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ABSTRACT

Since 1990, Dhaka has experienced rapid, unplanned urban expansion,
profoundly altering land-use patterns and intensifying local climate extremes in
one of the world’s most densely populated megacities. This study aims to
quantify three decades of land use and land cover (LULC) changes and evaluate
their associated impacts on land surface temperature (LST), near-surface air
temperature, and rainfall, with a view to informing climate-resilient urban
planning. Landsat 5 TM (1990) and Landsat 9 OLI-2/TIRS-2 (2022) imagery
were analyzed using ArcGIS and ERDAS Imagine to classify built-up areas,
vegetation, bare land, and water, achieving high accuracy (x = 0.93). LST was
estimated using radiometric calibration, NDVI-based emissivity correction, and
the mono-window algorithm, while long-term climate data from the Bangladesh
Meteorological Department supported trend analysis. Findings reveal a 41.15%
increase in built-up area, largely at the expense of vegetation (-31.02%),
resulting in a 4.87 °C rise in peak LST and a 71 mm increase in annual rainfall.
Strong positive correlations (|r| > 0.99) show that each 1% gain in built-up land
adds approximately 0.12°C to LST and enhances convective precipitation,
whereas vegetation loss exerts a cooling and drying effect. These dynamics are
exacerbating urban-heat-island intensity, disrupting seasonal rainfall, and
increasing flash-flood and health risks. To counteract these effects, the study
recommends vertical urban densification, conservation of wetlands and green
belts, and integration of green-blue infrastructure alongside high-resolution
remote sensing and climate modeling for adaptive urban policy and planning.

Keywords: urban expansion, land use and land cover change (LULC), urban heat island (UHI),
land surface temperature (LST), climate-resilient urban planning

Introduction

Climate change is widely regarded as a global problem (Abbas et al., 2023; Biswas, 2023;
Moshou and Drinia, 2023; Swinburn et al., 2022). Although climate change is treated as a global
issue, many scholars now argue that it should be viewed as a multi-level problem requiring
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localized and regional responses (Bulkeley and Newell, 2023). Human activities have
significantly altered the environment for thousands of years, with extensive land use and land
cover changes (LULCC) playing a crucial role in influencing atmospheric temperature trends
(Mahmood et al., 2010). Hence, land use and land cover change analysis are vital for assessing
global environmental changes across various spatial and temporal scales (Hurtt et al., 2021;
Lambin, 1997).

Urban growth-driven land use and land cover changes are among the most significant
anthropogenic factors influencing weather patterns, contributing to increased greenhouse gas
emissions worldwide (Liu et al., 2019). Such urbanization leads to substantial LULC changes,
significantly affecting land surface temperature (LST) in rapidly growing megacities (Kafy et al.,
2021). The combined effects of greenhouse gas emissions and land use changes are significant
drivers of climate change, often leading to increases in daily mean surface air temperatures (Yang
et al., 2009). Furthermore, Recent empirical studies show rapid LULC change in developing
regions. For instance, Tahir et al. (2025) documented a 359.8 km? urban expansion and 198.7 km?
vegetation loss in Lahore (1994-2024). Similarly, Gabisa et al. (2025) reported that in Burayu
sub-city cropland dropped from 51.2 % to 30.3 %, forest from 32.9 % to 15 %, and settlement
grew from 2.5% to 46.9 % (1993-2023). These trends reinforce the view that anthropogenic
LULC changes are occurring faster in developing countries vs developed nations. Large-scale
land use and cover changes, particularly in developed countries with rapid urbanization trends,
have become a pressing concern as urban expansion drives environmental changes across
multiple scales (Dewan et al., 2012).

Land-use land-cover (LULC) changes significantly influence local climate dynamics (Ding and
Shi, 2013). Bangladesh is one of the most climate-vulnerable countries in the world (World Bank,
2022). In recent years, the country has undergone substantial land use and land cover changes
(LULCC) (Xu et al., 2020). Dhaka, the capital of Bangladesh, has experienced rapid urban
growth over the last few decades, resulting in numerous adverse environmental impacts (Dewan
et al., 2012). Land use changes driven by urbanization, including deforestation and rapid
population growth, have led to unpredictable heavy rainfall and rising temperatures (Thapa,
2021). These changes highlight the need for administrative interventions to mitigate their effects
on the livelihoods of urban populations. Geographic Information Systems (GIS) and remote
sensing (RS) are cost-effective tools for analyzing the spatial and temporal dynamics of land use
and land cover (LULC) changes (Bikis et al., 2025; Halder et al., 2025; Mashala et al., 2023).
Geospatial and statistical analyses also support urban land use planning programs.

Urbanization predominantly reflects land-use changes and is widely recognized as a primary
driver of climate and ecological changes (Ding and Shi, 2013). Rising sea levels, floods, and
intensifying cyclones further exacerbate Bangladesh's vulnerability to climate change (IPCC).
Urbanization has significantly contributed to these issues by replacing vegetation and bare land
with built-up areas, leading to remarkable increases in land surface temperature (LST) (Gazi et
al., 2021). The construction of urban infrastructure for housing, transportation, and industry has
disrupted the surface energy balance, further elevating LST (Imran et al., 2021). This rise in LST
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has adversely impacted urban biodiversity, ecosystems, and public health (Kafy et al., 2021).

Urban growth induced LULC changes are closely linked to LST fluctuations (Rahman et al.,
2022). The major districts of Bangladesh, with their large population bases, lack adequate
resources to address the effects of rapid urbanization. Consequently, urban temperature increases
directly and indirectly affect these populations (Rahman et al., 2022). Urban areas not only alter
weather patterns but also influence water runoff dynamics. A strong relationship exists between
LST and near-surface air temperature (Tair), though the two have distinct physical characteristics
and responses to atmospheric conditions (Mutibwa et al., 2015). Urbanization-driven LULC
changes also affect urban microclimates and can significantly influence precipitation patterns
(Pathirana et al., 2014).

This study aims to assess the spatiotemporal relationship between urban land-use/land-cover
(LULC) changes and climate dynamics in Dhaka City from 1990 to 2022. It focuses on
classifying LULC using multi-temporal Landsat imagery and analyzing changes in land surface
temperature (LST), air temperature, and rainfall. The objectives include exploring how urban
expansion influences local climate patterns and offering evidence-based recommendations for
sustainable urban planning and climate resilience.

Materials and Methods
Study area

This study was conducted in the central region of Bangladesh. Dhaka, the capital city, is located
at approximately 23°46'48"N latitude and 90°25'36"E longitude (Figure 1) on the northeastern
banks of the Buriganga River. The Balu River borders the city to the east, Tongi Khal to the
north, and the Turag River to the west. Dhaka lies in the lower reaches of the Ganges Delta and
spans a total area of 306.4 km? (Bangladesh Bureau of Statistics [BBS], 2023; Hossain et al.,
2023; Abdullah et al., 2021; Nowreen et al., 2021). The districts of Gazipur, Tangail,
Munshiganj, Rajbari, Narayanganj, and Manikganj surround Dhaka District.

As the country's most populous and urbanized city, Dhaka has undergone significant land use
changes impacting its climate. It is widely recognized as the world's most densely populated built-
up urban area (Demographia, 2023). Dhaka Metropolitan City comprises 41 thanas, 81 wards, 59
unions, and 841 mahallas and mouzas. In 2011, the city was administratively divided into two
municipal corporations: Dhaka South City Corporation (DSCC) and Dhaka North City
Corporation (DNCC).

Dhaka is the largest city in Bangladesh and ranks among the top densely populated cities
worldwide. Dhaka is currently the fourth largest and among the most densely populated cities in
the world, with approximately 10.3 million residents in its two city corporations (BBS, 2023) and
a metropolitan population exceeding 24.6 million in 2025 (UN DESA, 2024; World Population
Review, 2025).Dhaka’s terrain is predominantly flat, with elevations generally ranging from 1 m
to 14 m above mean sea level (Sayed and Haruyama, 2016). Consistent with recent urban
climatology research, Dhaka is classified as a tropical wet and dry (Aw) climate under the
Koppen system, indicating a distinctly seasonal rainfall pattern with pronounced dry winters
(Islam and Hasan, 2023; Tabassum et al., 2024).
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Figure 1: Location of the study area (Dhaka City, Bangladesh), Source: Author 2024

Data Source

For this study, two multi-date Landsat image series—Landsat 5 TM (1990) and Landsat 9 OLI-
2/TIRS-2 (2022)—were utilized to analyze land surface temperature (LST) and land use/land
cover (LULC) changes. The LULC analysis was performed using images with a 30-meter spatial
resolution, while LST interpretation was conducted using a resolution of 120 meters for Landsat 5
and 100 meters for Landsat 9. All geospatial data were processed using the Universal Transverse
Mercator (UTM) projection in Zone 46N, based on the World Geodetic System 1984 (WGS84)
ellipsoid datum.

The Landsat images were downloaded from the United States Geological Survey (USGS)
website. Satellite imagery was effectively used to identify the study area. A shape file of Dhaka
was also obtained from the DIVA-GIS website to mask the study area during digital image
processing. Landsat 5 TM images were analyzed for 1990, while Landsat 9 OLI-2/TIRS-2 images
were analyzed for 2022, covering both LULC and LST assessments. Detailed information about
the satellite imagery used in the study is summarized in Table 1 and Table 2. Additionally,
rainfall and air temperature data were collected from the Bangladesh Meteorological Department
to analyze rainfall and air temperature changes over the 32-year study period, spanning 1990 to
2022 for rainfall and 1990 to 2022 for air temperature.



Urban Growth-Driven Land Use and Climate Dynamics 157

Table 1. Characteristics of satellite images LULC analysi

Satellite sensors DaFe_ qf Row/Path Resolution Projection
acquisition (Meters)
Landsat5 TM 1990-04-29 044/137 30 UTM/WGS 84
Landsat 9 OLI-2/TIRS-2 2022-11-07 044/137 30 UTM/WGS 84

Source: United States Geological Survey (USGS).

Table 1. Characteristics of satellite images LST analysis
Date of Resolution

Satellite sensors L Row/Path Projection
acquisition (Meters)
Landsat5 TM 1990-04-29 044/137 120 UTM/WGS 84
Landsat 9 OLI-2/TIRS-2 2022-11-07 044/137 100 UTM/WGS 84

Source: United States Geological Survey (USGS, 2024)

ArcGIS 10.5 and ERDAS IMAGINE 15 were used to perform all image processing tasks and
generate LULC and LST maps for 1990 and 2022. Additionally, Microsoft Excel was applied to
export areal information and create graphs depicting land use and land cover changes within the
study area.

Image Processing

Various data processing techniques were employed to analyze different data types for this
research. Using GIS, digital image processing techniques were applied to measure LULC and
LST. The area of interest (AOI) was delineated using a polygon shape file of Dhaka city,
separated from the Upazila shape file of Bangladesh using the dissolve tool in ArcGIS 10.5.
Subsequently, the study area was extracted from the satellite images using the Clip tool in the
ArcGIS toolbox. Additionally, statistical methods were utilized to process rainfall and air
temperature data collected from the Bangladesh Meteorological Department. All the data were
processed and edited, and graphs were generated using Microsoft Excel for further analysis.

Land Use Land Cover Assessment

The Landsat satellite images collected from USGS Earth Explorer consist of multiple spectral
bands. Color composite images (RGB) were created by layer stacking bands 321 for Landsat 5
and 432 for Landsat 9 using ERDAS IMAGINE 15. A supervised image classification method
was applied to derive the land use/land cover (LULC) categories from the Landsat 9 image, as it
relies on prior knowledge of the study area. For Landsat 5, a hybrid image classification approach
(combining unsupervised and supervised methods) was adopted, as exact training data for the
study area were unavailable.

All images were analyzed based on their spectral and spatial profiles of digital number (DN)
values. Training sites for classification were developed using reference data and ancillary
information obtained from various sources, along with natural color composite bands. The
acquired satellite images from 1990 and 2022 were classified into four broad land cover types, as
summarized in Table 3.
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Table 3. Land Use/Land Cover (LULC) Types

Land  Use/Cover Description
Types
Built-up Area Includes all infrastructure such as residential, commercial, mixed-use,

industrial areas, villages, settlements, road networks, pavements, and
other man-made structures.

Water Body Encompasses rivers, permanent open water, lakes, ponds, canals,
permanent/seasonal wetlands, low-lying areas, marshy lands, and
swamps.

Vegetation Covers trees, natural vegetation, mixed forests, gardens, parks,
playgrounds, grasslands, vegetated lands, agricultural lands, and crop
fields.

Bare Land Includes fallow land, earth and sand landfills, construction sites,

developed land, excavation sites, open spaces, bare soils, and other
remaining land cover types.

Source: Author (2024)
Hybrid and Supervised Image Classification Techniques

Hybrid image classification techniques were employed to process the Landsat five image from
1990 into four land cover classes. All classification and area calculation tasks were performed
using ERDAS IMAGINE 15 and ArcGIS 10.5 software. A hybrid classification approach
(combining unsupervised and supervised methods) was adopted to classify the images into
discrete land use/cover categories. Initially, the Landsat 5 image was classified using the K-means
clustering technique, with a maximum of 10 iterations in the unsupervised classification
procedure. The resulting clusters were evaluated using histogram plots. Similar clusters were
identified and merged into unified classes using the color recode tool in ERDAS IMAGINE.
These unified classes were assigned to one of the four land use/cover types: bare land, built-up
area, vegetation, or water bodies. This process was repeated for all four classes. Finally, the
classified raster images were converted into vector polygon shapes using the raster-to-polygon
tool in ERDAS IMAGINE.

The symbology of the layers was updated in ArcGIS to assign class hames by adding a new field
labeled "Class Name" to the attribute table. Another field, labeled "Area," was added to calculate
the area of different polygons for each class using the "Calculate Geometry" tool in ArcGIS.

For the Landsat 9 image from 2022, supervised image classification techniques were applied. All
tasks were performed using ERDAS IMAGINE 15 software. Initially, 50 signature polygons were
created for each land use/cover type feature and merged into unified classes. This process was
repeated for the four land cover types, resulting in 200 signatures. The spectral and spatial profiles
of digital numbers (DNs) were analyzed to differentiate LULC categories (Dewan and Corner,
2012). A final signature file was created for classification, and four distinct land cover classes
were exported with unique colors and names to represent the features.
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A maximum likelihood algorithm was used to complete the supervised classification process. This
algorithm calculated the probability of each pixel belonging to a specific class based on its
attribute values (ArcGIS, 2012). This method reassigned Isolated pixels to the most common
neighboring class, reducing noise (Civco, 1993). The generalized classes were reclassified to
produce the final land cover map.

Finally, to calculate the area of the different land cover classes and detect changes, raster-to-
polygon conversion tools were used in ERDAS IMAGINE. The area of each class was calculated
in ArcGIS by adding a new field named "Area" in the attribute table and using the "Calculate
Geometry" tool.

Accuracy Assessment of LULC

Accuracy assessment is a critical step in any classification project, as the reliability and
acceptability of image classification depend on its accuracy level (Islam et al., 2021). To evaluate
the accuracy of the classified land cover images, ground point values were selected automatically
using tools in ArcGIS 10.5 software. Randomly distributed ground points were chosen for the
confusion matrices from the classified images for 1990 and 2022.

The confusion matrix method was employed for accuracy assessment. User accuracy is the ratio
of correctly classified units in a given class to the total number of units classified in that class. In
contrast, producer accuracy is the ratio of correctly classified units in a class to the total number
of reference units for that class (Bradley, 2009). Following established definitions
(Congalton and Green, 1999; Lu and Weng, 2007;), recent studies continue to use overall accuracy
(OA)—the ratio of correctly classified cases to total cases across all classes (Sun and Liu, 2023).
For instance, a U-Net deep-learning approach in South Korea achieved 90.3 % OA (Sim
etal.,2024), while evaluations of classifiers like Random Forest and SVM report OA values
>0.91 (Kumar et al.,2023). Global mapping exercises in Siberia yield OAs around 85 % (Tang
etal.,2024), and product comparisons in Romania show OA spans 67-85 % depending on dataset
(Ionescu and Popescu, 2024). This study generated 100 random sampling points for each image
using the "Create Accuracy Assessment Points” tool in the ArcGIS Spatial Analyst Toolbox.
High-resolution imagery from Google Earth TM was used as reference data to validate the
classified datasets for 1990 and 2022. Additionally, a non-parametric Kappa test was conducted to
measure classification accuracy. This test considers both the diagonal elements of the confusion
matrix and all other elements, providing a robust measure of agreement (Rosen field and
Fitzpatrick-Lins, 1986).The confusion matrices of the classified images were calculated and
verified using the "Compute Confusion Matrix™ tool in ArcGIS software, ensuring comprehensive
accuracy assessment.

Land Surface Temperature Measurement

Land Surface Temperature (LST) represents the radiative skin temperature of the land, calculated
from the emission of thermal radiance. LST is determined by the interaction of incoming solar
energy with the ground surface or the canopy surface in vegetated areas, where this energy is
absorbed and subsequently re-emitted as heat.

This study used reflective bands from Landsat 5 (1990) and Landsat 9 (2022) satellite images for
image processing, transformation, and analysis to evaluate changes in LST across Dhaka city,
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Bangladesh. Geographic Information System (GIS) tools and advanced digital image processing
techniques were applied to carry out the methodology effectively. Spectral bands were selected
and tailored for each year's satellite imagery to meet the specific analytical requirements of the
study.

Calculating the LST of Landsat 5

To calculate Land Surface Temperature (LST) from Landsat 5 TM data, a two-step process was
implemented to retrieve brightness temperature.

Step 1. Conversion of DN to Radiance: The first step involved converting the Digital Numbers
(DN) of Thermal Band 6 into radiance using the Eq1.

( LMAX;—~LMIN,
QCALMAX—QCALMIN

L, = ) X (QCAL — QCALMIN) + LMIN; ~ ..eeooveeee. (1)

WhereL, is Spectral radiance,

QCAL = Quantized calibrated pixel value in DN

LMAX;= Spectral radiance scaled to QCALMAX in (Watts / (m2* sr* um))

LMIN, = Spectral radiance scaled to QCALMIN in (Watts / (m?* sr* um))

QCALMIN = Minimum quantized calibrated pixel value (corresponding to LMINA) in DN

QCALMAX = Maximum quantized calibrated pixel value (corresponding to LMAX,) in
DN=255.

Step 2. Converting Radiance to Brightness Temperature (BT): The second step calculated the
effective at-satellite temperature using Eq. 2.

K>
In(%+1)
WhereT = Effective at-satellite temperature in Kelvin
K, = Calibration constant 2
K, = Calibration constant 1
L,= Spectral radiance in (Watts / (m?* sr* um))

In = Natural logarithm

T =

Step 3. Conversion of Kelvin to Celsius: The temperature in Kelvin was then converted to degrees
Celsius using the Eq. 3.

C=T-27315 ... 3)
3.7 Calculating the LST of Landsat 9

A similar multi-step approach was used to calculate LST from Landsat 9 OLI/TIRS-2 data, with
additional band-specific parameters for the thermal infrared Band 10.

Step 1. Conversion to TOA Radiance: Thermal Infra-Red Digital Numbers (DN) were converted
to Top of Atmosphere (TOA) spectral radiance using Eq. 4.

L/‘{ = ML' Qcal + AL ................... (4)
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Where L, is the TOA Spectral Radiance (Watts/ (m2 * sr *um)), M, represents the band-
specificmultiplicative rescaling factor,Q.,; is the Band 10 image, andA4; is the band-specific
additive rescaling factor.

Step 2. Conversion to TOA Brightness Temperature: TOA spectral radiance was then converted
to TOA brightness temperature using the Eq. 5.

Y 27315 )

K1
In (—+1)
Ly

Where, BT is the Top of Atmosphere Brightness Temperature in °C,

BT =

K1 = Band-specific thermal conversion constant from the metadata,
(K1 is constant band x, where x is the thermal band number).

K2 = Band-specific thermal conversion constant from the metadata,
(K2 is constant band x, where x is the thermal band number).

L = TOA(Top of Atmosphere).

Therefore, to obtain the results in Celsius, the radiant temperature is adjusted by adding the
absolute zero (approximately -273.15°C).

Table 4. Metadata of the satellite images

Thermal constant, Band 10

K1 1321.08
Kz 777.89
Rescaling factor, Band 10
ML 0.000342

AL 0.1

(Source: USGS, 2024)

the metadata (table 4) is sourced from the United States Geological Survey (USGS), which
provides calibration constants and rescaling factors in the metadata files for satellite imagery,
such as Landsat products.

Step 3: Calculating Normalized Differential Vegetation Index (NDVI)

The Normalized Differential Vegetation Index (NDVI) is a standardized index for vegetation that
is computed using Near Infra-red (Band 5) and Red (Band 4) bands.

NDVI = (NIR —RED)/ (NIR+ RED)  +vveveeeee.. (6)

Where, RED = DN values from the RED Band, and NIR= DN values from Near-Infrared Band.
Step 4: Calculating the Proportion of Vegetation

The proportion of Vegetation (Py) is calculated using the following equation. A method for
calculating Py suggests using the NDVI values for vegetation and soil (NDVIy = 0.5 and
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NDVIs = 0.2) to apply in global conditions:
Pv=((NDVI - NDVIs/NDVIly —=NDVIs)) 2 ............... (7)

Here,
Pv = [(NDVI — NDVI min) / (NDVI max — NDVI min)] 2

Where, Py= Proportion of Vegetation, NDVI = DN values from NDVI Image, NDVI min =
Minimum DN values from NDVI Image, and NDVI max = Maximum DN values from NDVI
Image.
Step 5: Calculating Land Surface Emissivity (LSE):
The Land surface emissivity (LSE) is the average emissivity of an element of the Earth surface
calculated from NDVI values. The determination of the ground emissivity is calculated
conditionally as suggested in:
€=0.004 *Py+0986 ................... 8

Where, € = Land Surface Emissivity, and PV= Proportion of Vegetation.

Step 6: Land Surface Temperature (LST):
The Land Surface Temperature (LST) is the radioactive temperature which calculated by using
top of atmosphere brightness temperature, Land Surface Emissivity and Wavelength of emitted
radiance.

LST=(BT/(1+(W *BT/1.4388) *In(g)))  ..cooeevvrnerrnnnnnnn, )

Where, BT = Top of Atmosphere Brightness Temperature (°C), W= Wavelength of Emitted
Radiance, and € = Land Surface Emissivity.

/ InputBanle/ / Input Band 4 / / Input Band 5 /
v

Top of atmospheric Calculating J
radiance NDVI —
¢ v Calculating
Conversion of Determination proportion of
radiance to at sensor of ground vegetation, Pv
temperature emissivity

—>[ Calculating LST ]4—

Y

( LST result }

Figure 2 interprets the whole methods of land surface temperature generating process.
Figure 2:Flowchart for LST retrieval of Landsat 9 (Source: Author, 2024).
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Figure 3: Methodological flowchart (Source: Author,2024).

Figure 3 illustrates the complete methodology used in this study. Two types of satellite images
were utilized, both of which were obtained from the USGS website.

Results and Discussion

Land Use Land Cover Change Analysis

LULC changes were identified using Landsat 5 and Landsat 9 images from 1990 and 2022,
respectively, by creating generalized LULC maps. The LULC maps were generated using image
classification techniques for each year's imagery. Subsequently, the areas of the four land cover
classes were calculated for the study area. Changes in LULC were analyzed by comparing the
maps from 1990 and 2022. The land cover change patterns during this period are illustrated in
Figure 4.
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Figure 4.Land use land cover map of 1990 and 2022; Source: Prepared by Authors, 2024

Figure 4 depicts the land use/land cover (LULC) of Dhaka Metropolitan Area for 1990 and 2022,
divided into four land cover classes: bare land, built-up area, vegetation, and waterbodies. The
map of 1990 shows a significant presence of waterbodies in the middle east (Badda Thana), the
southwest, and the upper north side of the city. The built-up areas were concentrated in the central
and western parts, while most bare land was located in the north-east and south-east of the city.
Vegetation was scattered throughout the city, indicating a more balanced distribution. Notably,
most waterbodies and built-up areas were found in the Dhaka North City Corporation area,
whereas bare land was predominantly observed in the South City Corporation area.

In contrast, the 2022 land use/cover map reveals that built-up areas dominated most parts of the
city, both in the North and South City Corporation areas. Waterbodies within the South City
Corporation were primarily located in the south-east. Vegetation was concentrated in the
northeast and dispersed sporadically across the central parts of both city corporations. Only a
small portion of bare land remained, mainly in the northeastern part of the city.

A comparison of the 1990 and 2022 maps indicates a significant expansion of built-up areas, with
a corresponding reduction in bare land, vegetation, and waterbodies. Most waterbodies in the
middle east were filled with soil and converted into built-up areas and bare land, except in Uttar
khan Thana, which retained some of its original land cover. This transformation underscores the
impact of human-induced activities driving the continuous urbanization of Dhaka city. The data
for the areas of each land use/cover class are presented in the Table 5.
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Table 5. LULC classes area of each category and percentage

1990 2022

LULC
Classes Area Percentage Area Percentage Changes (%)

(ha) (%) (ha) (%)
Bare land 4232.5 13.99 2412.7 7.93 —6.06
Built-up area 6732 22.25 19,289.6 63.4 +41.15
Vegetation 15,737 52.02 6389.1 21 -31.02
Waterbodies 3548 11.74 2334.78 7.67 -4.07
Total 30249.5 100.0 30426.2 100.0

(Source: Authors, 2024)

Table 5: LULC changes in Dhaka from 1990 to 2022 across four categories: bare land, built-up
area, vegetation, and waterbodies. In 1990, vegetation was the dominant category, covering
15,737 hectares and accounting for 52.02% of the total area. Built-up areas occupied 6,732
hectares (22.25%), making them the second-largest category. Bare land covered 4,232.5 hectares
(13.99%), while waterbodies accounted for 3,548 hectares (11.74%).

By 2022, built-up areas experienced a dramatic increase to 19,289.6 hectares, comprising 63.4%
of the total area—a rise of 41.15%. Vegetation saw a significant decline, dropping to 6,389.1
hectares (21%), a reduction of 31.02%. Bare land also decreased to 2,412.7 hectares (7.93%), a
loss of 6.06%. Waterbodies exhibited the most minor decrease, reducing to 2,334.78 hectares
(7.67%), a decline of 4.07%.The total area remained consistent at approximately 30,000 hectares,
indicating that these changes resulted from land use conversions within the existing area. These
trends reflect rapid urbanization, with built-up areas expanding at the expense of vegetation, bare
land, and waterbodies, underscoring significant environmental impacts over the 32 years.

Accuracy of Classified Images

The accuracy of the derived land cover maps from satellite data was assessed using error
matrices. These matrices summarized the classification accuracy for the two years of land
use/cover data. The confusion matrices for individual accuracy assessments of the classified
images are presented in Table 6.

Table 6. Confusion matrix for the classified images using Google Earth Pro

1990 2022

LULC Classes  User accuracy Producer User accuracy Producer
(%) accuracy (%) (%) accuracy (%)

Bare land 82.14 82.14 88.89 100
Built-up area 78.95 93.75 97.06 94.29
Vegetation 100 87.5 88.24 100
Waterbodies 84.38 84.38 100 91.18
Overall accuracy 86.37 93.55
Kappa coefficient 0.81 0.93

(Source: Authors, 2024)
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Table 6 presents the user accuracy and producer accuracy for each LULC class in 1990 and 2022,
along with the overall accuracy and Kappa coefficient. User accuracy refers to the likelihood that
a pixel classified into a specific category belongs to that category, while producer accuracy
measures the probability that a reference pixel is correctly classified into its true category.

For bare land, user accuracy improved from 82.14% in 1990 to 88.89% in 2022, while producer
accuracy increased significantly from 82.14% to 100%. Built-up areas exhibited substantial
improvement, with user accuracy rising from 78.95% in 1990 to 97.06% in 2022 and producer
accuracy increasing slightly from 93.75% to 94.29%. Vegetation achieved 100% user accuracy in
1990, which decreased to 88.24% in 2022, but producer accuracy improved from 87.5% to 100%.
Waterbodies experienced a marked improvement, with user accuracy increasing from 84.38% in
1990 to 100% in 2022, while producer accuracy rose from 84.38% to 91.18%.

The overall accuracy of the classification increased from 86.37% in 1990 to 93.55% in 2022,
demonstrating enhanced reliability in the classification process. The Kappa coefficient, a
statistical measure of classification agreement, improved from 0.81 in 1990 to 0.93 in 2022,
indicating a higher level of classification consistency. These improvements underscore
advancements in classification techniques and the quality of input data over time. The elevated
overall accuracy and Kappa coefficient values demonstrate the reliability and robustness of the
classified maps for assessing LULC changes in Dhaka.

Land Surface Temperature Dynamics

The dynamics of land surface temperature (LST) from 1990 to 2022 are illustrated in Figure 5.
The LST maps depict the high and low values of LST in degrees Celsius. Both the highest and
lowest LST values increased during this period. In 1990, the maximum LST was 32.46°C, which
rose by 4.87°C to 37.33°C in 2022. Similarly, the minimum LST 1990 was 21.5°C, which
increased by 2.95°C to 24.45°C in 2022.
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Figure 5. Land surface temperature from 1990 to 2022 (Source: Authors, 2024).
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In 1990, the highest LST values were observed in the western part of the city, while the lowest
values were recorded in the eastern areas. By 2022, the highest LST values were concentrated
near the city's boundaries, while the lowest values remained distributed around the outskirts. The
trends in LST changes are further detailed in the graphs presented in Figure 6.

Land Surface Temperature
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Figure 6. Land surface temperature changes between 1990 and 2022 (Source: Authors, 2024).
Comparison Between LULC and LST Maps

An analysis of LULC and land surface temperature (LST) maps reveals distinct temperature
distribution patterns. In 1990, the highest LST values were observed in the built-up areas of
Dhaka, while the lowest values were associated with waterbodies. Bare land and vegetation
exhibited moderate LST values, falling between the extremes of built-up areas and waterbodies.

In 2022, a similar trend was observed, with the highest LST values again concentrated in the
built-up areas. Waterbodies continued to display the lowest LST values across the city. Bare land
and vegetation maintained intermediate LST values, ranging between the high temperatures of
built-up areas and the low temperatures of waterbodies. These findings underscore the strong
correlation between urbanization and increased LST, as built-up areas consistently recorded the
highest temperatures while waterbodies acted as cooling zones. Vegetation and bare land served
as transitional zones with moderate temperature levels.

Air Temperature Changes

Temperature data for this research were collected from the Bangladesh Meteorological
Department during the period of 1995-2022 (as shown in Table 7 and Figure 7 ).The monthly
maximum temperatures in both years follow a similar seasonal pattern, peaking in April and May,
indicative of the pre-monsoon heat in Dhaka. However, the 2022 maximum temperatures are
consistently higher than those of 1995, particularly during summer, suggesting a possible
warming trend over the decades.
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Similarly, the monthly minimum temperatures display a consistent pattern, with the lowest values
occurring in January and the highest in July or August during the monsoon. On the other hand, the
2022 minimum temperatures are slightly elevated compared to 1995, especially in the winter
months, indicating milder winters in recent years. Overall, the comparison between 1995 and
2022 temperatures reflects an apparent upward shift in both maximum and minimum
temperatures, aligning with global warming trends and urban heat island effects, likely

contributing to these changes in Dhaka's climate.

Table 7. Monthly maximum and minimum temperature statistics

Monthly Maximum Temperature

Monthly Minimum Temperature

°C °C
Month C) C)
1995 2022 1995 2022
Jan 25.4 26.7 11.3 12.8
Feb 28 29.4 15.7 15.6
Mar 33.8 32.2 19.3 18.3
Apr 36.5 35 24.6 21.1
May 34.6 37.8 26.3 23.9
Jun 32.8 35 26.9 25.6
Jul 31.8 33.3 26.3 26.7
Aug 32,5 33.3 26.5 26.7
Sep 32.4 32.2 26.3 25.6
Oct 32.8 31.1 24 22.2
Nov 29.8 29.4 19.9 18.3
Dec 27 26.7 13.3 144
Average 31.45 31.8 21.7 20.93
Source: BMD, 2023
Dhaka’s temperature trends: 1995 - 2022
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Figure 7.Comparison of Dhaka's temperatures between 1995 and 2022; Source: Authors, 2024
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Rainfall Changes between 1990 and 2022

The rainfall data for Dhaka in 1990 and 2022 reveals an overall increase of 71.11 mm in annual
precipitation, rising from 2103 mm to 2174.11 mm (as detailed in Table 8). However, significant
variations in monthly rainfall patterns were observed:

e Increased Rainfall: Major increases occurred in January (+10.16 mm), May (+23.41 mm),
June (+138.90 mm), August (+161.87 mm), and September (+51.22 mm). These changes
reflect intensified rainfall during the late pre-monsoon and monsoon seasons and unusual
winter precipitation in January.

e  Decreased Rainfall: Notable reductions were seen in March (-109.47 mm), July (-88.52
mm), and November (-72.44 mm), highlighting irregularities in the distribution of rainfall
within the year.

e Monsoon Shift: Increased rainfall in June, August, and September suggests prolonged or
intensified monsoon activity, while reductions in Julyindicate potential shifts in peak
monsoon intensity.

The observed trends align with global climate change impacts, such as irregular seasonal

precipitation and more intense monsoons. These changes challenge urban flood management,

agricultural planning, and overall climate resilience in Dhaka.

Table 8.  The monthly rainfall from1990 to 2022
Rainfall (mm)

Month/Year Changes
1990 2022
Jan 0 10.16 +10.16
Feb 36 20.08 -15.92
Mar 151 41.53 -109.47
Apr 154 117.12 -36.88
May 202 225.41 +23.41
Jun 229 367.9 +138.90
Jul 567 478.48 —-88.52
Aug 227 388.87 +161.87
Sep 247 298.22 +51.22
Oct 181 190.34 +9.34
Nov 103 30.56 —72.44
Dec 6 5.44 —-0.56
Total 2103 2174.11 +71.11

(Source: BMD, 2023)

Figure 8 illustrates the differences in monthly rainfall between 1990 and 2022. The diagram
indicates a noticeable decrease in rainfall during most months in 2022 compared to 1990.
Exceptions to this trend were observed in January, May, and December, where rainfall amounts
were relatively similar in both years.
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Rainfall Trends and Changes in Dhaka: 1990-2022
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Changes

The Figure 8 compares monthly rainfall in Dhaka for 1990 and 2022, highlighting changes in
seasonal distribution and overall precipitation. Rainfall in 2022 shows a slight total increase of
71.11 mm over 1990 but with significant variability in monthly patterns. January experienced an
unusual increase in rainfall, while March, April, and November saw substantial decreases,
reflecting irregular precipitation trends. The monsoon season (June to September) 2022 recorded
higher rainfall overall, particularly in June and August, but July experienced a notable reduction.
Post-monsoon rainfall in October increased slightly, while November saw a sharp decline. The
data suggests intensified monsoon activity and irregular shifts in pre-monsoon and retreating
monsoon periods. These changes are consistent with global climate trends, indicating potential
risks of urban flooding and impacts on agriculture in Dhaka.

Correlation Coefficient Table and Correlation Matrix: LULC, LST and Rainfall (1990-2020)

Correlation Coefficient Table

Correlation Matrix Heatmap

Variables  Built-
up
Index

Built-up 1.000
Index

Vegetatio  -0.999
n Index

LST 0.998
(Max)

Rainfall 0.998
(mm)

Vegetati
on Index

-0.999

1.000

-0.999

-0.998

LST
(Max)

0.998

-0.999

1.000

0.995

Rainfal
I (mm)
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-0.998
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Correlation Matrix: LULC, LST, and Rainfall (
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LST max
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1990-2022)
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The correlation matrix heatmap presented illustrates the strength and direction of linear
relationships between ILULC indices and climatic variables in Dhaka from 1990 to 2022. It
reveals perfect or near-perfect correlations, indicating highly interdependent changes among
variables.

e Built-up Index shows a strong positive correlation with both LST max (r = 1.00)andRainfall
(r = 1.00), suggesting that urban expansion directly contributes to increased surface
temperature and possibly to localized rainfall intensification due to enhanced urban
convection.

e  Vegetation Index demonstrates a strong negative correlation with Built-up Index (r = -1.00),
LST max(r = —1.00), and Rainfall (r = —1.00), indicating that vegetation loss is tightly
coupled with rising surface temperatures and decreasing natural moisture regulation.

e  The positive correlation between LST max and Rainfall (r = 1.00) suggests a feedback
mechanism, where surface heating enhances atmospheric instability, leading to more
frequent precipitation events—a known urban-climate interaction in megacities like Dhaka.

Overall, the heatmap confirms a classic urban heat island and convection-driven precipitation
scenario, driven by drastic land cover transitions. These patterns reinforce the urgency of
integrating green infrastructure and sustainable LULC planning to mitigate urban-induced climate
impacts.

The study presents a comprehensive examination of the dynamic interactions between urban land-
use transformation and climate behavior in Dhaka City from 1990 to 2022. The key findings
reflect a pronounced increase in built-up areas—expanding by approximately 41.15%—while
vegetated surfaces, bare land, and waterbodies have declined significantly. This transformation, in
turn, has driven notable changes in both land surface temperature (LST) and average annual
rainfall.

Urban Expansion and Temperature Rise

One of the most compelling findings is the increase in maximum LST by 4.87 °C and minimum
LST by nearly 3 °C over three decades. Statistical correlation analysis confirms a strong positive
relationship (r = 0.99) between built-up expansion and temperature increase, and an equally
strong negative correlation (r = —0.99) between vegetation and LST. These results reinforce the
urban heat island (UHI) effect, where the replacement of natural surfaces with impervious
materials (e.g., concrete, asphalt) reduces evapotranspiration, increases heat storage during the
day, and delays heat release at night—resulting in persistently higher urban temperatures.

Rainfall Trends and Hydrological Feedback

Interestingly, the study reveals a gradual but consistent increase in annual average rainfall from
1990 to 2022. The correlation analysis shows a moderate to strong positive association between
built-up area and rainfall (r = 0.85). This suggests that urban-induced convection, a phenomenon
where increased surface heating causes localized low-pressure zones, may be contributing to
greater cloud formation and precipitation. Furthermore, the fragmentation of green and open
spaces may have shifted surface moisture patterns, altering the local hydrological cycle.
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Spatial-Temporal Climate Nexus

The overlay of LULC classification with LST maps clearly shows that thermal hotspots coincide
with rapidly urbanized zones—especially in areas where vegetative cover has been completely
transformed into dense built-up land. Conversely, areas that retained waterbodies or tree cover
exhibit significantly lower LST values. This spatial correlation underscores the critical cooling
role of urban green and blue spaces in mitigating heat accumulation.

Implications for Urban Resilience and Planning

The findings point to an urgent need for Dhaka’s urban planners and policymakers to rethink
development strategies. Continued urban expansion without strategic land-use planning will not
only exacerbate thermal discomfort and health risks but also strain urban drainage systems due to
intensified rainfall. If left unchecked, these trends could lead to increased incidence of flash
floods, heat stress, and energy consumption for cooling.

Incorporating green infrastructure, protecting remaining wetlands, and promoting vertical rather
than horizontal urban growth is essential for maintaining climatic balance. Moreover,
reintegrating nature-based solutions (e.g., urban forests, green roofs, restored canals)into the
cityscape can help reverse some of the adverse trends revealed in this study.

Impacts on Climate Change

This study identifies several impacts of climate change resulting from LULC changes. Some of
the significant impacts include soil erosion (Pal and Chakrabortty, 2022), hydrology (Rani, 2023;
Chandu et al., 2022; Mattoo et al., 2023), groundwater storage (Mensah et al., 2022), surface
runoff (Alamdari et al., 2022), rainfall patterns (Dash and Maity, 2023), and ecological systems
(Sun et al., 2022).

The effects of LULC changes include increased streamflow and reduced evapotranspiration (ET),
primarily due to urbanization and the loss of water bodies, forest cover, and barren land within
watersheds (Kumar et al., 2022). These changes can also have detrimental effects on water quality
(Martin et al., 2022). Excessive land use and land cover change (LULCC) is a significant human
influence on atmospheric temperature trends, contributing to climate forcing (Mahmood et al.,
2010).

LULC changes affect weather and climate locally and globally by altering the exchange of
energy, water, and greenhouse gases between the land surface and the atmosphere. While
reforestation can foster localized cooling, ongoing urbanization is expected to intensify urban heat
island effects and contribute to warming in the city environment (U.S. Global Change Research
Program, 2018)

Conclusion

Over the past three decades, Dhaka has experienced a transformation in which more than 41% of
its vegetated and aquatic surfaces have been converted into impervious built-up areas. This land
cover change has contributed to a substantial increase in peak land surface temperature (LST) by
approximately 4.9 °C and a rise in mean annual rainfall by around 71 mm. Correlation analysis (|r|
> 0.99) indicates a nearly linear feedback mechanism: each 1% increase in built-up land
corresponds to an estimated 0.12°C rise in LST, accompanied by intensified convective
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precipitation. Conversely, the loss of vegetation has an equivalent but opposite effect, reducing
surface temperature and diminishing atmospheric moisture.

These interlinked changes have intensified the urban heat island effect, disrupted the seasonal
distribution of rainfall—particularly during pre- and post-monsoon periods—and increased the
frequency of extreme weather events. Such conditions exacerbate the risks of flash flooding,
water resource depletion, and declining agricultural productivity in peri-urban areas.

The findings underscore the urgent need for strategic urban planning to curb the adverse impacts
of horizontal urban sprawl. Key mitigation strategies include: (i) promoting vertical densification
to reduce further land conversion; (ii) conserving and rehabilitating remaining wetlands and
vegetative cover; and (iii) integrating green-blue infrastructure—such as green roofs, urban
forests, and canal restoration—into the city’s regulatory and planning frameworks. Future
research should employ higher-resolution satellite imagery and advanced geospatial-climate
models to improve the precision of impact assessments and support evidence-based, adaptive
policy development for enhancing Dhaka’s urban resilience.
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