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SUMMARY

In mathematics a random walk (also known as drunkard’s walk) is a succession of random
steps. In 1905 Karl Pearson introduced the term “random walk”. A Bernoulli random walk
is the random walk on the integer number line Z which starts at 0 and at each step moves
+1 or −1 with equal probability. A Pearsonian random walk is a walk in the plane that
starts at the origin 0 and consists of length 1 taken in uniformly random direction. In this
paper several known and new results of Bernoulli and Pearsonian walks will be presented.

Keywords and phrases: Random Walk, Generating Function,Central Limit Theorem, Arc
Sine Distribution.

Note: This paper is dedicated to the memory of A. K. Md. Ehsanes Saleh.

1 One Dimensional Bernoulli Random Walk

1.1 Introduction

The one dimensional Bernoulli random walk can be considered as follows. At each step one random
walker moves one step to the right with probability p, 0 < p < 1, or one step to the left with
probability 1 − p. Consider the Bernoulli sequences of independent random variables X1, X2, . . . ,

taking the value 1 with probability p (0 < p < 1) and the value −1 with probability q = 1− p. The
events {Xn = 1} and {Xn = −1} are treated, respectively, as a success and a failure of the t-th
Bernoulli trial. Let Sn =

∑n
i=1 Xi. The walker can return to the starting point 0 in even number of

steps. If p > 1/2, then Sn → ∞ as n → ∞, Sn → −∞ as n → ∞ if p < 1/2 and Sn oscillates
between −∞ and +∞ if p = 1/2.

2 Main Results

2.1 Asymmetric random walks (p ̸= q)

Example 2.1.

P (S7 = S11) = P (X8 +X9 +X10 +X11 = 0) = P (S4 = 0) =
4!

2!2!
p2q2 = 6p2q2

⋆ Corresponding author
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P (S7 = −1, S13 = 3) = P (X1 +X2 + · · ·+X7 = −1, X8 +X9 + · · ·+X13 = 4)

= P (S7 = −1)P (S6 = 4) =
7!

4!3!
p3q4

6!

5!
p5q = 210p8q5

P (S4 = −2, S10 = 2) = P (X1 +X2 +X3 +X4 = −2, X5 +X6 + ...+X10 = 4)

= P (S4 = −2)P (S6 = 4) =
4!

3!
pq3

6!

5!
p5q = 24p6q4

We have

E(Xi) = 2p− 1 and Var(Xi) = 4p(1− p), and

E(Sn) = n(2p− 1),Var(Sn) = 4np(1− p).

To return to the starting place 0, there must be even number of steps. Let l2n be the number of steps
of length 2n. We will have

l2n =

(
2n

n

)
, l0 = 1, and nl2n = n

(2n)!

n!n!
= 2(2n− 1)

(2n− 2)!

(n− 1)!(n− 1)!
= 2(2n− 1)l2n−2.

Let L(s) be the generating function of l2n, then

L(s) =

∞∑
n=0

l2ns
2n =

1√
1− 4s2

.

Let P (s) be the probability generating function of the return to the origin 0, then

P (s) =

∞∑
n=0

l2np
nqn =

1√
1− 4pq

.

Let t2n be the number of steps to return to 0 for the first time, then

l2n =

n∑
k=0

t2kl2n−2k.

Let T (s) be the generating function of tn, then we will have

L(s)− 1 = L(s)T (s), T (s) = 1− 1

L(s)
= 1−

√
1− 4s2, and t2n =

1

2n− 1

(
2n

n

)
and the probability of returning first time from 2n steps is t2np

nqn. Let T ∗(s) be the probability
generating function of first time return to the origin, then

T ∗(s) = 1−
√
1− 4pqs2.

The probability of first time return to 0 is

T ∗(1) = 1−
√

1− 4pq = 1− |p− q|.
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Thus if p = q, then probability 1 that the walker will return to the origin. The probability p0 of no
return to the origin is |p−q|. Let pk be the probability that the walker will ever reach x = k (k > 0),
then by Markov property pk = (p1)

k. Thus

p1 = p+ qp2 and p1 = p+ q(p1)
2.

We can write
(p1)

2 − p1
q

+
p

q
= 0.

The solution of the above equation is

p1 =
1

2q
± 1

2

√
1

q2
− 4

p

q
.

Since p1 is positive, we must have

p1 =
1

2q
− 1

2

√
1

q2
− 4

p

q
and p1 =

1−
√
1− 4pq

2q
, p1 =

1 if p ≥ q,

p/q if p < q.

We will have, if p < q, then pk =
(

p
q

)k
and pk = 1 if p ≥ q. Let ϕX(t) be the characteristic

function of Xi; then
ϕX(t) = cos t+ i(p− q) sin t.

Let ϕSn
(t) be the characteristic function of Sn(t), then

ϕSn
(t) = (cos t+ i(p− q) sin t)n.

From the above expression, we obtain

µ1 = E(Sn) =
1

i

d

dt
(ϕSn(t))

∣∣
t=0

=
1

i
n(cos t+ i(p− q) sin t)n−1(− sin t+ i(p− q) cos t)

∣∣
t=0

= n(p− q)

µ2 = E(S2
n) =

1

i2
d2

dt2
(ϕSn

(t))
∣∣
t=0

=
1

i2
[
n(n− 1)(cos t+ i(p− q) sin t)n−2(− sin t− i(p− q) cos t)2

+ n(cos t+ i(p− q) sin t)n−1(− cos t− i(p− q) sin t)
] ∣∣

t=0
= n(n− 1)(p− q)2 + n

Var(Sn) = n(n− 1)(p− q)2 + n− (n(p− q))2 = n− n(p− q)2 = 4npq

P (Sn = k|S0 = a) = P (Sn = k + b |S0 = n + k)·Sn+m − Sm has the same distribution as
Sn − S0.

Lemma 2.1. If p ̸= 1/2, then the random walk is transient.

Proof. Let Jn be the indicator variable that the walker returns to the starting point 0. The total
number of visits to the origin is given by V =

∑∞
j=1 Jj . Now

E(V ) =

∞∑
j=1

E(Jj) =

∞∑
n=0

P (S2n = 0) =

∞∑
n=0

(2n)!

n!n!
pnqn = (1− 4pq)−1/2. (2.1)

For p ̸= 1/2, (1− 4pq)−1/2 is finite. Thus the random walk for p ̸= 1/2 is transient.
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2.1.1 The Gambler’s ruin problem.

Suppose qx be the probability of a gambler’s x stack reaches zero before it reaches M, given that
initial stack is k. We have the condition q

0
= 1 and qM = 0. Now

qk = pqk+1 + qqk−1 and p(qk+1 − qk) = q(qk − qk−1), (2.2)

i.e., qk+1 − qk = q
p (qk − qk−1). It is easy to see qk+1 − qk = ( qp )

k(q1 − q0). Now

−1 = qM−q0 =

M−1∑
k=0

(qk+1−qk) =

M−1∑
k=0

(
q

p
)k(q1−q0) = (q1−q0)

M−1∑
k=0

(
q

p
)k = (q1−q0)

( qp )
M − 1

( qp )− 1
.

Thus

(q1 − q0) = −
( qp )− 1

( qp )
M − 1

.

Now for any z, 1 ≤ z ≤ M ,

qz−q0 =

z−1∑
k=0

(qk+1−q0) = (q1−q0)

z−1∑
k=0

(
q

p
)k = (q1−q0)

( qp )
z − 1

( qp )− 1
= −

( qp )− 1

( qp )
M − 1

( qp )
z − 1

( qp )− 1
= −

( qp )
z − 1

( qp )
M − 1

.

We have

qz = 1−
( qp )

z − 1

( qp )
M − 1

=
( qp )

M − ( qp )
z

( qp )
M − 1

,

for p = q, qz = (M − z)/M .

Theorem 1. limn→∞
Sn−n(p−q)

2
√

(npq)
→ N(0, 1).

Proof.

E
(
exp

(
i
Sn − n(p− q)

2
√
(npq)

))
= E

(
exp

(
it

∑n
k=1(Xk − p+ q)

2
√

(npq)

))
= E

(
exp

(
it

n∑
k=1

(Xk − p+ q)

2
√

(npq)

))
=

[
E
(
exp
(
it
Xk − p+ q)

2
√

(npq)

))]n
=

[
p

{
cos

2q

2
√

(npq)
t+ i sin

2q

2
√

(npq)
t

}
+ q

{
cos

−2p

2
√

(npq)
t− i sin

−2p

2
√

(npq)
t

}]n
=

[
p
(
1− (2p)2

8npq
t2
)
+ q
(
1− (2q)2

8npq

)
+ pit

q√
(npq)

− qit
−2p

2
√
(npq)

+ en

]n
,

where en = 0(n2) · =
(
1− t2

2n + en
)n

. Now

lim
n→∞

(1− t2

2n
+ en)

n = e−
t2

2 .

Thus limn→∞
Sn−n(p−q)

2
√

(npq)
→ N(0, 1) in distribution.
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2.2 Symmetric random variable p = q

Table 1 gives an indication of probabilities of one dimensional random walk.

Table 1: Probabilities of 4 symmetric random walk on integer line.

j -4 -3 -2 -1 0 1 2 3 4

P(S0 = j) 1

P(S1 = j) 1
2

1
2

P(S2 = j) 1
22

2
22

1
22

P(S3 = j) 1
23

3
23

3
23

1
23

P(S4 = j) 1
24

4
24

6
24

4
24

1
24

Lemma 2.2 (Weak law of large numbers). Sn

n ↠ 0 as n → ∞

Proof. Using the Chebyshev’s inequality, we have for a given ϵ,

P (
∣∣ Sn

n

∣∣ ≥ ϵ) ≤ 1

ϵ2
E(
∣∣Sn

n

∣∣)2 =
1

nϵ2
↠ 0, as n ↠ ∞.

Theorem 2. Sn√
n
↠ N(0, 1) in distribution as n ↠ ∞.

Proof. Let φn(t) be the characteristic function of Sn√
n

. We will have

φn(t) = E
(
e

Sn√
n
it)

= E
(
e

it√
n

∑n
j=1 Xj

)
=
[
E
(
e

it√
n
Xj
)]n

=
[
cos(

t√
n

)]n
=
[
1− t2

2n
+

t4

4!n2
+ · · ·

]n
↠ e−

t2

2 as n ↠ ∞

Thus Sn√
n
↠ N(0, 1) in distribution as n ↠ ∞.

Theorem 3. P (S1 ̸= 0, S2 ̸= 0, . . . , S2n ̸= 0) = P (S1 ≥ 0, S2 ≥ 0, . . . , S2n ≥ 0).

Proof. P (S1 ̸= 0, S2 ̸= 0, . . . , S2n ̸= 0) = 2P (S1 > 0, S2 > 0, . . . , S2n > 0)

Now

P (S1 > 0, S2 > 0, . . . , S2n > 0) = P (S1 = 1)P (S2 > 0, . . . , S2n > 0|S1 = 1)

= P (S1 = 1)P (S2 − S1 ≥ 0, . . . , S2n − S1 ≥ 0)

=
1

2
P (S1 ≥ 0, S2 ≥ 0, . . . , S2n−1 ≥ 0)

Since S2n−1 is odd, we must have S2n=1 ≥ 1 and S2n ≥ 0.
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Thus

P (S1 ≥ 0, S2 ≥ 0, . . . , S2n−1 ≥ 0) =
1

2
P (S1 ≥ 0, S2 ≥ 0, . . . , S2n−1 ≥ 0, S2n ≥ 0.

Hence

P (S1 > 0, S2 > 0, . . . , S2n > 0) =
1

2
P (S1 ≥ 0, S2 ≥ 0, . . . , S2n−1 ≥ 0, S2n ≥ 0), and

P (S1 ̸= 0, S2 ̸= 0, . . . , S2n ̸= 0) = P (S1 ≥ 0, S2 ≥ 0, . . . , S2n ≥ 0).

Theorem 4. P (S1 ̸= 0, S2 ̸= 0, . . . , S2n ̸= 0) = P (S2n = 0).

Proof.

P (S1 ̸= 0, S2 ̸= 0, . . . , S2n ̸= 0) = 2P (S1 > 0, S2 > 0, . . . , S2n > 0)

= 2

n∑
r=1

P (S1 > 0, S2 > 0, . . . , S2n = 2r)

= 2

n∑
r=1

{( 2n− 1

n+ r − 1

)
−
(
2n− 1

n+ r

)} 1

22n

= 2

(
2n− 1

n

)
1

22n
=

(
2n

n

)
1

22n
= P (S2n ̸= 0).

Let Nn(a, b) be the number of path from a, b in n steps. N+
n (a, b) be the number of path from a, b

in n steps without visiting 0.

Theorem 5. N+
n (0, k) = k

nNn(0, k).

Proof.

N+
n (0, k) = Nn−1(1, k)−Nn−1(−1, k) =

(
n− 1

(n+k)
2 − 1

)
−
(
n− 1
(n+k)

2

)
Let ((n+ k)/2 = v, then

N+
n (0, k) =

(
n− 1

v − 1

)
−
(
n− 1

v

)
=

(n− 1)!

(v − 1)!(n− v)!
− (n− 1)!

v!(n− v − 1)!

=
v

n

n!

v!(n− v)!
− n− v

n

n!

v!(n− v)!
=

n!

v!(n− v)!
(
v

n
− n− v

n
) =

n!

v!(n− v)!

2v − n

n

=
k

n

n!

v!(n− v)!
=

k

n

n!

(n+k
2 )!(n−k

2 )!
=

k

n
Nn(0, k)

Theorem 6. Let En be the expected distance of walker in n steps, then

|E2n| =
(2n− 1)!!

(2n− 2)!!
and |E2n+1| =

(2n+ 1)!!

(2n)!!
,

where x!! = 1(3)(5) · · ·x, if x is odd and x!! = 2(4)(6) · · ·x, if x is even.
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Proof.

|E2n| =
n∑

k=1

2kP (|S2n| = 2k) =

n∑
k=1

(2n)!

(n+ k)!(n− k)!

k

22n−2

=
(2n)!

22n−1

n∑
k=1

2k

(n+ k)!(n− k)!
=

(2n)!

22n−1

n+ 1

(n+ 1)!(n− 1)
=

(2n− 1)!!

(2n− 2)!!
.

and

|E2n+1| =
n∑

k=1

(2k + 1)P (|S2n+1| = 2k + 1) =

n∑
k=0

2(2n+ 1)!

(n+ k + 1)!(n− k)!

2k + 1

22n+1

=
(2n+ 1)!

22n

n∑
k=0

2k + 1

(n+ k + 1)!(n− k)!
=

(2n+ 1)!

22n
1

(n!)2
=

(2n+!)!!

(2n)!!

|E2n| and |E2n+1| are the coefficients respectively in the series (1− x)−3/2, where

(1− x)−3/2 = 1 +
3

2
x+

15

8
x2 + · · ·+ (2n− 1)!!

(2n− 2)!!
xn=1 +

(2n+!)!!

(2n)!!
xn + · · ·

Theorem 7. Let f2n be the probability to return to 0 for the first time in 2n steps and u2n be the
probability to return to 0 in 2n steps. We have

u2n = f0u2n + f2u2n−2 + · · ·+ f2nu0

Let F (s) and U(s) be the generating functions of f2n and u2n respectively. Then U(s) =

U(s)F (s) + 1 and F (s) = 1− 1
U(s) ,

U(s) =

∞∑
0

(2n)!

n!n!

sn

22n
= (1− s)1/2,

u2n is the coefficient of sn from U(s) and it is (2n)!
n!n!

1
22n ,

F (s) = 1− (1− s)1/2,

where f2n is the coefficient of sn from F(s) and it is 1
2n−1

(2n)!
n!n! .

1
22n . For large n,

f2n ∽
1

2n− 1

1√
πn

.

Let τ0 be the first time that the walker returns to origin 0 in 2n steps. Then P (τ0 = 2n) = f2n =
1

2n−1
1√
πn

. Thus,

P (Pτ0 ≥ r) =

∫ ∞

r

1

2

√
1

π
x−3/2dx =

1√
(πr)

≤ 1√
r
.
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Theorem 8.
f2n = u2n−2 − u2n

Proof. We have,

u2n−2 − u2n = (2n−2
n−1 )

1

22n−2
− (2nn )

1

22n
=

(2n− 2)!

(n− 1)!(n− 1)

1

22n−2
− (2n)!

(n)!(n)

1

22n

=
(2n− 2)!

(n− 1)!(n− 1)!

1

22n−2
(1− (2n)(2n− 1)

4n2
)

=
(2n− 2)!

(n− 1)!(n− 1)!

1

22n−2

1

2n
=

(2n)!

(2n− 1)
.

1

n!n1

1

22
=

1

2n− 1
u2n = f2n.

We can write u2n = (2nn ) 1
22n = (−1)n(

− 1
2
n ); where

(−1)n(
− 1

2
n ) =

(−1)n(− 1
2 )(−

1
2 − 1)(− 1

2 − 2)(− 1
2 − 3) · · · (− 1

2 − n+ 1)

n!
, n = 2, 4, 6, . . .

f2n =
1

2n− 1

(2n)!

n!n!

1

22n
= (−1)n+1(

1
2
n ),

(−1)n+1(
− 1

2
n ) =

(1)n+1( 12 )(
1
2 − 1)( 12 − 2)( 12 − 3) · · · ( 12 − n+ 1)

n!
, n = 2, 4, 6, . . .

The following theorem gives an alternative proof of Theorem 3.

Theorem 9. P (S1 ̸= 0, S2 ̸= 0, . . . , Sn ̸= 0) = P (S2n = 0).

Proof.

1− (f2 + f4 + · · ·+ f2n) = 1− (1− u2 + u2 − u4 + · · ·+ u2n−2 − u2n) = u2n.

Thus
P (S1 ̸= 0, S2 ̸= 0, · · · , Sn ̸= 0) = P (S2n = 0).

Theorem 10. Let W be the waiting time of first return to the origin 0, then

E(W ) =
∞∑

n=1

2nf2n =
∞∑

n=1

2n

2n− 1

(2n)!

n!n!
∼

∞∑
n=2

1√
πn

≥
∞∑

n=2

1

n
√
π

= ∞.

Theorem 11. Let Ak be the first visit from 0 to k (k > 0) in n steps, then P (Ak) =
k
n (

n
(n+k)/2)

1
2n .

Proof. It follows from Theorem 3 that

P (Ak) =
k

n
P (Sn = k) =

k

n
( n
(n+k)/2)

1

2n
.

Note, n− k > 0 and n− k is even. Let

αn = P (S1 ≤ 0, S2 ≤ 0, . . . , Sn−1 ≤ 0, Sn > 0)

βn = P (S1 ≥ 0, S2 ≥ 0, . . . , Sn−1 ≥ 0, Sn < 0), n = 1, 3, 5, . . .
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then

α2n+1 = β2n+1 =
(2n)!

n!n!

1

22n+1

1

n+ 1
=

C(n)

22n+1
,

where C(n) is the catalan number. It can be shown easily that
∑∞

n=0
C(n)
22n+1 = 1 The catalan number

C(n) is the number of steps of the simple random walk leading to the first epoch. The generating
A(s) functions of αn and of βn) is

A(s) =

∞∑
n=0

α2n+1s
2n+1 =

1−
√

(1− s2)

s
.

Theorem 12. Suppose Xn, n = 1, 2, . . . be a simple symmetric random walk on the one dimension
integer lattice Z and (Fn)n≥0 be natural filtration, then the followings are true:

(i) Yn = S2
n − n is a martingale.

(ii) Zn = S3
n − 3nSn is a martingale.

Proof. (i)

E(Xn+1|Fn) = E(Xn +Xn+1|Fn) = Xn

E(Yn+1|Fn) = E(S2
n+1 − (n+ 1)|Fn) = E((S2

n + 2SnXn+1 +X2
n+1 − n− 1)|Fn) = S2

n − n = Y n

(ii)

E(Zn+1|Fn) = E(S3
n+1 − 3(n+ 1)Sn+1|Fn) = E((Sn +Xn+1)

3 − 3(n+ 1)(Sn +Xn+1)|Fn)

= E(S3
n + 3S2

nXn+1 + 3SnX
2
n+1 +X3

n+1 − 3(n+ 1)(Sn +Xn+1)|Fn)

= S3
n − 3nSn = Zn.

2.3 The maximum and minimum of a symmetric random walk

Let
Mn = max(0, S1, S2, . . . , Sn) and mn = min(0, S1, S2, . . . , Sn).

The following theorem was given by Gut (2008).

Theorem 13. (i) If the random walk drifts to +∞, then

Mn a.s.−−→ +∞ and mn a.s.−−→ m = minSn > −∞, as n → ∞,

(ii) If the random walk drifts to −∞, then

Mn a.s.−−→ M = sup
n≥0

Sn < ∞ a.s. and mn a.s.−−→ −∞, as n → ∞,

(iii) If the random walk is oscillating, then

Mn a.s.−−→ +∞ and mn a.s.−−→ −∞, as n → ∞.
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Pólya (1921) gave the following excellent theorem.

Theorem 14. A simple (symmetric) random walk in dimension Zd is recurrent if d = 1 or 2 and
transient if d ≥ 3.

Proof. Let d = 1, then

P (S2n = 0) =
(2n)!

n!n!

1

22n
.

Using Stirling’s approximation to n!, we have

(2n)!

n!n!

1

22n
∼ 1√

πn
.

Therefore
∞∑

n=0

P (S2n = 0) = ∞.

Thus the random walk is recurrent. Let d = 2. Let S2
2n = 0 be the number of steps of the walker to

return to the starting point 0, then

P (S2
2n = 0) =

1

42n

n∑
k=0

(2n)!

k!k!(n− k)!
=

1

42n

(
2n

n

)2

Using Stirling’s approximation, we have

1

42n

(
2n

n

)2

∼ 1

πn

Thus
∞∑

n=0

P (S2
2n = 0) = ∞.

Hence the random walk is recurrent. Let d = 3, then

P (S3
2n = 0) =

1

22n
(2n)!

∑
j,k

(
1

3n
n!

j!k!(n− j − k)!

)2

≤ 1

22n
(2n)!

n!

3n
(
n
3

)
!3

≤ c

n3/2
,

where c is a constant. Thus
∞∑

n=1

P (S3
2n = 0) < ∞.

Hence the random walk is transient. Let d > 3. Suppose ud
2n be the probability of the walker to

return to the origin 0. It can be shown that u2d
2n < u3

2n. Thus

∞∑
k=1

u2d
2n <

∞∑
k=1

u3
2n < ∞.

Thus the random walk for d > 3 dimensions is transient.
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3 Travel Times
Let Ej,k = E (the time taken to go from j to k). We have

E0,1 = 1

E1,2 = 1 +
1

2
E0,2 = 1 +

1

2
(E0,1 + E1,2) =

3

2
+

1

2
E1,2

E1,2 = 3 and E0,2 = 4.

We have
E2,3 = 1 +

1

2
E1,3 = 1 +

1

2
(E1,2 + E2,3) =

5

2
+

1

2
E2,3

So E2,3 = 5. Thus for k = 1, 2, 3, we have

Ek−1,k = 2k − 1, E0,k = k2

Suppose that relation holds for k ≤ n,

En,n+1 = 1 +
1

2
En−1,n+1 = 1 +

1

2
(En−1,n + En,n+1) = 1 +

2n− 1

2
+

1

2
En,n+1.

Thus
En,n+1 = 2n+ 1

E0,n+1 = E0,n + En,n+1 = n2 + 2n+ 1 = (n+ 1)2.

4 Characteristic Function
Let Sd

n = X1 + X2 + . . . + Xn be for a simple random walk in dimension Zd. We have the
characteristic function ϕX(1)(θ) of X1 is

ϕX(1)(θ) = E(eiX(θ)) =
1

2d

d∑
i=1

(eiθi + e−iθi) =
1

d

d∑
i=1

cos θi.

The characteristic function ϕS(n)(θ) of Sd
n is

E(eiS
d
nθ) =

(
1

d

d∑
i=1

cos θi

)n

.

Let Sd
n be the position of the walker at the n-th step, then

P (Sd
n = x) =

(
1

2π

)n ∫
e−ixθϕS(n)(θ)dθ

P (Sd
2n = 0) =

(
1

2π

)n ∫ π

−π

ϕS(n)(θ)dθ =

(
1

2π

)n ∫ π

−π

(
1

d

d∑
i=1

cos θi

)2n

dθ;

P (S2n = 0) =
1

2π

∫ π

−π

cos2n θdθ =
(2n)!

n!n!
· 1

2n+1
.
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For d = 1, we obtain ϕS(n)(t) as
ϕS(n)(t) = cosn θ

Differentiating the above expression and putting θ = 0, we obtain

µ1 = 0, µ2 = n, µ3 = 0, µ4 = n(3n− 2), µ5 = 0, µ6 = n(15n2 − 30n+ 16),

µ7 = 0, µ8 = n(105n3 − 420n2 + 585n− 272), µ9 = 0 and

µ10 = n(945n4 − 6300n3 + 18960n2 − 23820n+ 7936).

It is easy to see that µr

nr/2 coincides with the moments of N(0, 1).

P (Sn = j) =
1

2π

∫ π

−π

e−iθ cosn θdθ =
1

2n+1
(1 + (−1)n+j)

n!(
n+j
2

)
!
(
n−j
2

)
!

P (S2n = 0) =
1

22n
(2n)!

n!n!
.

P (S2n ≥
√
2n lnn) =

Var
(
|S2n|

)
2n ln2 n

=
1

ln2 n
→ 0 as n → ∞.

Lemma 4.1. If X = (X1, X2, . . . , Xd) is a Zd valued random vector, then

P (X = x) =
1

(2π)d

∫
(−π,π)d

e−ixθϕd
X(θ)dθ.

Proof. Since ϕd
X(θ) = E(eixθ) =

∑
y∈Zd P (X = y)eiyθ, we have∫

(−π,π)d
e−ixθϕd

X(θ)dθ =

∫
(−π,π)d

e−ixθ
∑
y∈Zd

P (X = y)eiyθdθ

Interchanging the sum and integrals, we obtain∫
(−π,π)d

e−ixθϕd
X(θ)dθ =

∑
y∈Zd

P (X = y)

∫
(−π,π)d

e−i(y−x)θdθ

and if x, y ∈ Zd, then

∫
(−π,π)d

e−i(y−x)θdθ =

(2π)d, if y = x

0 if y ̸= x.

Thus

P (X = x) =
1

(2π)d

∫
(−π,π)d

e−ixθϕd
X(θ)dθ.
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5 Brownian Motion
A stochastic (one dimensional) Wiener process (also called Brownian motion) is a stochastic process
(Wt) indexed by non-negative numbers t with the following properties:

(i) W0 = 0.

(ii) With probability 1, Wt is continuous in t.

(iii) The process (Wt) has stationary independent increments.

(iv) The increment Wt+s −Ws has the normal N(0, t) distribution.

Consider the random walks independent variables, Xi, i = 1, 2, . . . with as follows

Xi =
√
δ with probability (1/2) and = −

√
δ with probability (1/2)

E(Xi) = 0 and Var(Xi) = δ.

We define the process Wt as follows. Let W0 = 0 and nδ = t, Wt = Wnδ =
∑n

i=1 Xi.

We have
E(Wt) = 0 and Var(Wt) = nδ = t.

We can now take the continuous limit to see that the random walk Wt converges to a continuous
stochastic process called Brownian motion. For any t ∈ (0,∞), as n → ∞, δ → 0 and nδ = t.
Thus by central limit theorem the distribution of W (t) is N(0, t).

For t1 = n1δ and t2 = n2δ for 0 ≤ t1 < t2, we have

W (t1) = W (n1δ) =

n1∑
i=1

Xi, W (t2) = W (n2δ) =

n2∑
i=1

Xi

W (t2)−W (t1) =

n2∑
i=n1+1

Xi.

Therefore

E(W (t2)−W (t1)) = 0 and Var(W (t2)−W (t1)) = (n2 − n1)δ = t2 − t1.

Thus W (t) has stationary independent increments and for any t ∈ (0,∞) and s ∈ (0,∞), the
distribution of Wt+s −Ws is N(0, t) distribution. Hence W (t) is a Brownian motion.

6 Pearsonian Random Walk
In 1905 Pearson proposed the following: ”A man starts from a point 0 and walks one step in a
straight line, then he turns any angle whatever and walks one step in a straight line. I require the
probability that after n steps he will be at a distance r and r + dr from the starting point 0”. Let
X(n) be the distance traveled in n steps.
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Kluyver (1908) gave the probability density (pdf) of X(n). The pdf pn(x) of X(n) is given as

pn(x) =

∫ n

0

xtJ0(xt)(J0(t))
ndt, 0 ≤ x ≤ n, (6.1)

where J0(t) is the Bessel function of first kind and zero order.
The solution of (6.1) for n = 2 is

p2(x) =
2

π
(4− x2)−1/2, 0 ≤ x ≤ 2.

For n = 3:

p3(x) =
2
√
3

π
· x

3x2
· 2F1

[ 1
3 ,

2
3

1

(x2 + 3x2

3x2

)
, 0 ≤ x ≤ 3,

]
For n = 4:

p4(x) =
2

x3
·
√
16− x2

x
· 3F2

[ 1
2 ,

1
2 ,

1
2

5
6 ,

7
6

(
(16− x2)4

108x4

)]
, 0 ≤ x ≤ 4,

where

pFq

(
a1, a2, . . . , ap
β1, β2, . . . , βq

(x)

)
=

∞∑
k=0

(a1)k(a2)k . . . (ap)k
(β1)k(β2)k . . . (βq)k

xk

k!

with (a)k = a(a+ 1) . . . (a+ k − 1).
Rayleigh (1905a, 1905b) showed that for n ≥ 5, pn(x) is close to fn(x), where

fn(x) =
2x

n
e−

x2

n , 0 ≤ x ≤ n.

Let µ′
r be the r-th moment of X(2), then

µ′
r =

∫ 2

0

xr 2

π
(4− x2)−1/2dx =

∫ 1

0

2

π
2rwr(1− w2)−1/2dw

=
2r

π
Γ

(
1

2
r +

1

2

)
Γ(1)/Γ

(
1

2
r + 1

)
For r = 2m

µ2m
2 =

22m

π
Γ

(
m+

1

2

)
/Γ(m+ 1) =

(2m)!

m!m!

Table 2: Moments of µ′
2.

r 1 2 3 4 5 6 7 8 9 10

µ′
2 0.31831 2 3.3953 6 10.865 20 37.251 70 132.45 252

We can also write

µ′
2 =

∫ 1

0

2

π
2rwr(1− w2)−1/2dw
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Let u = cosπθ/2, then

µ′
2 =

∫ 1

0

2r cosr πθ/2dθ =

∫ 1

0

(4− 4 sin2 πθ/2)r/2dθ

=

∫ 1

0

(2 + 2 cos 2πθ)r/2dθ =

∫ 1

0

[1 + e2πiθ]r/2dθ

Borwein et al. (2010) showed that for any n ≥ 2,

µr
n =

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

[
1 +

n−1∑
k=1

e2πikx1

]r/2
dx1dx2 . . . dxn−1

Now∣∣∣1 + n−1∑
k=1

e2πikxi

∣∣∣ = [(1 + cos 2πx1 + cos 2πx2 + · · ·+ cos 2πxn−1)
2

+ (sin 2πx1 + sin 2πx2 + · · ·+ sin 2πxn−1)
2
]1/2

=
[
n+ 2

∑
1≤i<j≤n−1

cos 2πxi cos 2πxj

+ 2
∑

1≤i<j≤n−1

sin 2πxi sin 2πxj + 2

n−1∑
j=1

cos 2πxj

]1/2
=
[
n+ 2

∑
1≤i<j≤n−1

cos 2π(xi − xj) + 2

n−1∑
j=1

cos 2πxj

]1/2
=
[
n+ 2

∑
1≤i<j≤n−1

(1− 2 sin2 π(xi − xj)) + 2

n−1∑
j=1

(1− 2 sin2 πxj)
]1/2

=
[
n2 − 4

∑
1≤i<j≤n−1

sin2 π(xi − xj)− 4

n−1∑
j=1

sin2 πxj

]1/2
.

Thus

µr
n =

∫ 1

0

· · ·
∫ 1

0

[
n2 − 4

∑
1≤i<j≤n−1

sin2 π(xi − xj)− 4

n−1∑
j=1

sin2 πxj

]r/2
dx1 . . . dxn−1. (6.2)

For n = 3, we have the r-th moment µr
3 as

µr
3 =

∫ 1

0

∫ 1

0

[
1 + e2πikx1 + e2πix2

]r/2
dx1dx2

=

∫ 1

0

∫ 1

0

[
9− 4(sin2 πx1 + sin2 πx2 + sin2 π(x1 − x2))

]r/2
dx1dx2.



62 Ahsanullah M.

For even moments m ≥ 1, 0 ≤ m1,m2,m3 ≤ m,

µ2m
3 =

∑
m1+m2+m3=m

(
m!

m1!m2!m3!

)2

Figure 1: PDF p5(x) (solid) and f5(x) (dash)

Table 3: Moments µr
3

r 1 2 3 4 5 6 7 8 9 10

µr
3 1.5732 3 5.3417 15 36.7052 93 241.5440 639 1714.62 4653

For even moments m ≥ 1,

µ2m
n =

∑
m1+m2+···+mn=m

(
m!

m1!m2! · · ·mn!

)2

, where 0 ≤ m1,m2, . . . ,mn ≤ m.

On simplification we obtain

µ2
n = n,

µ4
n = 2n2 − n

µ6
n = 6n3 − 9n2 + 4n

µ8
n = 24n4 − 72n3 + 96n2 − 33n

µ10
n = 120n5 − 600n4 + 1250n3 − 1225n2 + 456n.

Straub (2010) gave the following alternative for r-th moment of PWR(n):

µr
n =

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

n2 − 4

 ∑
i<j≤n

sin2 π(xi − xj)

r/2

dx1dx2 . . . dxn (6.3)
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The integrals given in (6.2) and (6.3) will give the same result.

Figure 2: CDFs P5(x) (solid) and F5(x) (dash)

For some interesting results on Pearsonian random walk, see Borwein et al. (2010). The graphs
in Figures 1 and 2 were produced using Scientific Workplace 5.5.
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