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SUMMARY

The estimation of finite population mean is always of interest for different sampling tech-
niques and it is the basic measure to find from sample to estimate one the most applicable
central tendency. In literature, under simple random sampling without replacement people
used auxiliary variable, its rank or empirical distribution function in different estimation
approaches such as regression, ratio, exponential or combination of these to improve the
efficiency of the estimator. In literature, either rank or empirical distribution function have
been used while constructing the estimator because both cannot be used due to the fact
that empirical distribution function of a variable is based on its rank, therefore, both are
perfectly correlated. In this paper, our argument is that the dual use is not effective rather
an additional independent auxiliary variable may be effective for efficiency improvement.
To investigate this, we proposed difference-cum-exponential estimator using two auxiliary
variables and also the dual use of one of the auxiliary variable in the form of its empiri-
cal distribution function. We also deduced some special cases of the proposed estimator.
These special cases will help us to investigate the argument. The mean square errors of
the proposed estimator and its special cases are derived. The proposed estimator, its spe-
cial cases and potential existing estimators are compared using empirical study based on
real life population for numerical investigation of the argument. The simulation study is
also conducted for symmetric and skewed populations to asses the sampling stability of the
competitive estimators using empirical mean square error and also it will help to further
investigate the argument.
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1 Introduction

Sampling theory is a fundamental aspect of statistical research that enables researchers to draw infer-
ences about population parameters from data collected from a finite population. The incorporation
of auxiliary variables have been widely recognized as a valuable technique to improve the precision
of estimators. Traditional auxiliary variables are typically used to reduce sampling errors and en-
hance the efficiency of estimators. However, recent research has explored alternative approaches,
such as the utilization of rank or the empirical distribution function as a dual auxiliary variable, to
further enhance the estimation process.

The empirical distribution function (EDF) is a non-parametric estimator of the cumulative dis-
tribution function, based on the observed values of the auxiliary variable in the sample. It has been
applied in various statistical methods, such as hypothesis testing, goodness-of-fit tests and bootstrap
procedures. The empirical distribution function is particularly useful when the underlying distri-
bution of the auxiliary variable is unknown or difficult to model accurately. Several related papers
have been investigated those used the empirical distribution function as a dual auxiliary variable in
the context of survey sampling and finite population studies. Mak and Kuk (1993) proposed es-
timators for the population parameter using auxiliary variable and demonstrating its effectiveness
in reducing bias and improving efficiency. Pandey et al. (2021) extended the application of auxil-
iary variable to address the issue of non-response in survey sampling, it has potential in handling
missing data and improving estimations in the presence of non-response. Zaman and Kadilar (2021)
introduced regression-type estimators for the finite population mean, leveraging the information em-
bedded in empirical distribution function to enhance estimation precision. Singh and Solanki (2013)
were among the early researchers to explore the utilization of the rank as a dual auxiliary variable
in ratio type estimators. They proposed a novel rank-based ratio estimator for estimating the finite
population mean. The rank-based ratio estimator is more precised in comparison to traditional ra-
tio estimators using conventional auxiliary variables. Kadilar and Cingi (2006) explored the dual
use of the rank of the auxiliary variable and proposed a hybrid estimator that combined ratio and
regression estimators. Moreover, Haq et al. (2017) introduced a rank-based calibration estimator,
leveraging the rank of the auxiliary variable to adjust estimations for finite population mean. Hussain
et al. (2022) proposed a difference-cum-exponential estimator using empirical distribution function,
which achieved more efficiency compared to conventional estimators.

The above researches claim that the dual use of auxiliary variables in improving the efficiency,
but we argue otherwise. Our argument is based on the fact that the dual use of auxiliary vari-
ables may be ineffective due to redundancy, increased dependency, and added complexity. Highly
correlated auxiliary variables often provide overlapping information, limiting efficiency gains. In
contrast, a well-chosen independent auxiliary variable may offer greater efficiency without unnec-
essary complexity. Therefore, we proposed difference-cum-exponential estimator that utilizes two
auxiliary variables X and Z and the dual use of X only in the form of its empirical distribution
function. We will deduce the special cases from this estimator (i) using on X , (ii) using X with
its empirical distribution function and (iii) using X and Z. The pairwise comparison between these
estimators and with existing estimators will help us to investigate our argument properly.

After preliminary section, in section two we provide latest simple and shrinkage estimators avail-
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able in literature along with their mean square errors. In section three, we proposed shrinkage
difference-cum-exponential type estimator using empirical distribution function as dual of auxiliary
variable and derived its minimum mean square error (MSE) by minimizing the optimizing constants.
The special cases of the estimator are also discussed in this section. Simulation study in given in
section 5, application of the proposed estimator to real-life data sets is in section six, and finally
section seven concludes the work and discusses potential future research directions.

2 Preliminaries

In a sample survey we decide on certain properties that we attempt to measure and record for ev-
ery unit that comes into the sample. These properties of the units are referred to as characteristics
or, more simply, as items. The values obtained for any specific item y in the N units that com-
prise the population are denoted by y1, y2, . . . , yN · The corresponding values for the units in the
sample are denoted by y1, y2, . . . , yn. Suppose the characteristic y is study variable and x and
z are two auxiliary variables and it is assumed that both auxiliary variables have high correlation
with study variable. Let the values of x for N units in the population are x1, x2, . . . , xN and
the corresponding values for the units in the sample are denoted by x1, x2, . . . , xn. Moreover, let
fx1 , fx2 , fx3 , . . . , fxN

denote the values of empirical distribution function of auxiliary variable Sim-
ilarly the values of x for N units in the population are z1, z2, . . . , zN and the corresponding values
for the units in the sample are denoted by z1, z2, . . . , zn. The population and sample characteristics
for study and auxiliary variables are listed in Table A1 and given in Appendix .

In order to derive MSE of estimators, we define the following errors terms. Let

ϵ0 = ȳ − Ȳ , ϵ1 = x̄− X̄, ϵ3 = f̄x − F̄x and ϵ2 = z̄ − Z̄. (2.1)

Suppose Ȳ , X̄ and Z̄ are population mean of Y , X and Z respectively, Cy , Cx and Cz are population
coefficient of variations of Y , X and Z respectively, ρyx, ρyz and ρxz are population coefficient of
correlations Y and X , Y and Z, and X and Z respectively, and τ = (N−n)/Nn is finite population
correction factor.

Then under simple random sampling without replacement, we have

E(ϵ0) = E(ϵ1) = E(ϵ2) = E(ϵ3) = 0,

E(ϵ20) = τ Ȳ 2C2
y , E(ϵ21) = τX̄2C2

x, E(ϵ23) = τF̄ 2
xC

2
Fx

, E(ϵ22) = τZ̄2C2
z

E(ϵ0ϵ1) = τ Ȳ X̄CyCxρyx, E(ϵ0ϵ3) = τ Ȳ F̄xCyCFx
ρyFx

,

E(ϵ0ϵ2) = τ Ȳ Z̄CyCzρyz, E(ϵ1ϵ3) = τX̄F̄xCxCFxρxFx ,

E(ϵ1ϵ2) = τX̄Z̄CxCzρxz, E(ϵ2ϵ3) = τF̄xZ̄CFx
CzρFxz.

(2.2)
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3 Some Known Estimators

In this section, we have provided the some available estimators already used for estimating the finite
population mean. The variance and MSEs of these estimators are given up-to first order approxima-
tion.

The mean per unit estimator based on simple random sampling without replacement is

t1 = ȳ =

n∑
i=1

yi/n with MSE(t1) = τS2
y = τ Ȳ 2C2

y . (3.1)

Cochran (1953) suggested the following regression estimator for population mean Ȳ using an aux-
iliary variable X

t2 = ȳ + βyx(X̄ − x̄) with MSE(t2) = τ Ȳ 2C2
y(1− ρ2yx). (3.2)

The difference estimator, suggested by Hansen et al. (1942) and independently Tripathi (1970) is

t3 = ȳ − d(x̄− X̄), (3.3)

where d is optimizing constant and its optimum value which minimizes MSE is βyx. The minimum
MSE of t3 is same as for t2.

Searls (1964) presented the following modified version of mean per unit estimator and named as
shrinkage estimator:

t4 = kȳ (3.4)

where k is a constant, which is determined by minimizing mean square error of t4. The optimum
value of k is (1 + τC2

y)
−1 and then the minimum MSE of t4 is

MSE(t4) =
Ȳ 2MSE(t1)

Ȳ 2 +MSE(t1)
.

Riaz et al. (2014) proposed the following estimator

t5 = d1ȳ + d2(X̄ − x̄), (3.5)

where d1 and d2 are optimizing constants and the optimum values of d1 and d2 which minimizes the
MSE are d1 = Ȳ 2(Ȳ 2 +MSE(t3))

−1 and d2 = βyxd1 respectively. Then the minimum MSE is

MSE(t5) =
Ȳ 2MSE(t3)

Ȳ 2 +MSE(t3)
.

Yaqoob, et al. (2017) proposed the following estimator using rank of auxiliary variable along with
auxiliary variable itself and called it dual use of auxiliary variable

t6 = ȳ + π1(X̄ − x̄) + π2(R̄x − r̄x), (3.6)
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where π1 and π2 are optimizing constants and the optimum values of π1 and π2 are

π1 =
Ȳ

X̄
× βyx − βyRx

βxRx

1− ρ2xRx

, π2 =
Ȳ

R̄x
× βyRx

− βyRx
βxRx

1− ρ2xRx

.

or we may write as

π1 = (−1)1+1 Ȳ

X̄

Cy

Cx

|Ryx|yxRx

|R|xRx

, π2 = (−1)2+1 Ȳ

R̄x

Cy

CRx

|RyRx |yxRx

|R|xRx

,

where

|RxRx
| =

∣∣∣∣∣∣ 1 ρxRx

ρxRx
1

∣∣∣∣∣∣ , |Ryx|yxRx
=

∣∣∣∣∣∣ ρyx ρxRx

ρyRx
1

∣∣∣∣∣∣ , |RyRx
|yxRx

=

∣∣∣∣∣∣ ρyx 1

ρyRx
ρxRx

∣∣∣∣∣∣ .
Then the minimum MSE of t6 is

MSE(t6) = τ Ȳ 2C2
y(1− ρ2y.xRx

), where ρ2y.xrx =
ρ2yx + ρ2yRx

− 2ρyxρyRxρxRx

1− ρ2xRx

.

Hussain et al. (2022) also proposed the following class of regression-cum-exponential estimator
using empirical distribution function as a dual use of auxiliary variable as:

t7 =
(
λ1Ŷ + λ2(X̄ − ˆ̄X) + λ3(F̄ − ˆ̄F )

)
exp

(
a(X̄ − ˆ̄X)

a(X̄ + ˆ̄X) + 2b

)
, (3.7)

where λ1, λ2, and λ3 are the optimizing constants which minimize the MSE of the proposed class.
Moreover, a and b are generalising constants to produced various members of the suggested class.
Hussain et al. (2022) produced ten members of the class (named here t71, t72, . . . , t80) for different
values of a and b, e.g. population correlation coefficient, moments ratio, coefficient of variation,
population total or any suitable numeric value. The optimum values λ1, λ2, and λ3 and expression of
minimum MSE for (3.7) given by Hussain et al. (2022) are complex in writing, therefore, following
Ahmad(2008), we reproduced their expressions as:

λ1 =

[
1 + τC2

y

|R|yxFx

|R|xFx

]−1

,

λ2 = λ1

[
(−1)1+1 Ȳ

X̄

Cy

Cx

|Ryx|yxFx

|R|xFx

−K

]
,

λ3 = λ1

[
(−1)2+1 Ȳ

F̄x

Cy

CFx

|RyFx
|yxFx

|R|xFx

]
, and

MSE(t7) =
τ Ȳ 2C2

y

(
1− ρ2y.xFx

)
1 + τC2

y

(
1− ρ2y.xFx

) =

[
τ Ȳ 2C2

y

|R|yxFx

|R|xFx

] [
1 + τC2

y

|R|yxFx

|R|xFx

]−1

, (3.8)

where K = a/[2(aX̄ + b)]. We can see that for any value of a and b the theoretical MSE is
identical and it is evident from the empirical study given by Hussain et al. (2022) that MSEs of all
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members are same for a given population. The utility of these members is based on the availability
of population parameters used while producing the members. Therefore, there is need to conduct
simulation study to find empirical standard error to know the sampling stability of all members. In
simulation study the performance will vary and one can know the best member of the class and
then a specific member can be suggested for practical use. We have included all members in our
simulation study.

4 Proposed Difference-cum-Exponential Type Estimator
In order to develop an estimator for study variable Y , we propose the following difference-cum-
exponential type estimator using two auxiliary variables X and Z and dual use of auxiliary variable
X in the form of empirical distribution function Fx. Later on we will define special cases of this
estimator with and without Fx to investigate the role of dual use of auxiliary variable in improving
the efficiency of estimator and similarly with and with out Z for the role of additional auxiliary
variable

txzF =
[
γ1 ȳ + π1(X̄ − x̄) + π2(Z̄ − z̄)

]
exp

(
π3

F̄x − f̄x
F̄x + f̄x

)
, (4.1)

where γ1, π1, π2 and π3 are optimizing constants to be obtained by minimizing MSE.
We can write (4.1) as

txzF =
[
γ1
{
ȳ + π∗

1(X̄ − x̄) + π∗
2(Z̄ − z̄)

}]
exp

(
π3

F̄x − f̄x
F̄x + f̄x

)
,

where π∗
1 = π1/γ1 and π∗

2 = π2/γ1.
Let

ˆ̄Y ∗ =
[
ȳ + π∗

1(X̄ − x̄) + π∗
2(Z̄ − z̄)

]
exp

(
π3

F̄x − f̄x
F̄x + f̄x

)
. (4.2)

Therefore,
ˆ̄YRcE = γ1

ˆ̄Y ∗ (4.3)

In order to find MSE of ˆ̄YReg , first we need to find MSE( ˆ̄Y ∗). Therefore, considering (4.2) and
using (2.1), we can write

ˆ̄Y ∗ =
[
Ȳ + ϵ0 − π∗

1ϵ1 − π∗
2ϵ2
]
(1− π3

1

2F̄x
ϵ3),

As the ˆ̄Y ∗ is biased, hence to the first order of approximation, the MSE can be written as:

MSE( ˆ̄Y ∗) = E( ˆ̄Y ∗ − Ȳ )2 = E(ϵ0 − π∗
1ϵ1 − π∗

2ϵ2 − π3
Ȳ

2F̄x
ϵ3)

2. (4.4)

For optimum values of π∗
1 , π∗

2 and π3, we need to partially differentiate (4.4) with respect to π∗
1 , π∗

2

and π3 then we will have the following three normal equations.

E(ϵ0ϵ1)− π∗
1E(ϵ21 − π∗

2E(ϵ1ϵ2)− π3
Ȳ

2F̄x
E(ϵ1ϵ3) = 0 (4.5)
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E(ϵ0ϵ2)− π∗
1E(ϵ1ϵ2)− π∗

2E(ϵ22)− π3
Ȳ

2F̄x
E(ϵ2ϵ3) = 0 (4.6)

Ȳ

2F̄x

(
E(ϵ0ϵ3)− π∗

1E(ϵ1ϵ3)− π∗
2E(ϵ2ϵ3)− π3

Ȳ

2F̄x
E(ϵ23)

)
= 0. (4.7)

Solving the above normal equations and using Result 3(ii) of Ahmad (2008), we can write the
optimum values of π∗

1 , π∗
2 and π3 as:

π∗
1opt =

(−1)1+1 Ȳ Cy |Ryx|yxzFx

X̄ Cx |R|xzFx

, π∗
2opt =

(−1)2+1Ȳ |Ryz|yxzFx

Z̄ |R|xzFx

and π3opt =
2 (−1)3+1 Cy|RyFx |yxzFx

CFx
|R|xzFx

,

where

|RxzFx
| =

∣∣∣∣∣∣∣∣
1 ρxz ρxFx

ρxz 1 ρzFx

ρxFx
ρzFx

1

∣∣∣∣∣∣∣∣ , |Ryx|yxzFx
=

∣∣∣∣∣∣∣∣
ρyx ρxz ρxFx

ρyz 1 ρzFx

ρyFx
ρzFx

1

∣∣∣∣∣∣∣∣ ,

|Ryz|yxzFx
=

∣∣∣∣∣∣∣∣
ρyx 1 ρxFx

ρyz ρxz ρzFx

ρyFx
ρxFx

1

∣∣∣∣∣∣∣∣ , |RyFx |yxFx =

∣∣∣∣∣∣∣∣
ρyx 1 ρxz

ρyz ρxz 1

ρyFx
ρxFx

ρzFx

∣∣∣∣∣∣∣∣ .
Now using normal equations (4.5), we can write (4.4) as

MSE( ˆ̄Y ∗) =E(ϵ0(ϵ0 − π∗
1ϵ1 − π∗

2ϵ2 − π3
Ȳ

2F̄x
ϵ3)) (4.8)

MSE( ˆ̄Y ∗) = E(ϵ20)− π∗
1E(ϵ0ϵ1)− π∗

2(ϵ0ϵ2)− π3
Ȳ

2F̄x
E(ϵ0ϵ3)

= τ Ȳ 2C2
y − π∗

1τ Ȳ X̄CyCxρyx − π∗
2τ Ȳ Z̄CyCzρyz − π3

Ȳ

2F̄x
τ Ȳ F̄xCyCFx

ρyFx
(using Eq. (2.2))

= τ Ȳ 2C2
y − (−1)1+1 Ȳ

X̄

Cy

Cx

|Ryx|yxzFx

|R|xzFx

τ Ȳ X̄CyCxρyx − (−1)2+1 Ȳ

Z̄

Cy

Cz

|Ryz|yxzFx

|R|xzFx

τ Ȳ Z̄CyCzρyz

− (−1)3+1 2Cy

CFx

|Ryz|yxzFx

|R|xzFx

Ȳ

2F̄x
τ Ȳ F̄xCyCFx

ρyz (using Eqs. (3.7)-(3.9))

= τ Ȳ 2C2
y − τ Ȳ 2C2

yρyx
|Ryx|yxzFx

|R|xzFx

+ τ Ȳ 2C2
yρyz

|Ryz|yxzFx

|R|xzFx

− τ Ȳ 2C2
yρyFx

|RyFx
|yxzFx

|R|xzFx

=
τ Ȳ 2C2

y

|R|xzFx

(|R|xzFx
− ρyx|Ryx|yxzFx

+ ρyz|Ryz|yxzFx
− ρyFx

|RyFx
|yxzFx

)

= τ Ȳ 2C2
y

|R|yxzFx

|R|xzFx

= τ Ȳ 2C2
y(1−RT

yxzFx
R−1

xzFx
RyxzFx

),
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where

RyxFx =

 ρyx

ρyz

ρyFx

 and |R|yxFx =

∣∣∣∣∣∣∣∣∣∣∣

1 ρyx ρyz ρyFx

ρyx 1 ρxz ρxFx

ρyz ρxz 1 ρzFx

ρyFx
ρxFx

ρzFx
1

∣∣∣∣∣∣∣∣∣∣∣
.

Now using Result 2 of Ahmad (2008), we have

MSE( ˆ̄Y ∗) = τ Ȳ 2C2
y

(
1− ρ2y.xzFx

)
.

From Theorem 2.1 of Ahmad and Hanif (2016), we can write

γ1opt =
Ȳ 2

Ȳ 2 +MSE( ˆ̄Y ∗)
=
[
1 + τC2

y

(
1− ρ2y.xzFx

)]−1
=

[
1 + τC2

y

|R|yxzFx

|R|xzFx

]−1

.

Now π1opt = π∗
1optγ1opt , π2opt = π∗

2optγ1opt and π3opt = π∗
3optγ1opt . Again using Theorem 2.1 of

Ahmad and Hanif (2016), we can write

MSEopt(txzF ) =
Ȳ 2MSE( ˆ̄Y ∗)

Ȳ 2 +MSE( ˆ̄Y ∗)
=

τ Ȳ 2C2
y

(
1− ρ2y.xzFx

)
1 + τC2

y

(
1− ρ2y.xzFx

)
=

[
τ Ȳ 2C2

y

|R|yxzFx

|R|xzFx

] [
1 + τC2

y

|R|yxzFx

|R|xzFx

]−1

. (4.9)

4.1 Special cases

In this section, we define three different estimators based on the available auxiliary information.
Each estimator incorporates different combinations of the auxiliary variable X , its rank Rx, and its
empirical distribution function Fx to investigate the role of dual use of auxiliary variable.

4.1.1 Estimator Using X

tx =
[
γ1 ȳ + π1(x̄− X̄)

]
, (4.10)

The π1opt = π∗
1optγ1opt where,

π∗
1opt = (−1)1+1 Ȳ

X̄

Cy

Cx

|Ryx|yx
|R|x

and γ1opt =

[
1 + τC2

y

|R|yx
|R|x

]−1

.

The corresponding MSE is given by

MSEopt(tx) =

[
τ Ȳ 2C2

y

|R|yx
|R|x

] [
1 + τC2

y

|R|yx
|R|x

]−1

. (4.11)
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4.1.2 Estimator Using X and Z

txz =
[
γ1 ȳ + π1(X̄ − x̄) + π3(Z̄ − z̄)

]
, (4.12)

The π1opt = π∗
1optγ1opt , π3opt = π∗

3optγ1opt , where the optimum values of π1 and π3 are given
by

π∗
1opt = (−1)1+1 Ȳ

X̄

Cy

Cx

|Ryx|yxZ
|R|xz

and π∗
3opt = (−1)3+1 Ȳ

Z̄

Cy

CZ

|Ryz|yxz
|R|xz

. (4.13)

an the optimum value of γ1 is

γ1opt =

[
1 + τC2

y

|R|yxZ
|R|xZ

]−1

.

The corresponding MSE is given by

MSEopt(txz) =

[
τ Ȳ 2C2

y

|R|yxz
|R|xz

] [
1 + τC2

y

|R|yxz
|R|xz

]−1

. (4.14)

4.1.3 Estimator Using X and EDF Fx

txF =
[
γ1 ȳ + π1(X̄ − x̄)

]
exp

(
π4

F̄x − f̄x
F̄x + f̄x

)
, (4.15)

The π1opt = π∗
1optγ1opt , π4opt = π∗

4optγ1opt , where the optimum values of π1 and π4 are given by

π∗
1opt = (−1)1+1 Ȳ

X̄

Cy

Cx

|Ryx|yxFx

|R|xFx

and π∗
4opt = (−1)4+1 2Cy

CFx

|RyFx
|yxFx

|R|xFx

. (4.16)

an the optimum value of γ1 is

γ1opt =

[
1 + τC2

y

|R|yxFx

|R|xFx

]−1

.

The corresponding MSE is given by

MSEopt(txF ) =

[
τ Ȳ 2C2

y

|R|yxFx

|R|xFx

] [
1 + τC2

y

|R|yxFx

|R|xFx

]−1

. (4.17)

5 Simulation Study

We have conducted a simulation study to compare the performance of the proposed estimator, its spe-
cial cases and estimators given in Section 2 to investigate the role of dual use of auxiliary variableX
and independent auxiliary variable Z, on the basis of their empirical MSE. For this purpose, we
used an arbitrary population of size N (= 10000). As we are dealing with two-auxiliary vari-
ables, the true values of two auxiliary variables X and Z are generated, where X ∼ N(10, 2)
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and Z ∼ lognorm(1, 0.5). The values of empirical distribution function of X are obtained using R
function ecfd() and denoted by Fx. The population values of the study variable are generated using
the model Y = 10 + 2X + 2.5Z + 2.75Fx + ϵ, where ϵ ∼ N(0, 1). The coefficients show the
direction and strength of relationship of auxiliary variables with the study variable.

The simulation study is based on S = 10000 samples. The empirical MSE of proposed estima-
tor, t1 to t6 and all members of t7 are computed for three sample sizes 5%, 10% and 20% of N . The
empirical MSE of an estimator t is computed by

MSE(t) =
1

S

S∑
i=1

(ti − T )2, where T =
1

S

S∑
i=1

ti.

The percent relative efficiency (PRE) of an estimator ti with respect to t1 can be obtained by

PRE =
MSE(ti)

MSE(t1)
× 100.

Using above simulation setting, the empirical MSEs and PREs of proposed estimator, t1 to t6
and all members of t7 are computed using symmetric and skewed Y . For skewed Y , we simu-
lated the auxiliary variable using Lognormal distribution as X ∼ lognormal(1, 0.75) and Z ∼
lognormal(1, 1). The histograms of Y for symmetric and populations are given in the following
figure.
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Figure 1: Histograms of Y for Symmetric and Skewed Populations

The population characteristics in terms of mean, coefficient of variation and coefficient of cor-
relations of Y , X , Z and Fx are shown in table below. The results related to empirical MSEs and
PREs are given in the following tables.
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Table 1: Parameters of Symmetric and Skewed populations

Population Ȳ X̄ Z̄ F̄x Cy Cx Cz CFx ρyx ρyz ρyFx ρxz ρxFx ρzFx

Symmetric 81.3 10 20 0.5 0.11 0.20 0.15 0.58 0.53 0.83 0.52 -0.011 0.977 0.014

Skewed 30.1 3.6 4.6 0.5 0.59 0.86 1.42 0.58 0.36 0.92 0.30 -0.022 0.814 -0.029

Table 2: Empirical MSE of each estimator for symmetric and skewed populations

Estimator Symmetric Skewed

n = 20% n = 10% n = 5% n = 20% n = 10% n = 5%

t1 0.07 0.124 0.215 0.19 0.33 0.59

t2 0.06 0.104 0.174 0.17 0.29 0.50

t3 0.06 0.104 0.174 0.17 0.29 0.50

t4 0.07 0.124 0.216 0.19 0.33 0.59

t5 0.06 0.104 0.174 0.17 0.29 0.50

t6 0.66 1.073 1.268 1.78 2.30 2.83

t71 0.08 0.151 0.272 0.20 0.36 0.65

t72 0.07 0.132 0.232 0.17 0.29 0.50

t73 0.08 0.152 0.275 0.22 0.41 0.73

t74 0.06 0.110 0.186 0.17 0.29 0.50

t75 0.08 0.148 0.266 0.21 0.38 0.68

t76 0.07 0.133 0.236 0.21 0.38 0.68

t77 0.08 0.149 0.269 0.19 0.33 0.59

t78 0.08 0.151 0.273 0.22 0.41 0.74

t79 0.08 0.151 0.273 0.22 0.41 0.74

t80 0.06 0.105 0.175 0.17 0.29 0.50

txzF 0.03 0.055 0.064 0.09 0.11 0.13

txz 0.03 0.054 0.062 0.09 0.11 0.13

txF 0.06 0.104 0.174 0.17 0.29 0.50

tx 0.06 0.104 0.174 0.17 0.29 0.50
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Table 3: Empirical PRE of each estimator for symmetric and skewed populations

Estimator Symmetric Skewed

n = 20% n = 10% n = 5% n = 20% n = 10% n = 5%

t1 100.00 100.00 100.00 100.00 100.00 100.00

t2 114.60 119.13 124.11 110.51 113.63 118.21

t3 114.60 119.13 124.11 110.51 113.63 118.21

t4 99.96 99.93 99.91 99.78 99.70 99.67

t5 114.55 119.05 124.01 110.29 113.31 117.81

t6 10.16 11.55 16.99 10.43 14.16 20.74

t71 84.57 82.20 79.09 91.53 89.31 90.75

t72 94.72 94.28 93.02 110.06 112.98 117.61

t73 83.94 81.46 78.27 83.72 80.02 80.19

t74 109.44 112.68 115.67 110.13 113.08 117.67

t75 86.03 83.90 81.01 87.95 84.99 85.82

t76 93.62 92.95 91.47 88.62 85.79 86.72

t77 85.42 83.18 80.19 97.95 97.27 99.93

t78 84.45 82.06 78.93 83.52 79.80 79.94

t79 84.45 82.06 78.93 83.52 79.80 79.94

t80 114.24 118.46 123.24 110.13 113.08 117.28

txzF 197.68 224.39 337.12 206.15 289.27 443.46

txz 199.12 227.79 346.05 206.60 290.35 447.62

txF 114.36 118.71 123.57 110.24 113.26 117.51

tx 114.55 119.05 124.01 110.29 113.31 117.81

The Table 2 contains the MSEs of proposed and the estimators discussed in Section 2. As men-
tioned above that Hussain, et al. (2022) deduced ten members of their class using different combi-
nations of a and b. The MSEs of all these ten estimators are also given in this table. The percent
relative efficiencies based on the MSEs considering the mean per unit estimator as base estimator
are given in Table 3. From this table, we can see that the members t74 and t80 are better then the
base estimator the rest are performing bad then even mean per unit estimator. The performance of
t80 is same as t2,t3,t5, txF and tx. This means that the use of dual auxiliary variable as empirical
distribution function is useless. Moreover, it is noticed that using rank of auxiliary variable as dual
use even worsen the performance of an estimator in terms of efficiency e.g. t6 that is almost 70%
bad in efficiency then men per unit estimator. The PREs of txF and tx also show that there is no role
of empirical distribution function in improving the efficiency. The similar argument can be made
from PREs of txzF and txz . However, an independent auxilairy variable can improve effiecieny as
evedent from the PREs of txz and tx or txzF and txF . Based on this simulation study, we do not rec-
ommend dual use of auxiliary variable either in the form of rank or empirical distribution function,
however, new auxiliary variable(s) can be used to improve the performance of estimator provided
the new variable(s) are significantly correlated with study variable. Below we provided PRE based
on theoretical MSEs calculated form real data.
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6 Real Life Applications

In this section, we have used five real populations data sets to numerically compare the MSE of
suggested estimator to the estimators discussed in Section 2. The detail of populations, variable
used and the parameters used for calculation of MSEs are given in Tables A2 and A3 of Appendix.
Below we provided the MSEs and percentage relative efficiency(PRE) of each estimator.

Table 4: MSE and PRE of each estimator

MSE PRE

Est. Pop.-I Pop.-II Pop.-III Pop.-IV Pop.-V Pop.-I Pop.-II Pop.-III Pop.-IV Pop.-V

t1 2829.13 8707.99 5537.26 13112.87 6945.41 100.00 100.00 100.00 100.00 100.00

t2 2318.34 4379.75 43.03 4732.20 816.23 122.03 198.82 12867.16 277.10 850.91

t3 2318.34 4379.75 43.03 4732.20 816.23 122.03 198.82 12867.16 277.10 850.91

t4 2818.35 8674.92 5512.10 13024.88 6902.64 100.38 100.38 100.46 100.68 100.62

t5 2311.09 4371.37 43.03 4720.69 815.64 122.41 199.21 12867.62 277.77 851.53

t6 1239.59 2770.81 43.03 2484.74 759.86 228.23 314.28 12867.18 527.74 914.04

t7 1237.27 2768.11 43.03 2481.56 759.35 228.66 314.58 12867.64 528.41 914.65

txzF 1232.79 2648.93 41.62 267.78 57.96 229.49 328.74 13303.70 4896.92 11982.85

txz 3287.36 15073.26 631.52 268.20 58.32 86.06 57.77 876.81 4889.20 11909.88

txF 1159.56 3374.50 60.88 2709.41 602.11 243.98 258.05 9095.69 483.98 1153.51

tx 2311.09 4371.37 43.03 4720.69 815.64 122.41 199.21 12867.62 277.77 851.53

For the first two populations, the efficiency values of txzF , txF , and tx are relatively close
to each other, suggesting that the inclusion of Z and F does not significantly alter the estimation
performance. However, txzF does show a moderate improvement over the others, indicating that the
combination of X , Z, and F is beneficial, albeit not overwhelmingly so in these cases. Interestingly,
txz has the lowest efficiency among these estimators in the first two populations, which suggests that
excluding F leads to a loss in precision when Z alone is not highly correlated with Y .

A drastic shift occurs in the last three populations, particularly the third, fourth, and fifth, where
Z is highly correlated with Y . The efficiency of txzF jumps significantly (13303.70, 4896.92,
and 11982.85), making it the most efficient estimator. Similarly, txz also experiences a significant
increase (876.81, 4889.20, and 11909.88), indicating that Z is now a dominant auxiliary variable.
However, the difference between txzF and txz becomes relatively small in the last two populations,
suggesting that the inclusion of F does not provide much additional gain when Z is already highly
correlated with Y .

The estimator txF , which uses X and F but not Z, performs well in the first three populations
but fails to maintain high efficiency in the last two (9095.69 in the third but only 483.98 and 1153.51
in the fourth and fifth). This confirms that F is unable to compensate for the lack of Z when Z has a
strong association with Y . Similarly, the estimator tx, which relies solely on X , shows a significant
drop in efficiency in the last two populations (277.77 and 851.53), reinforcing the idea that relying
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on X alone is insufficient, particularly when other strong auxiliary variables are available.
Overall, these results suggest that Z plays a crucial role in improving efficiency, especially in

populations where it has a strong correlation with Y . While F provides some benefit in certain cases,
its contribution diminishes when Z is already an effective predictor. The estimator txzF remains the
most efficient overall, but in cases where Z is highly correlated with Y , txz performs nearly as well,
demonstrating that F becomes redundant in such scenarios. The simulation study confirms that dual
use of auxiliary variable is not useful in improving the efficiency but here in improves the efficiency
where Z is weakly correlated with Y and one possible reason may be that the theoretical expressions
of MSEs contains the coefficient of multiple determination and it always increases by adding new
variable irrespective of the fact that the auxiliary variable is significantly affecting the study variable
or not.

7 Conclusions

The findings from both the real population data analysis and the simulation study provide valuable
insights into the efficiency of different estimators. The simulation study demonstrated that incor-
porating the empirical distribution function (EDF) or rank of an auxiliary variable as a dual-use
technique does not enhance estimator performance. In some cases, such as t6, the inclusion of rank
even led to a significant drop in efficiency—nearly 70% lower than the mean per unit estimator.
Similarly, the PREs of txF and tx confirmed that EDF does not contribute to efficiency improve-
ment. However, the study highlighted that adding an independent auxiliary variable can significantly
improve estimator efficiency, as observed in the comparisons of txz with tx and txzF with txF .

The real population data analysis further supports these conclusions. Across the five studied
populations, it was observed that when the variable Z was highly correlated with the study variable
Y (as in the last two populations), estimators incorporating Z demonstrated better performance. In
contrast, when the empirical distribution function was included, particularly in cases where Z was
more correlated with Y , the efficiency of the estimators decreased. This confirms that EDF fails
to provide any substantial benefit, especially when a more strongly correlated auxiliary variable is
available.

Overall, based on both studies, we conclude that the dual use of auxiliary variables either through
ranks or empirical distribution functions does not improve efficiency and may even be detrimental.
Instead, the inclusion of additional auxiliary variables, provided they have a strong correlation with
the study variable, can lead to meaningful efficiency gains. Thus, we recommend focusing on se-
lecting independent and highly correlated auxiliary variables rather than using ranks or EDF trans-
formations. We also recommend simulation study along with empirical study because theoretical
results do no guarantee the sampling stability of the estimator as we seen in our case.

Acknowledgements

We are thankful to the reviewers for their constructive comments and suggestions which have cer-
tainly improved the presentation and quality of paper. The research data associated with the paper



Investigating the role of Dual use of a Auxiliary Variable. . . 95

is available with author Zahoor Ahmad, and data can be provided by requesting on email.

References

Abdollahi Nanvapisheh, A., MirMostafaee, S., and Altun, E. (2019), “A new two-parameter distri-
bution: properties and applications,” Journal of Mathematical Modeling, 7, 35–48.

Akaike, H. (1974), “A new look at the statistical model identification,” IEEE Transactions on Auto-
matic Control, 19, 716–723.

Al-Ta’ani, O. and Gharaibeh, M. M. (2023), “Ola distribution: A new one parameter model with
applications to engineering and Covid-19 data,” Applied Mathematics and Information Sciences,
17, 243–252.

Bittmann, F. (2021), Bootstrapping: an integrated approach with Python and Stata, Walter de
Gruyter GmbH & Co KG.

Brent, R. P. (1973), Algorithms for minimization without derivatives, Prentice-Hall.

Canty, A. and Ripley, B. (2017), “Package ‘boot’,” Bootstrap Functions. CRAN R Proj.

Davison, A. C. and Hinkley, D. V. (1997), Bootstrap methods and their application, no. 1, Cam-
bridge University Press.

Elechi, O., Okereke, E. W., Chukwudi, I. H., Chizoba, K. L., and Wale, O. T. (2022), “Iwueze’s
distribution and its application,” Journal of Applied Mathematics and Physics, 10, 3783–3803.

Gharaibeh, M. (2021), “Gharaibeh distribution and its applications,” Journal of Statistics Applica-
tions and Probability, 10, 441–452.

Ghitany, M. E., Atieh, B., and Nadarajah, S. (2008), “Lindley distribution and its application,”
Mathematics and Computers in Simulation, 78, 493–506.

Henningsen, A. and Toomet, O. (2011), “maxLik: A package for maximum likelihood estimation in
R,” Computational Statistics, 26, 443–458.

Kostyshak, S. (2024), “Package bootstrap. Functions for the book ‘An introduction to the boot-
strap’,” https://cran.r-project.org/web/packages/bootstrap,

Kwan, K., Breault, G., Umbenhauer, E., McMahon, F., and Duggan, D. (1976), “Kinetics of in-
domethacin absorption, elimination, and enterohepatic circulation in man,” Journal of Pharma-
cokinetics and Biopharmaceutics, 4, 255–280.

Mbegbu, J. I. and Echebiri, U. V. (2022), “Juchez probability distribution: Properties and applica-
tions,” Asian Journal of Probability and Statistics, 20, 56–71.

https://cran.r-project.org/web/packages/bootstrap


96 Khan et al.

McAtamney, M. (2019), “Industrial service design: an examination of Chinese choice preferences
for shipping services,” Ph.D. thesis, University of Otago.

Nassar, M. and Nada, N. (2011), “The beta generalized Pareto distribution,” Journal of Statistics:
Advances in Theory and Applications, 6, 1–17.

Olufemi-Ojo, O. B., Onyeagu, S. I., and Obiora Ilouno, H. O. (2024), “On the application of two-
parameter Shanker distribution,” International Journal of Innovative Science and Research Tech-
nology, 9, 807–820.

Onyekwere, C. K. and Obulezi, O. J. (2022), “Chris-Jerry distribution and its applications,” Asian
Journal of Probability and Statistics, 20, 16–30.

Pawitan, Y. (2001), In all likelihood: statistical modelling and inference using likelihood, Oxford
University Press.

R Core Team (2023), R: A Language and Environment for Statistical Computing, R Foundation for
Statistical Computing, Vienna, Austria, https://www.R-project.org/.

Rama, S. (2016), “Aradhana distribution and its applications,” International Journal of Statistics
and Applications, 6, 23–34.

Saleh, A. M. E. (2006), Theory of preliminary test and Stein-type estimation with applications, John
Wiley & Sons.

Schwarz, G. (1978), “Estimating the dimension of a model,” The Annals of Statistics, 6, 461–464.

Severini, T. A. (2000), Likelihood methods in statistics, Oxford University Press.

Shanker, R. (2015a), “Akash distribution and its applications,” International Journal of Probability
and Statistics, 4, 65–75.

— (2015b), “Shanker distribution and its applications,” International Journal of Statistics and Ap-
plications, 5, 338–348.

— (2016a), “Garima distribution and its application to model behavioral science data,” Biometrics
& Biostatistics International Journal, 4, 1–9.

— (2016b), “Sujatha distribution and its applications,” Statistics in Transition. New Series, 17, 391–
410.

— (2017a), “Rama distribution and its application,” International Journal of Statistics and Applica-
tions, 7, 26–35.

— (2017b), “Rani distribution and its application,” Biometrics and Biostatistics International Jour-
nal, 6, 1–10.

https://www.R-project.org/


Investigating the role of Dual use of a Auxiliary Variable. . . 97

— (2023a), “Komal distribution with properties and application in survival analysis,” Biometrics
and Biostatistics International Journal, 12, 40–44.

— (2023b), “Pratibha distribution with properties and application,” Biometrics and Biostatistics
International Journal, 13, 136–142.

Shanker, R., Sharma, S., and Shanker, R. (2013), “A two-parameter Lindley distribution for model-
ing waiting and survival times data,” Applied Mathematics, 4, 363–368.

Shanker, R. and Shukla, K. (2017), “Ishita distribution and its applications,” Biometrics and Bio-
statistics International Journal, 5, 1–9.

Shanker, R., Shukla, K., Ranjan, A., and Shanker, R. (2021), “Adya distribution with properties and
application,” Biometrics and Biostatistics International Journal, 10, 81–88.

Shanker, R., Shukla, K. K., Shanker, R., and Leonida, T. A. (2017), “A three-parameter Lindley
distribution,” American Journal of Mathematics and Statistics, 7, 15–26.

Wilks, S. S. (1938), “The large-sample distribution of the likelihood ratio for testing composite
hypotheses,” The Annals of Mathematical Statistics, 9, 60–62.

Received: January 13, 2025

Accepted: June 22, 2025

A Appendix

Table A1: Population and sample characteristics for study and auxiliary variables, where Y , X , and
Z are the population of currently married, 15–49 years old women, and 18 years old and above
individuals, respectively

Characteristic Population Sample

Mean Ȳ =
∑N

i=1 yi/N , X̄ =
∑N

i=1 xi/N , F̄x =
∑N

i=1 fxi/N , Z̄ =
∑N

i=1 zi/N ȳ =
∑n

i=1 yi/n, x̄ =
∑n

i=1 xi/n, f̄x =
∑n

i=1 fxi
/n, z̄ =

∑n
i=1 zi/n

Variance S2
y =

∑N
i=1(yi − Ȳ )2/N , S2

x =
∑N

i=1(xi − X̄)2/N s2y =
∑n

i=1(yi − ȳ)2/n, s2x =
∑n

i=1(xi − x̄)2/n

S2
Fx

=
∑N

i=1(rxi
− F̄x)

2/N , S2
z =

∑N
i=1(zi − Z̄)2/N s2Fx

=
∑n

i=1(rxi
− f̄x)

2/n, s2z =
∑n

i=1(zi − z̄)2/n

Covariance
Sxy =

∑N
i=1(yi − Ȳ )(xi − X̄)/N , SyFx

=
∑N

i=1(yi − Ȳ )(rxi
− F̄x)/N sxy =

∑n
i=1(yi − ȳ)(xi − x̄)/n, syFx

=
∑n

i=1(yi − ȳ)(rxi
− f̄x)/n

Syz =
∑N

i=1(yi − Ȳ )(zi − Z̄)/N , SxFx =
∑N

i=1(xi − X̄)(rxi − F̄x)/N syz =
∑n

i=1(yi − ȳ)(zi − z̄)/n, sxFx
=
∑n

i=1(xi − x̄)(rxi
− f̄x)/n

Sxz =
∑N

i=1(xi − X̄)(zi − Z̄)/N , SzFx
=
∑N

i=1(zi − Z̄)(rxi
− F̄x)/N sxz =

∑n
i=1(xi − x̄)(zi − z̄)/n, szFx

=
∑n

i=1(zi − z̄)(rxi
− f̄x)/n

Correlation
Coefficient

ρxy = Syx/SySx, ρyFx
= SyFx

/SySFx
, ρyz = Syz/SySz ryx = syx/sysx, ryFx

= syFx
/sysFx

, ryz = syz/sysz

ρxFx
= SxFx

/SxSFx
, ρxz = Sxz/SxSz , ρzFx

= SzFx
/SzSFx

rxFx
= sxFx

/sxsFx
, rxz = sxz/sxsz , rzFx

= szFx
/szsFx
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Table A2: Detail of Populations

Sr. No. Source of Populations

1 Population census report of Jhang district (1998), Pakistan

2 Population census report of Faisalabad district (1998), Pakistan

3 Population census report of Gujrat district (1998), Pakistan

4 Population census report of Kasur (1998), Pakistan

5 Population census report of Sialkot district (1998), Pakistan

Table A3: Parameters of populations

District N n Ȳ Cy X̄ Z̄ F̄x Cx Cz CFx ρyx ρyz ρyFx ρxz ρxFx ρzFx

Jhang 368 184 0860.11 0.59 3159.24 1311.44 184.50 0.77 0.81 0.57 0.48 0.42 0.73 0.33 0.65 0.49

Faisalabad 283 142 1511.26 0.52 6173.16 2457.68 142.00 1.02 0.60 0.58 0.50 0.71 0.82 0.44 0.49 0.75

Gujrat 204 102 1101.28 0.48 4326.28 1703.48 102.50 1.88 0.49 0.58 0.49 0.99 0.89 0.50 0.31 0.89

Kasur 181 091 1393.20 0.55 4984.15 2114.84 091.00 0.55 0.64 0.58 0.99 0.80 0.91 0.80 0.92 0.72

Sailkot 269 135 1058.74 0.65 3812.47 1684.70 135.00 0.65 0.68 0.58 0.99 0.94 0.82 0.94 0.82 0.75
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