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SUMMARY

In this study, we expanded the improved estimation strategies for robust estimators of the
Birnbaum-Saunders distribution for the shape parameter for multiple samples while inte-
grating sample and uncertain prior information. We have used the following estimators:
the Graybill-Deal type estimator, the linear shrinkage estimator, the pretest estimator, the
shrinkage preliminary estimator, the James-stein and positive James-stein estimation tech-
niques. We developed a test statistic to accept or reject the null hypothesis when consider-
ing uncertain prior information. We also explored the asymptotic properties of the proposed
estimators. To evaluate their effectiveness, we conducted Monte Carlo simulations using
various parameter values and sample sizes that align with our theoretical findings. Addi-
tionally, we included a real data example to illustrate the estimators performance in real
life application.
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1 Introduction

The Birnbaum-Saunders (BirSau) distribution is a probability distribution introduced by Birnbaum
and Saunders (1969). It is often used to model lifetimes and reliability data, characterized by two
parameters: shape and scale. Desmond (1986) highlighted an interesting aspect: the BirSau distri-
bution can be formed by combining an inverse Gaussian (IG) distribution with its reciprocal. This
relationship allows us to derive many characteristics of the BirSau distribution using the properties
of the IG distribution. The BirSau distribution is highly versatile and has applications in various
fields, especially in medical sciences. For example, Liu et al. (2023) utilized this distribution to
analyze bone marrow transplant data. The readers interested in real-life applications of the BirSau
distribution can check out the work by Balakrishnan and Kundu (2019) and its references therein.
Jantakoon and Volodin (2019) proposed a novel approach to construct the confidence intervals of
parameter of the BirSau distribution for both shape and scale parameters by applying two distinct
methods. The numerous constructions, parameterizations, generalizations, and the inferential tech-
niques which include different methods for parameter estimation had been done on this distribution
have been developed or discussed by Ahmed et al. (2008), Santos-Neto et al. (2014).

Let t1, t2, . . . , tn denote a random sample of positive values of size n that is drawn from a
BirSau distribution with shape and scale parameters (α, β > 0) respectively. The probability density
function of the BirSau distribution is defined by Lemonte et al. (2006) is given as

f (t;α, β) =
1

2αβ
√
2π

[(
β

t

) 1
2

+

(
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) 3
2

]
exp

{
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2α2

(
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β
+

β

t
− 2

)}
. (1.1)

Over the past four decades, numerous studies have been published exploring different inferential
methods for estimating the parameters of the BirSau distribution and their properties. Researchers
have developed a keen interest in estimating these parameters, and this topic has recently attracted
significant attention in the literature. The estimation approach based on modified moment estimators
(MMEs) were provided by Ng et al. (2003) and showed through simulation results that the perfor-
mance of MLEs and MMEs is nearly identical across different sample sizes, especially when the
shape parameter α is not too large. While MLEs offer several appealing advantages, they often lack
explicit expressions and can be quite sensitive to deviations from the model, which is a common
issue in real-world situations. For this reason, it is important to consider alternative estimators to
achieve more reliable estimation outcomes. Therefore, Wang et al. (2015) suggested an estimation
methodology on some robust type of estimators with their asymptotic distribution.

Let θ = (α,β)
′

be the parameter vector of the BirSau distribution and its robust estimators be
denoted by θ̂ = (α̂, β̂)

′
. We designated α̂ and β̂ as unrestricted robust (UR) estimators of α and

β, respectively. According to the Wang et al. (2015), the robust estimators for both parameters are
given as

α̂UR =
IQR (Y )

1.34898
, (1.2)

here, log(T ) = Y , and the interquartile range (IQR) is range of the third and first quartiles of the
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sample data. The asymptotic distribution for α is presented as follows:

√
n
(
α̂UR − α

) D−→ N
(
0, cα2

)
. (1.3)

Here c is a constant, c ≈ 2.48
1.3492 , which is approximately 1.363. The parameter β which represents

the median of the BirSau distribution is a logical choice. They refer to the sample median estimator
of β as follows:

β̂UR = median (t1, t2, . . . , tn) , (1.4)

the asymptotic distribution β̂UR is given as

√
n
(
β̂UR − β

)
D−→ N

(
0,

π (αβ)
2

2

)
. (1.5)

In many real-world statistical situations, some researchers are keen to blend sample data with
non-sample information to make conclusions about population parameters. If the non sample is
somewhat trustworthy then one can improve their inferences and achieve more efficient outcomes,
particularly when the sample data is limited. On the other hand, if non sample information is unclear
then some researchers often use some other efficient methods such as preliminary tests and James-
Stein (shrinkage) techniques to reduce uncertainty. Saleh (1966) explored how to identify the best
set of order statistics when estimating parameters of the exponential distribution, particularly when
dealing with complete and censored samples. This work focuses on situations where the number of
observations is significantly larger than a chosen integer k. The analysis is grounded in asymptotic
theory and specifically addresses cases involving Type II censoring. Judge and Bock (1978) explored
advanced statistical methods in econometrics, specifically focusing on pre-test estimators and Stein-
rule estimators. Saleh (2006) provided the theory of preliminary test and Stein-type estimation with
applications in a variety of standard models used in applied statistical inference. In past years, it
has been become common practice to utilize non-sample information whenever it is available in
the estimation process. For example, Shah et al. (2017) made inferences about the common mean
problem of k samples which are drawn from a normal distribution. Similarly, Aldeni et al. (2023)
using this approach as combining multiple p samples from log-normal populations with unequal
variances, focusing on the calculation of log-normal distribution. Makhdoom et al. (2024a) did im-
proved estimation for BirSau distribution for α while keeping other parameter known. Makhdoom
et al. (2024b) considered the robust shape parameter of BirSau distribution and did improved esti-
mation of BirSau distribution. This work is the extension of Makhdoom et al. (2024b) from single
sample to multiple samples for both parameters.

The null hypothesis of homogeneity of αi parameter can be used to present a constraint on the
parametric space.

H0 : α1 = α2 = · · · = αk = α0, (1.6)

where α0 is unknown. When the assumption of parameter homogeneity holds true, using a restricted
model leads to estimates that perform statistically better than those based solely on the α estima-
tor. However, if there are deviations from this null hypothesis, it can slightly impact the estimators
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derived from partial or combined estimates. To address this, we proposed improved estimation meth-
ods that incorporate both sample and non-sample data for the parametric vector for both parameters.
In this current study, we kept the scale parameter β known while used improved estimation tech-
niques to boost the efficiency of the shape parameter. One can replicate same estimation techniques
for scale parameter β.

This paper is structured as follows: In Section 2, we outline various estimation methodologies
designed to improve the inference of the both parameters. Section 3 focuses on the asymptotic dis-
tributional results and properties, including the mathematical formulation of the asymptotic risk for
the proposed estimators. In Section 4, we present our simulation scheme along with the results, fea-
turing graphical representations of the estimators to assess their behavior across different parameter
levels and configurations. This section also includes a real-life data example of the failure times of
machine valves. Finally, one can find the conclusions of this study in Section 5.

2 Estimation Strategies
To effectively estimate using both sample and non-sample information in optimal ways, we explore
the following estimation methodologies:

2.1 Robust restricted (RR) estimator

The restricted estimator for α is given as

α̂RR = (α̂G, α̂G, . . . , α̂G)
′
= α̂G1k, (2.1)

where α̂G is famous estimator of Graybill-Deal type Shah et al. (2017). It can be shown as

α̂G =
1∑k
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ni
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ni
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V̂i

α̂UR
i , (2.2)

where wi,n = ni

n and V̂i = cα̂2. The equation (2.2) can be shown in matrix notation as

α̂RR = Ŵ−1PkΩ̂
−1
n α̂UR = Lnα̂

UR, (2.3)

where Ln = Ŵ−1PkΩ̂
−1
n , Ŵ =

∑k
i=1
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V̂i
, Ω̂n = diag

(
V̂1
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, V̂2
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, . . . , V̂k
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)
, and Pk = 1k1

′

k

is a (k × k) matrix of ones. Based on the consistency of α̂i and V̂i, it can be shown that Ŵ P−→
W , while Ω̂n

P−→ Ω = diag
(

V1

wi
, V2

wi
, . . . , Vk

wi

)
, eventually Ln

P−→ L0 = W−1PkΩ
−1, where

limn→∞ wi,n = wi, (0 < wi < 1) is fixed for i = 1, 2, . . . , k and
∑k

i=1 wi = 1.

2.2 Robust linear shrinkage (RLS) estimator

The robust linear shrinkage (RLS) estimator α̂RLS is given as by after making linear combination
of α̂RR and α̂UR,

α̂RLS = δα̂RR + (1− δ)α̂UR = α̂UR − δ
(
α̂UR − α̂RR

)
. (2.4)
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In this context, 0 < δ < 1 represents the shrinkage coefficient intensity.

2.3 Robust preliminary test (RPT) estimator

When prior knowledge is somewhat uncertain, using a pretest estimator, denoted as α̂RPT , can be
beneficial as it incorporates a test of H0. Both James-Stein and pretest estimators depend on a test
statistic for their construction. To test the null hypothesis (1.6), we can derive a large sample test
statistic by calculating the normalized distance between α̂RRE and α̂UR.

Bn =
√
n
(
α̂UR − α̂RR

)′
Ω̂−1

n

(
α̂UR − α̂RR

)
. (2.5)

Under H0, The sampling distribution Bn approaches a central χ2 distribution with k − 1 degrees
of freedom. Consequently, we can use this χ2 distribution to approximate the higher α∗ level of
significance values of Bn, which are represented as Bn,α∗ . The pretest (PT) estimator of α is
defined accordingly,

α̂RPT = α̂RRI (Bn < Bn,α∗) + α̂URI (Bn > Bn,α∗) ,

where I(·) is an indicator function. For the computational purposes, the following form of the
estimator can also be used as

α̂RPT = α̂UR −
(
α̂UR − α̂RR

)
I (Bn < Bn,α∗) . (2.6)

2.4 Robust shrinkage preliminary test (RSP) estimator

The robust shrinkage preliminary test estimator of α is being derived after plugging α̂RR with α̂RLS

by incorporating δ into (2.6). This leads us to the following expression for the RSP estimator.

α̂RSP = α̂UR − δ
(
α̂UR − α̂RR

)
I (Bn < Bn,α∗) . (2.7)

If δ = 0 then α̂RSP becomes α̂UR and if δ = 1 then α̂RSP shrinkage to α̂LSR . It is evident that
α̂RSP outperforms α̂UR across a broader range of the parametric space compared to α̂PT .

2.5 Robust James-Stein (RJS) estimator

The pretest estimators outlined in (2.6) are sensitive to deviate from H0 and depend on the signif-
icance level α∗. To address this issue, we introduced the James Stein type estimator, denoted as
α̂RJS , which is defined as follows

α̂RJS = α̂UR − {(k − 3)B−1
n }

(
α̂UR − α̂RR

)
k ≥ 4,

the above equation can be rephrased for easier understanding in computational contexts as follows

α̂RJS = α̂RR + {1− (k − 3)B−1
n }

(
α̂UR − α̂RR

)
k ≥ 4. (2.8)
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2.6 Robust positive James-Stein (RPJ) estimator

The positive past of James-Stein estimator can be presented as,

α̂RPJ = α̂RR +max{1− (k − 3)B−1
n , 0}

(
α̂UR − α̂RR

)
k ≥ 4,

alternatively, we can derive another computational form for the pretest James-Stein (PJS) estimator
as,

α̂RPJ = α̂RJS − {1− (k − 3)B−1
n }I (Bn < k − 3)

(
α̂UR − α̂RR

)
k ≥ 4. (2.9)

3 Asymptotic Mathematical Results
This section will explore asymptotic properties of suggested estimators, focusing on following
weighted squared error loss:

q (α̂∗,α) =
√
n (α̂∗ −α)

′
M

√
n (α̂∗ −α) , (3.1)

where α̂∗ represents any estimator of α, and M is a positive semi-definite matrix. The squared
error risk is defined as follows:

R (α̂∗,α) = E
[√

n (α̂∗ −α)
′
M

√
n (α̂∗ −α)

]
. (3.2)

As noted in (2.5), the test statistic remains consistent for a fixed α under the null hypothesis H0

against fixed alternatives. This indicates that all estimators based on Bn behave similarly to the
unrestricted estimator as the sample size grows, providing limited scope for further exploration.
To explore deeply, we will investigate a sequence of local alternatives to establish the asymptotic
results.

Kn : α = α(n) = α0 +
ξ√
n
, (3.3)

as ξ ∈ Rk is a fixed real vector and α0 = α01k. When ξ = 0, we find that α(n) = α01k. This
indicates that (1.6) is a specific case of Kn. For analysis we are introducing some important lemmas
that will support our findings.

3.1 Lemmas

Lemma 1: Let S =
√
n
(
α̂UR −α0

)
, X =

√
n
(
α̂UR −αRR

)
and Y =

√
n
(
α̂RR −α0

)
. Thus,

due to the sequence of local alternatives provided in (3.3), as n → ∞,Sn

Xn

 D−→

S

X

 ∼ N2k


 ξ
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 ,

Ω E0

E
′

0 E0

 , (3.4)

Yn

Xn

 D−→

Y

X

 ∼ N2k


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 ,

W−1P 0

0 E0

 , (3.5)
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where ξ∗ = C0ξ, C0 = Ik − G0 and E0 = ΩC
′

0. Additionally, W ∗′
ξ = 0, where W ∗ =(

w1

V1
, w2

V2
, · · · wk

Vk

)′

. The relations which are stated above can be extracted from Shah et al. (2017).

Lemma 2: If n → ∞, test statistic Bn converges to a non-central chi-square distribution. This
distribution has k − 1 degrees of freedom and a non-centrality parameter denoted as ∆ = ξ∗Ωξ∗.

For an estimator α̂∗ of the parameter α, the asymptotic distribution of the quantity
√
n(α̂∗−α)

under the Kn is described as follows

F (x) = lim
n→∞

P
[√

n (α̂∗ −α) ≤ x|Kn

]
, (3.6)

If the limit exists, the asymptotic distributional bias (ADB) of an estimator α̂∗ in relation to F (x)

is defined as follows.

b (α̂∗) = lim
n→∞

E
[√

n (α̂∗ −α)
]
=

∫
· · ·
∫

xdF (x) . (3.7)

In order to compare the bias of different estimators effectively, we apply a quadratic transforma-
tion to the bias defined in (3.7). This introduces the concept of asymptotic distributional quadratic
bias (AQDB), which allows us to evaluate the performance of these estimators in a more insightful
manner.

aqb (α̂∗) = [b (α̂∗)]
′
Ω−1 [b (α̂∗)] . (3.8)

In general, the estimators that utilize preliminary testing and shrinkage techniques often exhibit bias.
In next subsection, we will discuss the asymptotic quadratic biases linked to the proposed estimators.

3.2 Asymptotic biases

Theorem 1. In the context of local alternatives and the standard conditions required for Robust
estimation, we have

aqb
(
α̂RR

)
= ∆,

aqb
(
α̂RLS

)
= δ2∆,

aqb
(
α̂RPT

)
= ∆

[
Gk+1

(
χ2
k−1,α∗ ; ∆

)]2
aqb

(
α̂RSP

)
= δ2∆

[
Gk+1

(
χ2
k−1,α∗ ; ∆

)]2
aqb

(
α̂RJS

)
= (k − 3)

2
∆
[
E
(
χ−2
k+1 (∆)

)]2
aqb

(
α̂RPJ

)
= ∆

[
Gk+1 (k − 3;∆) + (k − 3)E

[
χ−2
k+1 (∆) I

(
χ−2
k+1 (∆) > (k − 3)

)]]2
,

where Gν (·; ∆) represents the cumulative distribution function (CDF) of a non-central chi-square
distribution, which has ν degrees of freedom and a non-centrality parameter ∆.

Proof. The detail proofs of these relation can be found in the similar way as in Shah et al. (2017)
and Aldeni et al. (2023).



72 Makhdoom et al.

3.3 Asymptotic distributional quadratic risk (ADQR)

According to Ahmed (2014), the asymptotic distributional quadratic risk (ADQR) of an estimator
illustrates the behavior of estimation error as the sample size grows. The ADQR for an estimator
α̂∗ can be expressed as follows:

R
(
α̂∗,M

)
= tr

[
MΣ

(
α̂∗
)]

, (3.9)

where Σ
(
α̂∗
)

denotes the asymptotic mean-squared error matrix (AMSEM) of α̂∗. This matrix is
defined as follows::

Σ
(
α̂∗
)
= lim

n→∞
E
[√

n (α̂∗ −α)
√
n (α̂∗ −α)

′]
=

∫
· · ·
∫

xx
′
dF (x) . (3.10)

Now, we examine the asymptotic distributional quadratic risk (ADQR) for the proposed estimators
outlined in the following theorem.

Theorem 2. The expression for the ADQR of the estimators, when we take into account the sequence
of local alternatives with M = Σ−1, is given as follows

R
(
α̂UR;Σ−1

)
= k,

R
(
α̂RR;Σ−1

)
= 1 +∆,

R
(
α̂RLS ;Σ−1

)
= k − δ (2− δ) (k − 1) + δ2∆,

R
(
α̂PTR;Σ−1

)
= k − (k − 1)Gp+1

(
χ2
k−1,α∗ ; ∆

)
+∆

[
2Gk+1

(
χ2
k−1,α∗ ; ∆

)
−Gk+3

(
χ2
k+1,α∗ ; ∆

)]
R
(
α̂RSP ;Σ−1

)
= k − δ (2− δ) (k − 1)Gk+1

(
χ2
k−1,α∗ ; ∆

)
+ δ∆

[
2Gk+1

(
χ2
k−1,α∗ ; ∆

)
− (2− δ)Gk+3

(
χ2
k−1,α∗ ; ∆

)]
R
(
α̂RJS ;Σ−1

)
= k − (k − 1) (k − 3)

{
2E
[
χ−2
k+1 (∆)

]
− (k − 3)E

[
χ−4
k+1 (∆)

]}
+ (k − 3) (k + 1)∆E

[
χ−4
k+3 (∆)

]
R
(
α̂RPJ ;Σ−1

)
= R

(
α̂RJS ;Σ−1

)
− (k − 1)E

{[
1− (k − 3)χ−2

k+1 (∆)
]2

I
(
χ2
k+1 (Ψ) < (k − 3)

)}
+∆

[
2E
{[
1− (k − 3)χ−2

k+1 (∆)
]
I
(
χ2
k+1 (∆) < (k − 3)

)}]
− E

{[
1− (k − 3)χ2

k+1 (∆)
]2

I
(
χ2
k+1 (∆) < (k − 3)

)}
.

Proof. For detailed proof see the methodologies of Shah et al. (2017) and Aldeni et al. (2023).

4 Numerical Evaluation

In this section, the performance of the suggested estimators is presented through simulation and real
life data application.
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4.1 Simulation

The simulated data is generated through R programming language utilizing rbs function from the
bsgof package with different sample sizes i.e., ni = 30, 50, and 100 for multiple samples k = 4, 6, 8

and 10. We set α = 1 and β = 1, following the earlier work by Makhdoom et al. (2024a). The entire
simulation scheme replicated R⋆ = 10, 000. We calculated simulated relative efficiency (SRE) to
assess the performance of recommended estimators. The SRE is being defined here as

SRE
(
α̂UR : α̂∗) = SR

(
α̂UR

)
SR (α̂∗)

,

where α̂∗ is any of the recommended estimator in section of improved estimation strategies. If the
simulated relative efficiency (SRE) is greater than 1, it indicates that α̂∗ is more efficient than α̂UR

and same for scale parameter. We also introduced a shift parameter λ = (α−α0)
′
(α−α0) which

measures the distance from the assumed non-sample information (NSI) α0 . In our simulation ex-
periments, we tested different shrinkage intensity factor δ = 0.25, 0.50, 0.75 and significance levels
α∗ = 0.01, 0.05, 0.10. We examined a wide variety of combinations for ni, k, δ, and α∗. However,
to keep the presentation straightforward, we have focused on the results for α∗ = 0.01, 0.05 with
k = 4, 6 and δ = 0.50. The performance of the suggested estimators in terms of SRE can be found
in the following tables.
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Figure 1: Simulated Relative Efficiency of the estimators k = 4
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Table 1: SREs of the estimators relative to α̂UR for δ = 0.5, α = 1, β = 1, ni = 30, 50, 100, k = 4

α̂RPT α̂RSP

ni λ α̂RR α̂RLS α∗ = 0.01 α∗ = 0.05 α∗ = 0.01 α∗ = 0.05 α̂RJS α̂RPJ

50

0.00 2.8125 2.0579 2.6259 2.1718 1.9671 1.7407 1.2981 1.4751

0.05 0.7787 1.3615 0.7697 0.7871 1.1922 1.0684 1.0884 1.1256

0.10 0.4721 1.3615 0.5194 0.6160 0.8981 0.8792 1.0130 1.0355

0.20 0.2753 0.7428 0.4137 0.6074 0.7167 0.8202 0.9911 0.9930

0.30 0.1968 0.5781 0.4329 0.6919 0.6997 0.8568 0.9836 0.9838

0.50 0.1291 0.4116 0.5852 0.8547 0.7901 0.9348 0.9735 0.9735

1.00 0.0777 0.2638 0.9201 0.9933 0.9649 0.9970 0.9673 0.9673

2.00 0.0481 0.1714 1.0000 1.0000 1.0000 1.0000 0.9669 0.9669

3.00 0.0380 0.1376 1.0000 1.0000 1.0000 1.0000 0.9670 0.9670

4.00 0.0320 0.1163 1.0000 1.0000 1.0000 1.0000 0.9631 0.9631

100

0.00 3.7139 2.2699 3.2851 2.5810 2.1340 1.8751 1.3495 1.5365

0.05 0.2708 0.7668 0.4564 0.6524 0.7452 0.8460 1.0136 1.0144

0.10 0.1476 0.4823 0.6283 0.8740 0.8221 0.9454 1.0005 1.0005

0.20 0.1043 0.3622 0.8512 0.9675 0.9353 0.9861 1.0008 1.0008

0.30 0.0631 0.2294 0.9955 0.9984 0.9981 0.9993 0.9944 0.9944

0.50 0.0489 0.1823 0.9993 0.9993 0.9997 0.9997 0.9962 0.9962

1.00 0.0385 0.1449 1.0000 1.0000 1.0000 1.0000 0.9936 0.9936

2.00 0.0238 0.0916 1.0000 1.0000 1.0000 1.0000 0.9945 0.9945

3.00 0.0187 0.0727 1.0000 1.0000 1.0000 1.0000 0.9946 0.9946
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Figure 2: Simulated Relative Efficiency of the estimators for k = 6



Advancements in Shrinkage Estimation Utilizing Robust Parameters. . . 75

Table 2: SREs of the estimators relative to α̂UR for δ = 0.5, α = 1, β = 1 ni = 30, 50, 100, k = 6

α̂RPT α̂RSP

ni λ α̂RR α̂RLS α∗ = 0.01 α∗ = 0.050 α∗ = 0.01 α∗ = 0.05 α̂RJS α̂RPJ

50

0.00 3.5560 2.3406 3.1989 2.6038 2.1995 1.9467 1.8151 2.1833

0.05 1.0044 1.6080 0.9647 0.9373 1.4071 1.2266 1.2637 1.3448

0.10 0.6124 1.2664 0.6340 0.6997 1.0719 0.9850 1.1280 1.1555

0.20 0.3476 0.8926 0.4584 0.6157 0.8054 0.8537 1.0185 1.0255

0.30 0.2478 0.6983 0.4384 0.6625 0.7353 0.8548 0.9746 0.9763

0.50 0.1634 0.5078 0.5499 0.8339 0.7802 0.9290 0.9460 0.9463

1.00 0.0933 0.3137 0.8800 0.9860 0.9486 0.9940 0.9097 0.9097

2.00 0.0556 0.1978 0.9978 1.0000 0.9991 1.0000 0.8987 0.8987

3.00 0.0436 0.1575 1.0000 1.0000 1.0000 1.0000 0.8914 0.8914

4.00 0.0363 0.1316 1.0000 1.0000 1.0000 1.0000 0.8761 0.8761

100

0.00 4.4373 2.4870 3.9074 3.01322 2.3442 2.0564 1.8915 2.3229

0.05 0.6297 1.3295 0.6484 0.7156 1.0664 0.9846 1.1517 1.1784

0.10 0.3492 0.9179 0.4990 0.6784 0.8187 0.8813 1.0525 1.0559

0.20 0.1894 0.5866 0.6209 0.8591 0.8293 0.9420 0.9955 0.9955

0.30 0.1327 0.4384 0.8231 0.9598 0.9250 0.9834 0.9799 0.9799

0.50 0.0844 0.2939 0.9826 1.0000 0.9928 1.0000 0.9574 0.9574

1.00 0.0482 0.1763 1.0000 1.0000 1.0000 1.0000 0.9474 0.9474

2.00 0.0288 0.1078 1.0000 1.0000 1.0000 1.0000 0.9359 0.9359

3.00 0.0214 0.0813 1.0000 1.0000 1.0000 1.0000 0.9349 0.9349

4.00 0.0178 0.0683 1.0000 1.0000 1.0000 1.0000 0.9356 0.9356

• The performance of the α̂RR estimator is outstanding as the sample size and the number of
variables k increase particularly when λ is exactly zero. However, as λ moves away from
zero, the Simulated Relative Efficiency (SRE) of α̂RR decreases significantly, approaching
zero for all positive values of λ. In simpler terms, the α̂RR estimator performs exceptionally
well when the shift parameter is exactly zero, but its effectiveness declines rapidly as the shift
parameter deviates from this point.

• The Simulated Relative Efficiency (SRE) for the α̂RLS estimator also approaches zero, but at
a slower rate compared to α̂RR. The linear shrinkage estimator performs better and is more
comparable in terms of relative efficiency with the other estimators, particularly for small
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values of shrinkage intensity.

• The α̂RPT is better performer relative to α̂RSP for λ = 0. As we move, λ > 0 the α̂RSP is
better for all values of λ relative to α̂RPT . The α̂RPT is best as compared to α̂RSP for small
region, not uniformly. The SRE of pretest estimator and shrinkage preliminary test estimator
for some points become inferior to α̂URR, consequently SRE reaches to 1 for both k = 4, 8

for all sample sizes.

• The performance of the α̂RJS and α̂RPJ estimators is superior compared to the benchmark
α̂UR estimator for small values of λ. For the higher values of λ, both James Stein estimators
become vulnerable as compared to α̂UR.

4.2 Real life application

The real life data example about the failure times is analyzed in this subsection using bootstrapping
re-sampling methods.

Machine valves

This dataset contains machine valve failure times from an industrial process, organized into ni = 30

samples, each with k = 5. We are analyzing this data, taken from Leiva (2015). In order to explore
ways to account for the shape parameter α and improve the estimation of the BirSau distribution
we apply our proposed improved estimation methodology to this data, generating bootstrap samples
for the actual data sets. We analyzed the mentioned data using our proposed enhanced estimation
methodology, generating bootstrap samples from the actual data set.

• We carried out an experiment by starting with an initial sample of 50 observations, referred to
as n0 = 50. We then repeated this process 10, 000 times to generate multiple data sets.

• For each of bootstrap samples, we computed an unrestricted estimator along with a test statis-
tic known as Bn.

• We calculated the RLS, the RPT estimator and RSP estimator after fixing the shrinkage inten-
sity δ = 0.5.

• Finally, we calculated the SRE for each of these three estimators across all bootstrap samples.
The SRE serves as a measure to help us understand how well each estimator performs in
comparison to the others.

• In summary, we performed a thorough statistical analysis that included re-sampling tech-
niques, parameter estimation, and performance evaluation to extract meaningful insights from
the real data.

The estimators α̂RJS and α̂RPJ are more efficient than their competitors, exhibiting the highest
relative efficiency. Our simulations showed that α̂RSP outperformed α̂RPT at the same significance
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Table 3: Simulated relative efficiencies of the estimators relative to α̂UR = 0.3005

α̂RPT α̂RSP

n0 δ α̂RRE α̂RLS α∗ = 0.01 α∗ = 0.05 α∗ = 0.01 α∗ = 0.05 α̂RJS α̂RPJ

50 0.5 0.2851 0.9886 0.5368 0.7598 0.8845 0.9236 1.2587 1.6854

level α∗ with a shrinkage intensity factor of δ = 0.5. This example highlights how improved
estimation methods for the shape parameter α can be beneficial when combining multiple samples
from the BirSau distribution.

5 Conclusion

In this study, we implemented advanced estimation techniques, including pretest, shrinkage pretest,
and Stein-type methods, across k populations in a large sample context for the shape parameter of
the BirSau distribution. We introduced six improved estimation methodologies for the shape pa-
rameter BirSau distribution and compared their asymptotic properties with the unrestricted robust
estimator. Additionally, we derived a large sample test statistic based on the normalized distance be-
tween the unrestricted and restricted estimators and performed Monte Carlo simulations to support
our theoretical findings. Our results indicate that the restricted estimator outperformed other estima-
tors for the true parameter value, particularly when the common mean hypothesis holds. The pretest
estimators also showed strong performance, surpassing the restricted and Stein-type estimators in
certain regions of the parameter space, although they eventually lagged behind the unrestricted es-
timator. Notably, Stein-type estimators demonstrated impressive performance, especially for small
values of the shift parameter. The simulation results, along with graphical representations of the
estimators’ performance, validate our asymptotic theoretical conclusions. We recommend that if re-
searchers are uncertain about non-sample information, they should consider using the positive-part
Stein estimator, especially when the number of populations k ≥ 4. For smaller dimensions (k ≤ 3),
the shrinkage pretest estimator is the preferred choice.
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