j=0

Γ(j + 1/2)Γ(3/2)(−λ2)j

Γ(1/2)Γ(j + 3/2)j!2j
E(Z2j+k+1

1 ), (2.6)

which implies (2.7).

Result 2.6. The mean and variance of the random variable following MSND(λ, α) is given by

µ =
√

2
π (1− α)δ and σ2 = 1− 2(1−α)2δ2

π , where δ = λ√
1+λ2

.

Result 2.7. The skewness and kurtosis of the random variable following MSND (λ, α) is given by

skewness =
a(2a2 − δ2)

(1− a2)3/2
and kurtosis =

3− 3a4 − a2
(
2δ2 + 6

1+λ2

)
(1− a2)2

,

where a =
√

2
π (1− α)δ.

Remark 2.1. When α = 1/λ = 0, skewness is 0 and kurtosis is 3 which corresponds to the standard
normal case.

Remark 2.2. When α = 0, we get the skewness and kurtosis of skew normal distribution of Azza-
lini’s (1985).
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3 Shannon Entropy and Mills Ratio
Here in this section two tools associated with the MSND random variable are discussed.

3.1 Shanon Entropy

The entropy is the concept developed in the context of information theory. They are widely used in
the case of normal, skew normal distributions. Here the Shannon entropy is extended for modified
skew normal distribution to quantify how the skewness affects the uncertainty of the distribution
compared to a standard normal distribution.

Result 3.1. The Shannon entropy of a random variable following MSND (λ, α) is given by,

SEMSND(z) = −α

∫ ∞

−∞
ln( ϕ(z))ϕ(z)dz+(1− α)SESND(z)− I(z, λ, α) (3.1)

where SESND (z) corresponds to the Shannon entropy of the skew normal distribution of Azzalini’s
(1985) and I(z, λ, α) =

∫∞
−∞ ϕ(z)[α+ 2(1− α)Φ(λz)]ln[ α+ 2(1− α)Φ(λz)]dz.

Proof. Let Z follows MSND (λ, α). Then by the definition of Shannon entropy,

SE(z) = −E[lnh(z)]

= −
∫ ∞

−∞
ln {ϕ(z)[α+ 2(1− α)Φ(λz)]}ϕ(z)[α+ 2(1− α)Φ(λz)]dz

= −
∫ ∞

−∞
(lnϕ(z) + ln[α+ 2(1− α)Φ(λz)])ϕ(z)[α+ 2(1− α)Φ(λz)]dz

= −
∫ ∞

−∞
ln(ϕ(z))ϕ(z)[α+ 2(1− α)Φ(λz)]dz

−
∫ ∞

−∞
ln[α+ 2(1− α)Φ(λz)]ϕ(z)[α+ 2(1− α)Φ(λz)]dz

= −α

∫ ∞

−∞
ln(ϕ(z))ϕ(z)dz −

∫ ∞

−∞
ln(ϕ(z))2(1− α)ϕ(z)Φ(λz)dz − I(z, λ, α)

= −α

∫ ∞

−∞
ln(ϕ(z))ϕ(z)dz + (1− α)SESND(z)− I(z, λ, α).

which implies (3.1).

3.2 Mills Ratio

Mills Ratio is defined as the ratio of the probability density function to the cumulative distribution
function of a distribution. An important application of Mills Ratio are with regression analysis to
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account for selection bias, moreover it describes the tail behavior of a distribution. Here Mills Ratio
of the MSND (λ, α) is discussed.

Result 3.2. The Mills Ratio of a random variable following MSND (λ, α) is given by,

m(z) =
1− erf

(
λt√
2

)
− 2(1− α)

∫ z

−∞ e−
t2

2 erf
(

λt√
2

)
dt

ϕ(z)
[
α+ (1− α)

(
1 + +erf

(
λt√
2

))]
Proof. By the definition of the Mills Ratio, if h(z) is the p.d.f. and H(z) is the c.d.f. of a random
variable Z, then the Mills Ratio denoted by m(z) is given by,

m(z) =
1−H(z)

h(z)

=
1− Φ(z) + (1− α)

∫ z

−∞ e−
t2

2 erf
(

λt√
2

)
dt

ϕ(z)[α+ 2(1− α)Φ(λz)]

=
1− Φ(z)− (1− α)

∫ z

−∞ e−
t2

2 erf
(

λt√
2

)
dt

ϕ(z)
[
α+ 2(1− α) 12

(
1 + erf

(
λz√
2

))]

=
1− 1

2

(
1 + erf

(
λz√
2

))
− (1− α)

∫ z

−∞ e−
t2

2 erf
(

λt√
2

)
dt

ϕ(z)
[
α+ (1− α)

(
1 + erf

(
λz√
2

))]

=
1− erf

(
λz√
2

)
− 2(1− α)

∫ z

−∞ e−
t2

2 erf
(

λt√
2

)
dt

ϕ(z)
[
α+ (1− α)

(
1 + erf

(
λz√
2

))] .

4 Maximum Likelihood Estimation
In this section, the maximum likelihood estimation of the parameters of location scale extension of
MSND (λ, α), denoted as LSMSND (µ, σ;λ, α) has been discussed and further a numerical illus-
tration has been carried out. The likelihood of the sample X1, X2,. . . ,Xn, size n from a population
LSMSND (µ, σ;λ, α) is

L =
e−

∑n
i=1

(yi−µ)2

2σ2(
σ
√
2π
)n n∏

i=1

(
α+ 2(1− α)Φ

[
λ

(
yi − µ

σ

)])
.

On taking logarithm on both sides we get,

logL = −n

2
(log σ2 + log 2 π)−

n∑
i=1

[ (yi − µ)2

(2σ2)
− log

(
α+ 2(1− α)Φ

(
(yi − µ)λ/σ

))]
(4.1)
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Differentiating (4.1) with respect to the parameters µ, σ2, λ, α and equating to zero the following
normal equations are obtained.

∂lnL

∂µ
=

n∑
i=1

(yi − µ)

σ2
− 2(1− α)λ

σ

n∑
i=1

φ
[
λ(yi−µ)

σ

]
[
α+ 2(1− α)Φ

{
λ
(
yi−µ
σ

)}] = 0

∂lnL

∂σ2
= − n

2σ2
+

∑n
i=1 (yi − µ)

2

2σ4
− λ(1− α)

σ3

n∑
i=1

(yi − µ)φ
[
λ(yi−µ)

σ

]
[
α+ 2(1− α)Φ

{
λ(yi−µ)

σ

}] = 0

∂lnL

∂λ
=

n∑
i=1

2(1− α)φ
{
λ
(
yi−µ
σ

)} (
yi−µ
σ

)[
α+ 2(1− α)Φ

{
λ
(
yi−µ
σ

)}] = 0

∂lnL

∂α
=

n∑
i=1

[
1− 2Φ

(
λ(yi−µ)

σ

)]
[
α+ 2(1− α)Φ

{
λ(yi−µ)

σ

}] = 0

which in turn reduces to
n∑

i=1

(yi − µ)

σ2
=

2(1− α)λ

σ

n∑
i=1

w(yi),

n∑
i=1

(yi − µ)2 = nσ2 + 2(1− α)λσ

n∑
i=1

w(yi)(yi − µ),

2(1− α)

σ

n∑
i=1

W (yi)(yi − µ) = 0

n∑
i=1

[
α+ 2(1− α)Φ

{
λ(yi − µ)

σ

}]−1

− 2

n∑
i=1

W (yi) = 0.

for

w(yi) =
φ
{

λ(yi−µ)
σ

}
[
α+ 2(1− α)Φ

{
λ(yi−µ)

σ

}] , and W (yi) =
Φ
{

λ(yi−µ)
σ

}
[
α+ 2(1− α)Φ

{
λ(yi−µ)

σ

}] .
On solving these non-linear equations (4.2) to (4.4) using some mathematical software’s like

MATHCAD, MATHLAB, MATHEMATICA etc, one can obtain the maximum likelihood estimators
of the parameters of LSMSND (µ, σ;λ, α).

5 Numerical Illustration
For illustrating the usefulness of the model LSMSND (µ, σ;λ, α), we consider the following two
real life data sets, among these the first data is on the heights (in centimeters) of 100 Australian
athletes, given in Cook and Weisberg (1994) and second is on the IQ data set for 87 white males
hired by a large insurance company in 1971 given in Roberts (1988).
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Data Set 1:148.9 149 156 156.9 157.9 158.9 162 162 162.5 163 163.9 165 166.1 166.7 167.3
167.9 168 168.6 169.1 169.8 169.9 170 170 170.3 170.8 171.1 171.4 171.4 171.6 171.7 172 172.2
172.3 172.5 172.6 172.7 173 173.3 173.3 173.5 173.6 173.7 173.8 174 174 174 174.1 174.1 174.4
175 175 175 175.3 175.6 176 176 176 176 176.8 177 177.3 177.3 177.5 177.5 177.8 177.9 178
178.2 178.7 178.9 179.3 179.5 179.6 179.6 179.7 179.7 179.8 179.9 180.2 180.2 180.5 180.5 180.9
181 181.3 182.1 182.7 183 183.3 183.3 184.6 184.7 185 185.2186.2 186.3 188.7 189.7 193.4 195.9.

Data Set 2: 85 94 94 97 98 100 100 101 102 102 103 103 103 103 104 104 106 106 106 106
106 107 107 108 108 108 108 108 108 108 109 109 111 111 112 112 112 112 112 112 112 112 112
112 113 113 113 113 113 113 113 113 114 114 115 116 116 116 116 117 117 117 118 118 118 119
120 120 120 121 121 121 122 122 122 122 122 122 124 124 125 129 131 132 135 136 140

We obtained the MLEs of the parameters of the models N(µ, σ), ESN(µ, σ ; λ), LSMSND
(µ, σ;λ, α) and obtained the best fit among them, based on certain information criterion such as the
Akaike ’ s Information Criterion (AIC), the Bayesian Information Criterion (BIC) and the corrected
Akaike’s Information Criterion (AICc). We have computed in all cases the measures-the loglikeli-
hood(l), the AIC, the BIC and the AICc and included them in respective Tables 1 and 2. Also, it can
be seen that LSMSND (µ, σ;λ, α) gives a better fit to the data sets compared to the existing models.

Table 1: Estimated Values of the Parameters l, AIC, BIC and AICc Values for the Models N(µ, σ),
ESN(µ, σ ; λ), LSMSND (µ, σ;λ, α) for Data Set1.

Distribution: Normal Skew Normal LSMND

(µ, σ) (µ, σ;λ) (µ, σ;λ, α)

µ 174.594 174.58 173

σ 8.24 8.20 8.8

λ - 0.0016 0.7

α - - 0.05

l -352.318 -352.318 -315.6867

AIC 708.64 710.64 639.37

BIC 713.85 718.45 649.19

AICc 708.76 710.89 639.867

It is seen that MSND (λ, α) provides a better fit for skewness but requires adjustments for tail
behavior. Azzalini’s model is more skewed, making it less suitable for datasets with mild asymmetry.

5.1 Key Comparison

The key comparisons between the MSND (λ, α) and Azzalini’s Skew Normal Distribution is based
on Graphical Comparisons (PDF, CDF, Q-Q plots). It is observed that MSND (λ, α) shows a
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Table 2: Estimated Values of the Parameters l, AIC, BIC and AICc Values for the Models N(µ, σ),
ESN(µ, σ ; λ), LSMSND (µ, σ;λ, α) for Data Set 2.

Distribution: Normal Skew Normal LSMND

(µ, σ) (µ, σ;λ) (µ, σ;λ, α)

µ 112.86 105.78 111

σ 9.58 11.94 9.8

λ - 1.14 0.9

α - - 0.05

l -319.6 -319.29 -316

AIC 643.2 644.57 640.72

BIC 648.14 651.97 650.53

AICc 643.35 644.86 641.21

Table 3: Empirical Analysis of Skewness and Kurtosis for Data Sets 1 & 2

Model Skewness (Data Set 1) Kurtosis (Data Set 1) Skewness (Data Set 2) Kurtosis (Data Set 2)

Empirical Data -0.560 1.197 0.172 0.684

Modified Skew Normal (MSND) 0.078 -0.512 0.043 -0.001

Azzalini’s Skew Normal 0.157 0.089 0.344 -0.497

stronger skewness and heavier tail than Azzalini’s model and MSND may be preferred when heavier
tails are necessary. The empirical CDFs of both distributions show differences in tail behavior, Some
deviations indicate that Azzalini’s model does not perfectly capture the MSND (λ, α)’s tail behavior.

6 Summary and Conclusion

In this paper, we introduced the modified skew normal distribution and studied its fundamental
properties such as distribution function, characteristic function, moment-generating function, raw
moments, skewness, and kurtosis. Also, examined the information measures, such as Shannon en-
tropy and Mille’s ratio, which provides deeper insights into the distribution’s behavior. We further
discussed the maximum likelihood estimation of its parameters and its applicability in statistical
modeling. Numerical examples were considered to identify the utility of the proposed distribution.
Moreover , the modified skew normal distribution offers a flexible and robust framework for model-
ing asymmetric data, while preserving the structure of the normal distribution. Future research can
explore its charecterisations, inferential aspects and its importance in applications in in finance, risk
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Figure 4: Graphical comparison of MSND (λ, α) and Azzalini’s Skew Normal Distribution

modeling, and survival analysis where asymmetric data distribution is common.
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