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SUMMARY

While the existing literature includes substantial numerical investigations into various
shrinkage ridge and Liu estimators, it often lacks a cohesive approach to their construc-
tion. This gap signals a need for a unified construction methodology that can provide a
clearer framework for understanding and applying Liu estimators in practice. By establish-
ing such a methodology, we aim to simplify the utilization of these estimators and promote
their adoption in various statistical applications. This paper will discuss the theoretical un-
derpinnings of shrinkage learners with focus on the seemingly unrelated semiparametric
regression model. Through this construction analysis, we ultimately aim to enhance the
ongoing discourse in the field of shrinkage learners, offering valuable insights that sup-
port researchers and practitioners in choosing suitable techniques for their specific data
challenges.
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1 Introduction

The seemingly unrelated regression (SUR) model introduced by [Zellner| (1962) consists of multiple
individual relationships interconnected by correlated disturbances. These models have numerous
applications. For instance, demand functions for several families (or household categories) may
be evaluated for a specific commodity. The dependency among the equation disruptions may stem
from multiple origins, including synchronized disturbances to household income. Conversely, one
may simulate a household’s demand for several goods; however, the addition constraints impose
limitations on the parameters of the distinct equations in this scenario. Conversely, equations that
describe phenomena across various cities, states, countries, enterprises, or industries have significant
relevance, as these entities are prone to being affected by spillovers from economy-wide or global
shocks.

This research advances the SUR system into a more adaptable framework, namely the seemingly
unrelated semiparametric model (SUS), to enhance the modeling efficiency of a data set. There are
situations where the data structure cannot be fully represented by either linear or non-parametric
models, since both linear and non-linear relationships may exist between the response and explana-
tory variables in the system of equations. The methodologies, including this model, provide more
flexible response prediction by categorizing predictors into linear and non-linear categories em-
ploying robust instruments like the added variable plot.In fact, this model extends an applicable
semiparametric regression framework through a vectorized parameter approach. There are two pri-
mary motivations for employing SUS. The first is to improve estimation efficiency by integrating
information across multiple equations. The second is to increase the adaptability of the SUR model,
which makes it more useful in applications such as political behavior, including voting, biometric
problems, allocation models, investment functions for multiple firms, and income or consumption
functions for specific population segments or various geographic regions (see |Baltagi| (1980), Chib
and Greenberg| (1995), [Fiebig| (2001), Moon| (1999), Moon and Perron| (2004}, Srivastava and Giles
(1987), and |Srivastava and Maekawa| (1995))). This model is well-suited for analyzing a data system
where the relationship between the dependent variable and some explanatory variables is clearly lin-
ear and parametric, while the connection with other explanatory variables is uncertain and explicitly
non-parametric. Refer to Roozbeh et al.[|(2012) and Roozbeh and Arashi| (2014) for details.

It is widely acknowledged that the ridge regression estimator serves as a robust learner of regres-
sion parameters across various regression models. It possesses beneficial characteristics, notably
its ability to deliver continuous predictions. However, two significant drawbacks have prompted
researchers to explore the Liu estimator as an alternative. First, the ridge estimator exhibits non-
linearity concerning the tuning parameter, which complicates the optimization process. In a study,
Kibria(2022) provides an extensive discussion of over one hundred alternative estimators. More crit-
ically, the impact of the tuning parameter poses challenges; in situations of severe multicollinearity,
the ridge estimator may fall short in addressing the issues associated with an ill-conditioned design
matrix. To address these limitations, Liu (2003) introduced the Liu-type penalty for linear regres-
sion models, aiming to mitigate the bias inherent in the ridge method and better manage high multi-
collinearity. The Liu estimator has garnered significant attention in efforts to develop estimators that
are resilient to multicollinearity. This is evident in several studies, including Kibrial (2003), |Arashi
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et al. (2017),|Asar et al.|(2017), |Arashi et al.|(2018)), [Wu et al.| (2018)),|Qasim et al.| (2019), Lukman
et al.| (2020), [Karlsson et al.| (2020),|/Amin et al.| (2021),|Algamal and Abonazel|(2022)),|Arashi et al.
(2022), Al-Momani/ (2023)), Abonazel| (2023), /Akram et al.|(2024), Ghanem et al.| (2024)), [Tan1s and
Asar|(2024), Altukhaes et al.|(2024b), Altukhaes et al. (2024a), Geng¢ and Lukman| (2025}, and Hawa
et al.[|(2025) to mention a few.

In this paper, we contribute only to theoretical construction of Liu-type shrinkage strutegies for
learning the parameters of seemingly unrelated semiparametric regression model. This contribu-
tion is made to honor and acknowledge ground breaking contributions of late Professor A. K. Md.
Ehsanes Saleh, in the field of shrinkage strategies.

We organize the remainder of this paper as follows: Section 2 presents the elliptical seemingly
unrelated regression model along with its assumptions. To ensure generality, we focus on partially
linear models, where non-linear effects are incorporated into the modeling of the expected response
variable. The construction methodology of shrinkage learners is discussed in detail in Section 3,
while section 4 contains the proofs of two propositions. Finally, a brief conclusion is provided in
Section 5.

2 The Model and Assumptions

In this section, we confine ourselves to the notation of Roozbeh et al.| (2012). We define the model
and give necessary preliminary results on the least squares theory of estimation in the partially linear
SUR models.

Consider a system of M equations expressed as Y; = X,;03; + fi(t) + €, fori =1,..., M,
where Y represents an n x 1 response vector, X; = (a1, ..., :cn)T is an n x p; fixed design matrix
with full rank p;, constructed from the explanatory variables «; € RP?, j = 1,...,n. The vector
(3; consists of p; x 1 regression coefficients, while f;(¢) denotes a n x 1 vector of unknown smooth
functions, and €; is a n x 1 vector of random error terms. It is assumed that E(eie;r) = v I,
where v;; indicates the inter-equation covariance for each observation. In this formulation, M is the
total number of equations, n denotes the sample size per equation, and p; refers to the number of
parameters in 3.

Considering the shrinkage estimators as one of the main parts of machine learners (refer to
Saleh et al.| (2022)), we develop Stein-type shrinkage estimators under subspace restrictions. To

this aim, we aggregate the model parameters, and assume Y = (Y;",Y,',....Y,))T, X =
. T
Diag(X1, Xo,..., Xn). B = (87,85 ,....81)". f(t) = (f (®). £ (t),.... f{;(t)) and
€= (€ ,€5,...,€,,) . Then, the system of M equations can be consolidated into the following
representation
Y = X3+ f(t) +e, 2.1

where Y, f(t) and € are each of dimension nd/ x 1, X is of dimension nM x p, p = Zf\il Dis
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and Bis a p x 1 vector of parameters. Furthermore, E(e) = 0, and E(ee ") = V, with

Vii =vil, Vieg=vial,, ... Viy=viul,
vV Voo =val,  Vaa=wvnl, ... Voy=uviul,
Vuir=vamidn Vae =vael, ... Vyun =vuml,

as an nM x nlM positive definite symmetric matrix, or simply as (v;;) ® I,,, where ® represents
the Kronecker product. This assumption enforces homoscedasticity between the errors and not au-
tocorrelation. However, it is assumed that there is a simultaneous correlation between the matching
error terms in different equations.

For the estimation of 3, we use the partial kernel smoothing estimator and thus, using|Speckman
(1988)), we estimate f;(-) via

n

filts, B:) =D W, () (Wir — T3,8),

k=1
where the positive weight functions W, (+) satisfy max 3 °7_) Wi, (t;) = O(1), max W, (t;) =
O(n=%/3), and max >y, Wy, (2)I(|t: — tj| > cn) = O(dy,), for some sequences c,, and d,,
satisfying lim sup ne? < oo, and lim sup nd3 < oo.
Now, define
C =X'V~'X =Diag(Cy,...,Cy), Ci=X,V;'X,,

Y = (gllw"?:'jln,@él?"'7§2n7"'a§ﬂ117"'agkfn)Ta

e ~ ~ ~ ~ ~ ~ T
X:(wlh...,$1n,w21,...,CEQn,...,CUMl,.-.733]\/[71) )
nM
Yij = Yij — E Wi, (ti)yij
Jj=1
nM

%ij::cij—Zan(ti)acij, i:L...,M,j:l,...,n.
j=1

To estimate (3, we minimize the least squares criterion.
SS(B)=(Y —-XB) V(Y - X)
to get the weighted least square estimator (WLSE) given by
B5US = c1XTV-ly. (2.2)

3 Shrinkage Linear Unified Machine Learners

The properties of the WLSE of 3 are strongly influenced by the characteristics of the information
matrix C. If the C matrix is poorly conditioned, then the WLSE yields excessively high sam-
pling variances. On the other hand, some of the coefficients might be statistically insignificant with
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incorrect directions, making reliable statistical inference challenging for the researcher. As a so-
lution, Roozbeh et al.| (2012)) introduced the ridge-weighted least square estimator (RWLSE). As a
shrinkage method, the RWLSE can be viewed as a standard approach to addressing multicollinear-
ity.However, a small ridge parameter is insufficient to address the ill-conditioned design matrix in
cases of severe multicollinearity. On the other hand, increasing the ridge parameter excessively
introduces greater bias into the estimation. Motivated by [Liu| (1993)) and |Akdeniz and Kaciranlar
(1995)), we find a regularization parameter matrix K such that K BSUS is close to 3; thus, learning
the magnitude penalization of (K 35US — @) rather than 3 as in the RWLSE.
Thus, we propose the following linear unified (Liu) weighted least square estimator (LWLSE)

BSYS(K) = T 855, 3.1)

where Tx = (C + I,)"'(C + K), K = Diag(K1, Ko, ..., Kn), K; = kiI,,, ki > 0 are the
shrinking parameters for: = 1,.., M, and p = Z£1 i

Now, consider some non-sample prior information derived from theoretical or experimental in-
sights, testable hypotheses, or intentionally imposed constraints aimed at reducing or removing re-
dundancy in the model’s description. Such information, also known as uncertain prior information
or restrictions, is useful in the estimation task, especially when there exists limited information based
on the sample data.

Adopting such cases, some linear non-stochastic constraints are considered for computation of
the restricted machine learner. The following result gives the mathematical form of this learner.

Proposition 3.1. Assume the partially linear SUR model (2.1). Also, consider a set of restrictions
R,B; =7;,i=1,..., M, for a given m; X p; matrix R; with rank m; < p; and a given m; x 1
vector ;. Then, the restricted Liu machine learner is given by

B5US(K) — (C+ L)' RT(R(C + L)' RT)™" |[RAEUS(K) — 7|,

where R = Diag(Ry, Ra,...,Ry)and 7 = (r{ ;79 ,...,7 ;) are m x p and m x 1 matrices,
respectively, with m = >°.7 | m;.

For the sketch of proof, refer to the Appendix. The assumption of full-row rank is adopted for
convenience and is justifiable by the fact that any consistent linear equation can be converted into an
equivalent equation with a coefficient matrix having full-row rank.

In Proposition@ if V' is unknown, one can use a feasible estimator for V' as

1 -~~~ — e
S=—————(Y-Xb(Y-Xb', b=(X"X)"'X"Y.
A= ¥ - X0 X0 b= (XTX)
Apart from Proposition [3.1] that gives a proper form for the restricted Liu machine learner, similar

to the work of Kaciranlar et al. (1999), we define the restricted learner as a weighted form of the
WLSE

BEVS() = Tuc2™ = Tic [$°° - CRT(ROTRT) M [RES -1]]. 62
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Note, Proposition gives the risk of the restricted Liu machine learner defined in Proposition 3.1}
After some algebra, one may see that the risk of the weighted WLSE, i.e., BSUS(K) is smaller.
Hence, in the sequel, we use for the forthcoming developments. Note, that the expression
inside the curly bracket of is the restricted WLSE. It can be obtained in the same fashion as in
the proof of Proposition

3.1 Development of a class of shrinkage learners

Besides the computation of the LWLSE restricted learner, it is desirable to check whether the set
of restrictions R;3; = r;, ¢ = 1,..., M is true. The usage of the LWLSE is highly dependent on
the correctness of the null hypothesis. Formulating Wlad’s test statistics is straightforward using the
asymptotic distribution of the WLSE. Here, we develop a class of combinations of the LWLSE and
its restricted version to calibrate the effect of the set of restrictions.

For our purpose, consider the general class of shrinkage learners given by

IéShrinkage(K) — B‘SUS(K) _ (B‘SUS(K) o BgUS(K)> g(Tn)7 (3.3)

where T, is a proposed test statistic for testing R3 = r. Table[I] gives the formulation of three
shrinkage learners. Apparently, the linear shrinkage machine learner is obtained by taking g(7;,) =
w for some w € [0, 1].

Table 1: Expressions for the corresponding T;, (+) functions in the proposed shrinkage learners. Here,
t is the critical value for the test statistic, and w € [0, 1] is a constant.

Shrinkage learner g(+) function Designation
BFTSUS(K) I(T, <) Preliminary-test
B5SUS(K) (nM —2)T; ! Stein-type

BPR-SUS (k) (1 —(nM —2)T,;)I(T, <t) Positive-rule Stein-type

Using the results of Roozbeh et al.|(2012), the WLSE is asymptotically normally distributed with
mean 3 and covariance matrix C~!. In the case of unknown V', we use S, and we get the same
normality distribution by Zellner| (1962). Therefore, for testing the null hypothesis Ho : R3 = r,
we use the following test statistic:

Tn = L(RBSUS —7)T"(RCT'R)"Y(RB°YS —r). (3.4)
nM
Then, under the null hypothesis, T}, has an asymptotic x? distribution with nM degrees of freedom
(d.f.). In case of the unknown V/, by replacing V' with S, T}, has an asymptotic F-distribution with
(nM,p — m) d.f. Thus, in Table t = x2, for & € (0,1). Under an alternative hypothesis, we
have a non-central distribution with a non-centrality parameter:

A=(RB—-r)"(RC'R)"'(RB—-r).
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3.2 Theoretical characteristics

The proposed restricted Liu machine learner B,S:US(K ) possesses superior performance over its
counterpart, i.e., BSUS. We refer to|Roozbeh et al.|(2012) for a similar approach and do not provide
further details to avoid repetition. Here, we mainly focus on shrinkage versions of the LWLSE
restricted learner. Because of our proposal’s restricted nature, we study the analytical performance
for the class of local alternatives { K, a7y} given by

K : RB =7+ (nM)~2¢. (3.5)

Note that here, the effective sample dimension is nM. Refer to Saleh et al.|(2019) and Saleh et al.
(2022) for details. Hence, asymptotic distributional properties shall be studied first. To this end, we
compute the asymptotic bias and risk in terms of distribution.

Now, assume for any estimator B* of 3, the asymptotic cumulative distribution exists and is
given by F(x) = nhﬁngc Pr(v/nM(B* — B) < x). Then, the asymptotic distributional bias and risk,
respectively, are given by

~

Bias(8) = lim E (n%M%(B - ﬂ)) )

Risk(8) = :: EO /R ) a:wTdF(ac)> = tr(V),

where V is the dispersion matrix for the distribution F'(x).
Proposition 3.2. The asymptotic distributional bias and associated risk of the learner in Proposition
[3.1)are, respectively, given by

Bias = Mg (K —I,)3, and Risk = tr (Mg (K + C)C (K + C)Mk) ,

where Mg = (C +1,)"' — (C+I,)'R"(R(C+ I,)'R")"'R(C + I,,) L.
For the sketch of proof, refer to the Appendix. Note that we do not use Proposition [3.2]in the sequel
since the focus is on 35VS(K) and B5V5 (K).

In an asymptotic sense, for the shrinkage methodologies, it is easy to see

VM (B%VS(K) - B) B N, (Tk — I,,)8,Ck) . (3.6)
VaM(B3VS(K) - 8) B N, (Mg (K — I,,)8, D) , 3.7

where Ci = TKC_lTK and Dg = MK(K + C)C_l(K + C)MK
The bias expressions of the proposed estimators are directly adapted from Saleh (2006). Hence,
we omit the detailed derivations and instead provide the bias formulas in the following theorem.

Proposition 3.3. The asymptotic distributional biases of all Liu machine learners are given by
Bias(8°7*(K)) = —(I, - K)(C + I,)"' B;
Bias(8;"* (K)) = — [(I, - K)(C + I,) '8 + Txn] ;
Bias(3""SUS(K)) = — [(L, - K)(C + L) '8+ TxnHy+2(:2 1 A)]
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Bias(3%SU(K)) =~ [(I, - K)(C + 1,) '8+ (b — TknE(x; 7(A))] ;
Bias(37%5US(K)) = — [(I, — K)(C + 1) 8+ Tren { (= 2)EP [, 2(A) [ (x2.5(A) < p—2)]
— (0= 2EP (5 (AT (D) < p = 2)) = Hpia (2, A)}

wheren = 8¢, 6 = C"'RT(RC'R")™!, and H,(z; A) is the cumulative distribution function
of a non-central y-square distribution with ¢ d.f. and non-centrality parameter A. Furthermore,

E(Xq_m(A)):/ B v dH,(z;A), i=1,2.

For a = 0, the bias of 3°T—SUS(K) coincides with that of the restricted Liu learner BEUS(K),
while for a = 1, it coincides with that of 35YS(K), the unrestricted Liu learner of 3. Also, as the
departure parameter A — oo, we have:

Bias(8""SUS(K)) = Bias(3% U (K)) = Bias(8"™ VS (K)) = Bias(35V5 (K)),
while Bias(35VS(K)) becomes unbounded. Under Hy : C3 = r, all the estimators are inherently
biased, and the magnitude of this bias is identical across all the proposed estimators.

Proposition 3.4. The asymptotic distributional risks of all Liu machine learners are given by
Risk(3%S (K)) = tx(T£C~'Tic) + B7(C + I,)"'(I, — K)*(C + I,)"'8;
Risk(B5VS(K)) = tr(Tg C ' Tk ) — tr(Tie ATk ) + 1 Tie T

+2n Tg(I, - K)(C+1,) ' B+ BT (C+1,) (I, - K)B;

Risk(87T U5 (K)) = tr(Tg C ' Tk ) — tr(T ATk ) Hpy2(X2 3 A)

+0 TgTenZ(a,A) + 20" Tg (I, — K)(C + L) BHyia(xa 3 A)
+B7(C+ 1)\ (I, - K)(C +1,)7'6;

Risk(85SYS(K)) = tr(Ti C ' Tk ) — (p — 2)tr(Ti ATk ) X (A)
+(p—2)n TgTknY (A) +2(p — 2)n T (I, — K)(C + I,,) ' BE(x, 15(A))
+B8(C+1,)'(I, - K)*(C+1I,)'B;

Risk(B"F5Y8(K)) = Risk(B85 Y3 (K))

—{tr(T ATK)E [(1 — (p — 2)x,72(2))* 1 (xp42(A) < p —2)]

+ 0  TRTnE [(1 = (0= 2)x,72(8)* T(xp44(A) < p—2)]}

=20 T TeenE [((p — 2)x;52(A) = DI(xp42(A) <p —2)]

- QUTTII'(IP - K)(C+ Ip)ilﬁE [((P - 2)X;f2(A) - 1)1(X12)+2(A) <p-— 2)] )

where

X(A) = 2E(x;25(A)) = (p = 2)E(x;12(A));
Y(A) = 2E(x; 25 (A)) = 2E(x, 24(A)) + (p — 2)E(xp14(A));
Z(a,A) = 2Hp 4o (Xi,p; A) - Hpia (Xa D A),
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and A=C 'RT(RC~'»")"'RC™!.

4 Conclusion

This paper delved into only the theoretical construction methodology of widely recognized shrink-
age estimators, placing special emphasis on Liu estimators, which exhibit exceptional performance
in scenarios characterized by multicollinearity. The phenomenon of multicollinearity arises when
predictor variables in a regression model exhibit high correlations, leading to instability in the es-
timation of coefficients. This instability often manifests as inflated standard errors, making it chal-
lenging to determine the individual impact of each predictor variable. Consequently, the reliability
and interpretability of statistical analyses are compromised. In addressing these challenges, Liu
estimators provide a compelling solution by introducing a penalization mechanism that effectively
controls bias while improving the efficiency of parameter estimates. The shrinkage Liu-type learner
is particularly advantageous as it not only mitigates the adverse effects of multicollinearity but also
enhances the robustness of estimates, allowing for more accurate inference.

The methodology for constructing these shrinkage learners builds on a solid theoretical foun-
dation, integrating principles from both classical regression techniques and modern statistical best
practices. By carefully formulating the estimator in relation to the underlying data structure, we can
tailor applications to specific regression contexts, thereby maximizing performance. Moreover, the
proposed Liu estimators can be readily implemented across various statistical software platforms,
facilitating their application in diverse fields such as economics, biostatistics, and social sciences.
The resulting implementation is designed to be user-friendly, providing practitioners with the nec-
essary tools to apply these advanced methodologies without extensive background knowledge in
statistical theory.

Through this exploration, we aimed to contribute to the broader discourse on shrinkage methods
in regression analysis, equipping researchers and practitioners with a deeper understanding of Liu
estimators and their potential applications.
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A Appendix

In this section, we give the proof of main results along with some technical lemmas.
Proof of Proposition To formulate the Liu learner with restrictions, we consider the following
constrained optimization problem

min (Y —XB8) VY - X3), st. (KBS — 8)T(KB°YS — 8) < p* and RB = r.

Using the Lagrangian multipliers, we solve

min(V = XB) VY - XB) + (KB — 8) (KBS — 8) + 225 (RB — 7),

where A is the set of Lagrangian coefficients. Getting derivative concerning 3 and equating to
zero, yield

(X'VIX+L)B=X"V 'Y + KBS - R" x,.
Therefore, we get
BSUS(K) = (XVTVAX’_FIP)A [X’valfz_FKﬂTSUS _ RT)Q}

=(C+ L) (C+K)BS—(C+I,) 'R
=TkB%S — (C+1,)"'R" X\, (A1)
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Using the fact that R3 = r, premultiplying with R and equating with 7 results in
R{TKBSUS —(C+ Ip)—1RT>\2} —
Solving the above equality for Ay gives
A2 = (R(C +I,)"'RT)™! [RTKBSUS - r]
Substituting Ao in (AT) yields
B5VS(K) = TiB™S — (C + 1) ' RT(R(C + I,) ' R") ™" |[RTicf*S — 7|
= BUS(K) — (C+ L)' RT(R(C+ L)' RT)™" |RFES(K) — 7).

The proof is complete.
Proof of Proposition 3.2} Define

Bo=R'(RR") 'r
Mg = (C + Ip)_l —(C+ Ip)_lRT(R(C + Ip)_lRT)_lR(C + Ip)_l-

Then, by Proposition[3.1] it is easy to see that

BIUS(K) = B%"S(K) - (C+1,) 'RT(R(C+1,) 'R")"! |RB°VS(K) — r}
= Mk (C +1,)8°"%(K) — Mk (C + I)B0 + Bo
= Mg(KC™'+ L)X V™'Y — My, (C + I,) 30 + Bo. (A2)

Therefore, using the fact that R3 = r = R, we get

Bias(8;"5(K)) = Mx(KC ™" + I,)CB — Mk (C + I,)Bo + Bo — B
MK(K*Ip+Ip+C)5*MK(C+Ip)ﬁO+IBO *B
Mg (C+1,)(B— Bo) + Mx(K —I,)3+ B0 — B
={I, - (C+I,)'R'(R(C+1,)'R")"'R} (B Bo)
+MK(K_Ip)B+,BO_ﬂ

= Mk(K — I,)8.

Also, by definition

Risk(8;7V% (K)) = trCov (855 (K))
=tr (Mg(K +C)C™'(K + C)Mk) .
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