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ABSTRACT 

Since 1990, Dhaka has experienced rapid, unplanned urban expansion, 

profoundly altering land-use patterns and intensifying local climate extremes in 

one of the world’s most densely populated megacities. This study aims to 

quantify three decades of land use and land cover (LULC) changes and evaluate 

their associated impacts on land surface temperature (LST), near-surface air 

temperature, and rainfall, with a view to informing climate-resilient urban 

planning. Landsat 5 TM (1990) and Landsat 9 OLI-2/TIRS-2 (2022) imagery 

were analyzed using ArcGIS and ERDAS Imagine to classify built-up areas, 

vegetation, bare land, and water, achieving high accuracy (κ = 0.93). LST was 

estimated using radiometric calibration, NDVI-based emissivity correction, and 

the mono-window algorithm, while long-term climate data from the Bangladesh 

Meteorological Department supported trend analysis. Findings reveal a 41.15% 

increase in built-up area, largely at the expense of vegetation (–31.02%), 

resulting in a 4.87 °C rise in peak LST and a 71 mm increase in annual rainfall. 

Strong positive correlations (|r| ≥ 0.99) show that each 1% gain in built-up land 

adds approximately 0.12 °C to LST and enhances convective precipitation, 

whereas vegetation loss exerts a cooling and drying effect. These dynamics are 

exacerbating urban-heat-island intensity, disrupting seasonal rainfall, and 

increasing flash-flood and health risks. To counteract these effects, the study 

recommends vertical urban densification, conservation of wetlands and green 

belts, and integration of green–blue infrastructure alongside high-resolution 

remote sensing and climate modeling for adaptive urban policy and planning. 

Keywords: urban expansion, land use and land cover change (LULC), urban heat island (UHI), 

land surface temperature (LST), climate-resilient urban planning 

Introduction 

Climate change is widely regarded as a global problem (Abbas et al., 2023; Biswas, 2023; 

Moshou and Drinia, 2023; Swinburn et al., 2022). Although climate change is treated as a global 

issue, many scholars now argue that it should be viewed as a multi-level problem requiring 

                                                   
*Correspondence: masrafuddin.85@gmail.com 

Jagannath University Journal of Life and Earth Sciences, 10(2) 153-177 pISSN 2414-1402, eISSN 2791-1845 
 

 

DOI: https://doi.org/10.3329/jnujles.v10i2.85255 

JnUJLES 

mailto:masrafuddin.85@gmail.com
https://doi.org/10.3329/jnujles.v10i2.85255


154 Uddin et al 

 
localized and regional responses (Bulkeley and Newell, 2023). Human activities have 

significantly altered the environment for thousands of years, with extensive land use and land 

cover changes (LULCC) playing a crucial role in influencing atmospheric temperature trends 

(Mahmood et al., 2010). Hence, land use and land cover change analysis are vital for assessing 

global environmental changes across various spatial and temporal scales (Hurtt et al., 2021; 

Lambin, 1997). 

Urban growth-driven land use and land cover changes are among the most significant 

anthropogenic factors influencing weather patterns, contributing to increased greenhouse gas 

emissions worldwide (Liu et al., 2019). Such urbanization leads to substantial LULC changes, 

significantly affecting land surface temperature (LST) in rapidly growing megacities (Kafy et al., 

2021). The combined effects of greenhouse gas emissions and land use changes are significant 

drivers of climate change, often leading to increases in daily mean surface air temperatures (Yang 

et al., 2009). Furthermore, Recent empirical studies show rapid LULC change in developing 

regions. For instance, Tahir et al. (2025) documented a 359.8 km² urban expansion and 198.7 km² 

vegetation loss in Lahore (1994–2024). Similarly, Gabisa et al. (2025) reported that in Burayu 

sub-city cropland dropped from 51.2 % to 30.3 %, forest from 32.9 % to 15 %, and settlement 

grew from 2.5 % to 46.9 % (1993–2023). These trends reinforce the view that anthropogenic 

LULC changes are occurring faster in developing countries vs developed nations. Large-scale 

land use and cover changes, particularly in developed countries with rapid urbanization trends, 

have become a pressing concern as urban expansion drives environmental changes across 

multiple scales (Dewan et al., 2012). 

Land-use land-cover (LULC) changes significantly influence local climate dynamics (Ding and 

Shi, 2013). Bangladesh is one of the most climate-vulnerable countries in the world (World Bank, 

2022). In recent years, the country has undergone substantial land use and land cover changes 

(LULCC) (Xu et al., 2020). Dhaka, the capital of Bangladesh, has experienced rapid urban 

growth over the last few decades, resulting in numerous adverse environmental impacts (Dewan 

et al., 2012). Land use changes driven by urbanization, including deforestation and rapid 

population growth, have led to unpredictable heavy rainfall and rising temperatures (Thapa, 

2021). These changes highlight the need for administrative interventions to mitigate their effects 

on the livelihoods of urban populations. Geographic Information Systems (GIS) and remote 

sensing (RS) are cost-effective tools for analyzing the spatial and temporal dynamics of land use 

and land cover (LULC) changes (Bikis et al., 2025; Halder et al., 2025; Mashala et al., 2023). 

Geospatial and statistical analyses also support urban land use planning programs. 

Urbanization predominantly reflects land-use changes and is widely recognized as a primary 

driver of climate and ecological changes (Ding and Shi, 2013). Rising sea levels, floods, and 

intensifying cyclones further exacerbate Bangladesh's vulnerability to climate change (IPCC). 

Urbanization has significantly contributed to these issues by replacing vegetation and bare land 

with built-up areas, leading to remarkable increases in land surface temperature (LST) (Gazi et 

al., 2021). The construction of urban infrastructure for housing, transportation, and industry has 

disrupted the surface energy balance, further elevating LST (Imran et al., 2021). This rise in LST 



Urban Growth-Driven Land Use and Climate Dynamics 155 

has adversely impacted urban biodiversity, ecosystems, and public health (Kafy et al., 2021). 

Urban growth induced LULC changes are closely linked to LST fluctuations (Rahman et al., 

2022). The major districts of Bangladesh, with their large population bases, lack adequate 

resources to address the effects of rapid urbanization. Consequently, urban temperature increases 

directly and indirectly affect these populations (Rahman et al., 2022). Urban areas not only alter 

weather patterns but also influence water runoff dynamics. A strong relationship exists between 

LST and near-surface air temperature (Tair), though the two have distinct physical characteristics 

and responses to atmospheric conditions (Mutibwa et al., 2015). Urbanization-driven LULC 

changes also affect urban microclimates and can significantly influence precipitation patterns 

(Pathirana et al., 2014). 

This study aims to assess the spatiotemporal relationship between urban land-use/land-cover 

(LULC) changes and climate dynamics in Dhaka City from 1990 to 2022. It focuses on 

classifying LULC using multi-temporal Landsat imagery and analyzing changes in land surface 

temperature (LST), air temperature, and rainfall. The objectives include exploring how urban 

expansion influences local climate patterns and offering evidence-based recommendations for 

sustainable urban planning and climate resilience. 

Materials and Methods  

Study area 

This study was conducted in the central region of Bangladesh. Dhaka, the capital city, is located 

at approximately 23°46'48"N latitude and 90°25'36"E longitude (Figure 1) on the northeastern 

banks of the Buriganga River. The Balu River borders the city to the east, Tongi Khal to the 

north, and the Turag River to the west. Dhaka lies in the lower reaches of the Ganges Delta and 

spans a total area of 306.4 km² (Bangladesh Bureau of Statistics [BBS], 2023; Hossain et al., 

2023; Abdullah et al., 2021; Nowreen et al., 2021). The districts of Gazipur, Tangail, 

Munshiganj, Rajbari, Narayanganj, and Manikganj surround Dhaka District. 

As the country's most populous and urbanized city, Dhaka has undergone significant land use 

changes impacting its climate. It is widely recognized as the world's most densely populated built-

up urban area (Demographia, 2023). Dhaka Metropolitan City comprises 41 thanas, 81 wards, 59 

unions, and 841 mahallas and mouzas. In 2011, the city was administratively divided into two 

municipal corporations: Dhaka South City Corporation (DSCC) and Dhaka North City 

Corporation (DNCC). 

Dhaka is the largest city in Bangladesh and ranks among the top densely populated cities 

worldwide. Dhaka is currently the fourth largest and among the most densely populated cities in 

the world, with approximately 10.3 million residents in its two city corporations (BBS, 2023) and 

a metropolitan population exceeding 24.6 million in 2025 (UN DESA, 2024; World Population 

Review, 2025).Dhaka’s terrain is predominantly flat, with elevations generally ranging from 1 m 

to 14 m above mean sea level (Sayed and Haruyama, 2016). Consistent with recent urban 

climatology research, Dhaka is classified as a tropical wet and dry (Aw) climate under the 

Köppen system, indicating a distinctly seasonal rainfall pattern with pronounced dry winters 

(Islam and Hasan, 2023; Tabassum et al., 2024). 
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Figure 1: Location of the study area (Dhaka City, Bangladesh), Source: Author 2024 
 

Data Source  

For this study, two multi-date Landsat image series—Landsat 5 TM (1990) and Landsat 9 OLI-

2/TIRS-2 (2022)—were utilized to analyze land surface temperature (LST) and land use/land 

cover (LULC) changes. The LULC analysis was performed using images with a 30-meter spatial 

resolution, while LST interpretation was conducted using a resolution of 120 meters for Landsat 5 

and 100 meters for Landsat 9. All geospatial data were processed using the Universal Transverse 

Mercator (UTM) projection in Zone 46N, based on the World Geodetic System 1984 (WGS84) 

ellipsoid datum. 

The Landsat images were downloaded from the United States Geological Survey (USGS) 

website. Satellite imagery was effectively used to identify the study area. A shape file of Dhaka 

was also obtained from the DIVA-GIS website to mask the study area during digital image 

processing. Landsat 5 TM images were analyzed for 1990, while Landsat 9 OLI-2/TIRS-2 images 

were analyzed for 2022, covering both LULC and LST assessments. Detailed information about 

the satellite imagery used in the study is summarized in Table 1 and Table 2. Additionally, 

rainfall and air temperature data were collected from the Bangladesh Meteorological Department 

to analyze rainfall and air temperature changes over the 32-year study period, spanning 1990 to 

2022 for rainfall and 1990 to 2022 for air temperature. 
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Table 1. Characteristics of satellite images LULC analysi 

Satellite sensors 
Date of 

acquisition 
Row/Path 

Resolution 

(Meters) 
Projection 

Landsat 5 TM 1990-04-29 044/137 30 UTM/WGS 84 

Landsat 9 OLI-2/TIRS-2 2022-11-07 044/137 30 UTM/WGS 84 

Source: United States Geological Survey (USGS). 

Table 1. Characteristics of satellite images LST analysis 

Satellite sensors 
Date of 

acquisition 
Row/Path 

Resolution 

(Meters) 
Projection 

Landsat 5 TM 1990-04-29 044/137 120 UTM/WGS 84 

Landsat 9 OLI-2/TIRS-2 2022-11-07 044/137 100 UTM/WGS 84 

Source: United States Geological Survey (USGS, 2024) 

ArcGIS 10.5 and ERDAS IMAGINE 15 were used to perform all image processing tasks and 

generate LULC and LST maps for 1990 and 2022. Additionally, Microsoft Excel was applied to 

export areal information and create graphs depicting land use and land cover changes within the 

study area. 

Image Processing 

Various data processing techniques were employed to analyze different data types for this 

research. Using GIS, digital image processing techniques were applied to measure LULC and 

LST. The area of interest (AOI) was delineated using a polygon shape file of Dhaka city, 

separated from the Upazila shape file of Bangladesh using the dissolve tool in ArcGIS 10.5. 

Subsequently, the study area was extracted from the satellite images using the Clip tool in the 

ArcGIS toolbox. Additionally, statistical methods were utilized to process rainfall and air 

temperature data collected from the Bangladesh Meteorological Department. All the data were 

processed and edited, and graphs were generated using Microsoft Excel for further analysis. 

Land Use Land Cover Assessment 

The Landsat satellite images collected from USGS Earth Explorer consist of multiple spectral 

bands. Color composite images (RGB) were created by layer stacking bands 321 for Landsat 5 

and 432 for Landsat 9 using ERDAS IMAGINE 15. A supervised image classification method 

was applied to derive the land use/land cover (LULC) categories from the Landsat 9 image, as it 

relies on prior knowledge of the study area. For Landsat 5, a hybrid image classification approach 

(combining unsupervised and supervised methods) was adopted, as exact training data for the 

study area were unavailable. 

All images were analyzed based on their spectral and spatial profiles of digital number (DN) 

values. Training sites for classification were developed using reference data and ancillary 

information obtained from various sources, along with natural color composite bands. The 

acquired satellite images from 1990 and 2022 were classified into four broad land cover types, as 

summarized in Table 3. 
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Table 3. Land Use/Land Cover (LULC) Types 

Land Use/Cover 

Types 

Description 

Built-up Area Includes all infrastructure such as residential, commercial, mixed-use, 

industrial areas, villages, settlements, road networks, pavements, and 

other man-made structures. 

Water Body Encompasses rivers, permanent open water, lakes, ponds, canals, 

permanent/seasonal wetlands, low-lying areas, marshy lands, and 

swamps. 

Vegetation Covers trees, natural vegetation, mixed forests, gardens, parks, 

playgrounds, grasslands, vegetated lands, agricultural lands, and crop 

fields. 

Bare Land Includes fallow land, earth and sand landfills, construction sites, 

developed land, excavation sites, open spaces, bare soils, and other 

remaining land cover types. 

Source: Author (2024) 

Hybrid and Supervised Image Classification Techniques 

Hybrid image classification techniques were employed to process the Landsat five image from 

1990 into four land cover classes. All classification and area calculation tasks were performed 

using ERDAS IMAGINE 15 and ArcGIS 10.5 software. A hybrid classification approach 

(combining unsupervised and supervised methods) was adopted to classify the images into 

discrete land use/cover categories. Initially, the Landsat 5 image was classified using the K-means 

clustering technique, with a maximum of 10 iterations in the unsupervised classification 

procedure. The resulting clusters were evaluated using histogram plots. Similar clusters were 

identified and merged into unified classes using the color recode tool in ERDAS IMAGINE. 

These unified classes were assigned to one of the four land use/cover types: bare land, built-up 

area, vegetation, or water bodies. This process was repeated for all four classes. Finally, the 

classified raster images were converted into vector polygon shapes using the raster-to-polygon 

tool in ERDAS IMAGINE. 

The symbology of the layers was updated in ArcGIS to assign class names by adding a new field 

labeled "Class Name" to the attribute table. Another field, labeled "Area," was added to calculate 

the area of different polygons for each class using the "Calculate Geometry" tool in ArcGIS. 

For the Landsat 9 image from 2022, supervised image classification techniques were applied. All 

tasks were performed using ERDAS IMAGINE 15 software. Initially, 50 signature polygons were 

created for each land use/cover type feature and merged into unified classes. This process was 

repeated for the four land cover types, resulting in 200 signatures. The spectral and spatial profiles 

of digital numbers (DNs) were analyzed to differentiate LULC categories (Dewan and Corner, 

2012). A final signature file was created for classification, and four distinct land cover classes 

were exported with unique colors and names to represent the features. 
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A maximum likelihood algorithm was used to complete the supervised classification process. This 

algorithm calculated the probability of each pixel belonging to a specific class based on its 

attribute values (ArcGIS, 2012). This method reassigned Isolated pixels to the most common 

neighboring class, reducing noise (Civco, 1993). The generalized classes were reclassified to 

produce the final land cover map. 

Finally, to calculate the area of the different land cover classes and detect changes, raster-to-

polygon conversion tools were used in ERDAS IMAGINE. The area of each class was calculated 

in ArcGIS by adding a new field named "Area" in the attribute table and using the "Calculate 

Geometry" tool. 

Accuracy Assessment of LULC 

Accuracy assessment is a critical step in any classification project, as the reliability and 

acceptability of image classification depend on its accuracy level (Islam et al., 2021). To evaluate 

the accuracy of the classified land cover images, ground point values were selected automatically 

using tools in ArcGIS 10.5 software. Randomly distributed ground points were chosen for the 

confusion matrices from the classified images for 1990 and 2022. 

The confusion matrix method was employed for accuracy assessment. User accuracy is the ratio 

of correctly classified units in a given class to the total number of units classified in that class. In 

contrast, producer accuracy is the ratio of correctly classified units in a class to the total number 

of reference units for that class (Bradley, 2009). Following established definitions 

(Congalton and Green, 1999; Lu and Weng, 2007;), recent studies continue to use overall accuracy 

(OA)—the ratio of correctly classified cases to total cases across all classes (Sun and Liu, 2023). 

For instance, a U-Net deep-learning approach in South Korea achieved 90.3 % OA (Sim 

et al., 2024), while evaluations of classifiers like Random Forest and SVM report OA values 

≥ 0.91 (Kumar et al., 2023). Global mapping exercises in Siberia yield OAs around 85 % (Tang 

et al., 2024), and product comparisons in Romania show OA spans 67–85 % depending on dataset 

(Ionescu and Popescu, 2024). This study generated 100 random sampling points for each image 

using the "Create Accuracy Assessment Points" tool in the ArcGIS Spatial Analyst Toolbox. 

High-resolution imagery from Google Earth TM was used as reference data to validate the 

classified datasets for 1990 and 2022. Additionally, a non-parametric Kappa test was conducted to 

measure classification accuracy. This test considers both the diagonal elements of the confusion 

matrix and all other elements, providing a robust measure of agreement (Rosen field and 

Fitzpatrick-Lins, 1986).The confusion matrices of the classified images were calculated and 

verified using the "Compute Confusion Matrix" tool in ArcGIS software, ensuring comprehensive 

accuracy assessment. 

Land Surface Temperature Measurement 

Land Surface Temperature (LST) represents the radiative skin temperature of the land, calculated 

from the emission of thermal radiance. LST is determined by the interaction of incoming solar 

energy with the ground surface or the canopy surface in vegetated areas, where this energy is 

absorbed and subsequently re-emitted as heat. 

This study used reflective bands from Landsat 5 (1990) and Landsat 9 (2022) satellite images for 

image processing, transformation, and analysis to evaluate changes in LST across Dhaka city, 
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Bangladesh. Geographic Information System (GIS) tools and advanced digital image processing 

techniques were applied to carry out the methodology effectively. Spectral bands were selected 

and tailored for each year's satellite imagery to meet the specific analytical requirements of the 

study. 

Calculating the LST of Landsat 5 

To calculate Land Surface Temperature (LST) from Landsat 5 TM data, a two-step process was 

implemented to retrieve brightness temperature. 

Step 1. Conversion of DN to Radiance: The first step involved converting the Digital Numbers 

(DN) of Thermal Band 6 into radiance using the Eq1. 

𝐿𝜆 =  (
𝐿𝑀𝐴𝑋𝜆−𝐿𝑀𝐼𝑁𝜆

𝑄𝐶𝐴𝐿𝑀𝐴𝑋−𝑄𝐶𝐴𝐿𝑀𝐼𝑁
) ×  (𝑄𝐶𝐴𝐿 − 𝑄𝐶𝐴𝐿𝑀𝐼𝑁) + 𝐿𝑀𝐼𝑁𝜆       …………………(1) 

Where𝐿𝜆is Spectral radiance, 

QCAL = Quantized calibrated pixel value in DN 

𝐿𝑀𝐴𝑋𝜆= Spectral radiance scaled to QCALMAX in (Watts / (m²* sr* µm)) 

𝐿𝑀𝐼𝑁𝜆 = Spectral radiance scaled to QCALMIN in (Watts / (m²* sr* μm)) 

QCALMIN = Minimum quantized calibrated pixel value (corresponding to LMINA) in DN 

QCALMAX = Maximum quantized calibrated pixel value (corresponding to LMAX,) in   

DN=255.  

Step 2. Converting Radiance to Brightness Temperature (BT): The second step calculated the 

effective at-satellite temperature using Eq. 2.  

𝑇 =  
𝐾2

In(
𝐾1
𝐿𝜆

+1)
   ……………… (2) 

WhereT = Effective at-satellite temperature in Kelvin 

𝐾2 = Calibration constant 2 

𝐾1 = Calibration constant 1 

𝐿𝜆= Spectral radiance in (Watts / (m²* sr* µm)) 

ln = Natural logarithm 

Step 3. Conversion of Kelvin to Celsius: The temperature in Kelvin was then converted to degrees 

Celsius using the Eq. 3. 

𝐶 = 𝑇 − 273.15   ………………. (3) 

3.7 Calculating the LST of Landsat 9 

A similar multi-step approach was used to calculate LST from Landsat 9 OLI/TIRS-2 data, with 

additional band-specific parameters for the thermal infrared Band 10. 

Step 1. Conversion to TOA Radiance: Thermal Infra-Red Digital Numbers (DN) were converted 

to Top of Atmosphere (TOA) spectral radiance using Eq. 4. 

𝐿𝜆 = 𝑀𝐿 . 𝑄𝑐𝑎𝑙 + 𝐴𝐿  ………………. (4) 
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Where 𝐿𝜆 is the TOA Spectral Radiance (Watts/ (m2 * sr *μm)), 𝑀𝐿 represents the band-

specificmultiplicative rescaling factor,𝑄𝑐𝑎𝑙 is the Band 10 image, and𝐴𝐿 is the band-specific 

additive rescaling factor. 

Step 2. Conversion to TOA Brightness Temperature: TOA spectral radiance was then converted 

to TOA brightness temperature using the Eq. 5. 

𝐵𝑇 =  
𝐾2

In (
𝐾1
𝐿𝜆

+1)
− 273.15  ………………….. (5) 

Where, BT is the Top of Atmosphere Brightness Temperature in °C,  

K1 = Band-specific thermal conversion constant from the metadata,  

(K1 is constant band x, where x is the thermal band number).  

K2 = Band-specific thermal conversion constant from the metadata,  

(K2 is constant band x, where x is the thermal band number).  

L = TOA(Top of Atmosphere).  

Therefore, to obtain the results in Celsius, the radiant temperature is adjusted by adding the 

absolute zero (approximately -273.15°C).  

Table 4. Metadata of the satellite images 

Thermal constant, Band 10 

K1  1321.08 

K2  777.89 

Rescaling factor, Band 10 

ML  0.000342 

AL  0.1 

                                                                                                      (Source: USGS, 2024) 

 

the metadata (table 4) is sourced from the United States Geological Survey (USGS), which 

provides calibration constants and rescaling factors in the metadata files for satellite imagery, 

such as Landsat products. 

       Step 3: Calculating Normalized Differential Vegetation Index (NDVI) 

The Normalized Differential Vegetation Index (NDVI) is a standardized index for vegetation that 

is computed using Near Infra-red (Band 5) and Red (Band 4) bands. 

NDVI = (NIR – RED) / (NIR + RED) ………………. (6) 

Where, RED = DN values from the RED Band, and NIR= DN values from Near-Infrared Band. 

       Step 4: Calculating the Proportion of Vegetation 

The proportion of Vegetation (PV) is calculated using the following equation. A method for 

calculating PV suggests using the NDVI values for vegetation and soil (NDVIV = 0.5 and  
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 NDVI𝑠 = 0.2) to apply in global conditions:  

 PV = ((NDVI – NDVIS / NDVIV – NDVI𝑠)) 2 …………… (7) 

Here, 

PV = [(NDVI – NDVI min) / (NDVI max – NDVI min)] 2 

Where, PV= Proportion of Vegetation, NDVI = DN values from NDVI Image, NDVI min = 

Minimum DN values from NDVI Image, and NDVI max = Maximum DN values from NDVI 

Image. 

        Step 5: Calculating Land Surface Emissivity (LSE): 

The Land surface emissivity (LSE) is the average emissivity of an element of the Earth surface 

calculated from NDVI values. The determination of the ground emissivity is calculated 

conditionally as suggested in: 

ε = 0.004 * PV + 0.986 ………………. (8) 

Where, ε = Land Surface Emissivity, and PV= Proportion of Vegetation. 

       Step 6: Land Surface Temperature (LST): 

The Land Surface Temperature (LST) is the radioactive temperature which calculated by using 

top of atmosphere brightness temperature, Land Surface Emissivity and Wavelength of emitted 

radiance. 

LST = (BT / (1 + (W * BT / 1.4388) * ln(ε))) …………………. (9) 

Where, BT = Top of Atmosphere Brightness Temperature (°C), W= Wavelength of Emitted 

Radiance, and ε = Land Surface Emissivity. 

 

Figure 2 interprets the whole methods of land surface temperature generating process. 

Figure 2:Flowchart for LST retrieval of Landsat 9 (Source: Author, 2024). 
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Figure 3: Methodological flowchart (Source: Author,2024). 

Figure 3 illustrates the complete methodology used in this study. Two types of satellite images 

were utilized, both of which were obtained from the USGS website. 

 

Results and Discussion 

Land Use Land Cover Change Analysis 

LULC changes were identified using Landsat 5 and Landsat 9 images from 1990 and 2022, 

respectively, by creating generalized LULC maps. The LULC maps were generated using image 

classification techniques for each year's imagery. Subsequently, the areas of the four land cover 

classes were calculated for the study area. Changes in LULC were analyzed by comparing the 

maps from 1990 and 2022. The land cover change patterns during this period are illustrated in 

Figure 4. 
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Figure 4.Land use land cover map of 1990 and 2022; Source: Prepared by Authors, 2024 

Figure 4 depicts the land use/land cover (LULC) of Dhaka Metropolitan Area for 1990 and 2022, 

divided into four land cover classes: bare land, built-up area, vegetation, and waterbodies. The 

map of 1990 shows a significant presence of waterbodies in the middle east (Badda Thana), the 

southwest, and the upper north side of the city. The built-up areas were concentrated in the central 

and western parts, while most bare land was located in the north-east and south-east of the city. 

Vegetation was scattered throughout the city, indicating a more balanced distribution. Notably, 

most waterbodies and built-up areas were found in the Dhaka North City Corporation area, 

whereas bare land was predominantly observed in the South City Corporation area. 

In contrast, the 2022 land use/cover map reveals that built-up areas dominated most parts of the 

city, both in the North and South City Corporation areas. Waterbodies within the South City 

Corporation were primarily located in the south-east. Vegetation was concentrated in the 

northeast and dispersed sporadically across the central parts of both city corporations. Only a 

small portion of bare land remained, mainly in the northeastern part of the city. 

A comparison of the 1990 and 2022 maps indicates a significant expansion of built-up areas, with 

a corresponding reduction in bare land, vegetation, and waterbodies. Most waterbodies in the 

middle east were filled with soil and converted into built-up areas and bare land, except in Uttar 

khan Thana, which retained some of its original land cover. This transformation underscores the 

impact of human-induced activities driving the continuous urbanization of Dhaka city. The data 

for the areas of each land use/cover class are presented in the Table 5. 
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Table 5. LULC classes area of each category and percentage 

LULC 

Classes 

1990 

 

2022 

 Changes (%) 
Area 

(ha) 

Percentage 

(%) 

Area 

(ha) 

Percentage 

(%) 

Bare land  4232.5 13.99 2412.7 7.93 6.06 

Built-up area  6732 22.25 19,289.6 63.4 + 41.15 

Vegetation  15,737 52.02 6389.1 21  31.02 

Waterbodies 3548 11.74 2334.78 7.67 4.07 

Total 30249.5 100.0 30426.2 100.0  

(Source: Authors, 2024) 

Table 5: LULC changes in Dhaka from 1990 to 2022 across four categories: bare land, built-up 

area, vegetation, and waterbodies. In 1990, vegetation was the dominant category, covering 

15,737 hectares and accounting for 52.02% of the total area. Built-up areas occupied 6,732 

hectares (22.25%), making them the second-largest category. Bare land covered 4,232.5 hectares 

(13.99%), while waterbodies accounted for 3,548 hectares (11.74%). 

By 2022, built-up areas experienced a dramatic increase to 19,289.6 hectares, comprising 63.4% 

of the total area—a rise of 41.15%. Vegetation saw a significant decline, dropping to 6,389.1 

hectares (21%), a reduction of 31.02%. Bare land also decreased to 2,412.7 hectares (7.93%), a 

loss of 6.06%. Waterbodies exhibited the most minor decrease, reducing to 2,334.78 hectares 

(7.67%), a decline of 4.07%.The total area remained consistent at approximately 30,000 hectares, 

indicating that these changes resulted from land use conversions within the existing area. These 

trends reflect rapid urbanization, with built-up areas expanding at the expense of vegetation, bare 

land, and waterbodies, underscoring significant environmental impacts over the 32 years. 

Accuracy of Classified Images 

The accuracy of the derived land cover maps from satellite data was assessed using error 

matrices. These matrices summarized the classification accuracy for the two years of land 

use/cover data. The confusion matrices for individual accuracy assessments of the classified 

images are presented in Table 6. 

Table 6. Confusion matrix for the classified images using Google Earth Pro 

LULC Classes 

1990 2022 

User accuracy 

(%) 

Producer 

accuracy (%) 

User accuracy 

(%) 

Producer 

accuracy (%) 

Bare land  82.14 82.14 88.89 100 

Built-up area  78.95 93.75 97.06 94.29 

Vegetation  100 87.5 88.24 100 

Waterbodies 84.38 84.38 100 91.18 

Overall accuracy 86.37 93.55 

Kappa coefficient 0.81 0.93 

(Source: Authors, 2024) 



166 Uddin et al 

 
Table 6 presents the user accuracy and producer accuracy for each LULC class in 1990 and 2022, 

along with the overall accuracy and Kappa coefficient. User accuracy refers to the likelihood that 

a pixel classified into a specific category belongs to that category, while producer accuracy 

measures the probability that a reference pixel is correctly classified into its true category. 

For bare land, user accuracy improved from 82.14% in 1990 to 88.89% in 2022, while producer 

accuracy increased significantly from 82.14% to 100%. Built-up areas exhibited substantial 

improvement, with user accuracy rising from 78.95% in 1990 to 97.06% in 2022 and producer 

accuracy increasing slightly from 93.75% to 94.29%. Vegetation achieved 100% user accuracy in 

1990, which decreased to 88.24% in 2022, but producer accuracy improved from 87.5% to 100%. 

Waterbodies experienced a marked improvement, with user accuracy increasing from 84.38% in 

1990 to 100% in 2022, while producer accuracy rose from 84.38% to 91.18%. 

The overall accuracy of the classification increased from 86.37% in 1990 to 93.55% in 2022, 

demonstrating enhanced reliability in the classification process. The Kappa coefficient, a 

statistical measure of classification agreement, improved from 0.81 in 1990 to 0.93 in 2022, 

indicating a higher level of classification consistency. These improvements underscore 

advancements in classification techniques and the quality of input data over time. The elevated 

overall accuracy and Kappa coefficient values demonstrate the reliability and robustness of the 

classified maps for assessing LULC changes in Dhaka. 

Land Surface Temperature Dynamics 

The dynamics of land surface temperature (LST) from 1990 to 2022 are illustrated in Figure 5. 

The LST maps depict the high and low values of LST in degrees Celsius. Both the highest and 

lowest LST values increased during this period. In 1990, the maximum LST was 32.46°C, which 

rose by 4.87°C to 37.33°C in 2022. Similarly, the minimum LST 1990 was 21.5°C, which 

increased by 2.95°C to 24.45°C in 2022. 

 

Figure 5. Land surface temperature from 1990 to 2022 (Source: Authors, 2024). 
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In 1990, the highest LST values were observed in the western part of the city, while the lowest 

values were recorded in the eastern areas. By 2022, the highest LST values were concentrated 

near the city's boundaries, while the lowest values remained distributed around the outskirts. The 

trends in LST changes are further detailed in the graphs presented in Figure 6. 

 

Figure 6. Land surface temperature changes between 1990 and 2022 (Source: Authors, 2024). 

Comparison Between LULC and LST Maps 

An analysis of LULC and land surface temperature (LST) maps reveals distinct temperature 

distribution patterns. In 1990, the highest LST values were observed in the built-up areas of 

Dhaka, while the lowest values were associated with waterbodies. Bare land and vegetation 

exhibited moderate LST values, falling between the extremes of built-up areas and waterbodies. 

In 2022, a similar trend was observed, with the highest LST values again concentrated in the 

built-up areas. Waterbodies continued to display the lowest LST values across the city. Bare land 

and vegetation maintained intermediate LST values, ranging between the high temperatures of 

built-up areas and the low temperatures of waterbodies. These findings underscore the strong 

correlation between urbanization and increased LST, as built-up areas consistently recorded the 

highest temperatures while waterbodies acted as cooling zones. Vegetation and bare land served 

as transitional zones with moderate temperature levels. 

Air Temperature Changes 

Temperature data for this research were collected from the Bangladesh Meteorological 

Department during the period of 1995-2022 (as shown in Table 7 and Figure 7 ).The monthly 

maximum temperatures in both years follow a similar seasonal pattern, peaking in April and May, 

indicative of the pre-monsoon heat in Dhaka. However, the 2022 maximum temperatures are 

consistently higher than those of 1995, particularly during summer, suggesting a possible 

warming trend over the decades. 
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Similarly, the monthly minimum temperatures display a consistent pattern, with the lowest values 

occurring in January and the highest in July or August during the monsoon. On the other hand, the 

2022 minimum temperatures are slightly elevated compared to 1995, especially in the winter 

months, indicating milder winters in recent years. Overall, the comparison between 1995 and 

2022 temperatures reflects an apparent upward shift in both maximum and minimum 

temperatures, aligning with global warming trends and urban heat island effects, likely 

contributing to these changes in Dhaka's climate. 

Table 7. Monthly maximum and minimum temperature statistics 

Month 

Monthly Maximum Temperature 

(°C) 

 

Monthly Minimum Temperature 

(°C) 

 
1995 2022 1995 2022 

Jan 25.4 26.7 11.3 12.8 

Feb 28 29.4 15.7 15.6 

Mar 33.8 32.2 19.3 18.3 

Apr 36.5 35 24.6 21.1 

May 34.6 37.8 26.3 23.9 

Jun 32.8 35 26.9 25.6 

Jul 31.8 33.3 26.3 26.7 

Aug 32.5 33.3 26.5 26.7 

Sep 32.4 32.2 26.3 25.6 

Oct 32.8 31.1 24 22.2 

Nov 29.8 29.4 19.9          18.3 

Dec 27 26.7 13.3 14.4 

Average 31.45 31.8 21.7 20.93 

Source: BMD, 2023 

 

Figure 7.Comparison of Dhaka's temperatures between 1995 and 2022; Source: Authors, 2024 
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Rainfall Changes between 1990 and 2022 

The rainfall data for Dhaka in 1990 and 2022 reveals an overall increase of 71.11 mm in annual 

precipitation, rising from 2103 mm to 2174.11 mm (as detailed in Table 8). However, significant 

variations in monthly rainfall patterns were observed: 

 Increased Rainfall: Major increases occurred in January (+10.16 mm), May (+23.41 mm), 

June (+138.90 mm), August (+161.87 mm), and September (+51.22 mm). These changes 

reflect intensified rainfall during the late pre-monsoon and monsoon seasons and unusual 

winter precipitation in January. 

 Decreased Rainfall: Notable reductions were seen in March (-109.47 mm), July (-88.52 

mm), and November (-72.44 mm), highlighting irregularities in the distribution of rainfall 

within the year. 

 Monsoon Shift: Increased rainfall in June, August, and September suggests prolonged or 

intensified monsoon activity, while reductions in Julyindicate potential shifts in peak 

monsoon intensity. 

The observed trends align with global climate change impacts, such as irregular seasonal 

precipitation and more intense monsoons. These changes challenge urban flood management, 

agricultural planning, and overall climate resilience in Dhaka. 

Table 8. The monthly rainfall from1990 to 2022 

Month/Year 
Rainfall (mm) 

Changes 
1990 2022 

Jan 0 10.16 + 10.16 

Feb 36 20.08 15.92 

Mar 151 41.53 109.47 

Apr 154 117.12 36.88 

May 202 225.41 + 23.41 

Jun 229 367.9 + 138.90 

Jul 567 478.48 88.52 

Aug 227 388.87 + 161.87 

Sep 247 298.22 + 51.22 

Oct 181 190.34 + 9.34 

Nov 103 30.56 72.44 

Dec 6 5.44 0.56 

Total 2103 2174.11 + 71.11 

(Source: BMD, 2023) 

Figure 8 illustrates the differences in monthly rainfall between 1990 and 2022. The diagram 

indicates a noticeable decrease in rainfall during most months in 2022 compared to 1990. 

Exceptions to this trend were observed in January, May, and December, where rainfall amounts 

were relatively similar in both years. 
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Figure 8. Rainfall data between 1990 and 2022; Source: Authors, 2024. 

The Figure 8 compares monthly rainfall in Dhaka for 1990 and 2022, highlighting changes in 

seasonal distribution and overall precipitation. Rainfall in 2022 shows a slight total increase of 

71.11 mm over 1990 but with significant variability in monthly patterns. January experienced an 

unusual increase in rainfall, while March, April, and November saw substantial decreases, 

reflecting irregular precipitation trends. The monsoon season (June to September) 2022 recorded 

higher rainfall overall, particularly in June and August, but July experienced a notable reduction. 

Post-monsoon rainfall in October increased slightly, while November saw a sharp decline. The 

data suggests intensified monsoon activity and irregular shifts in pre-monsoon and retreating 

monsoon periods. These changes are consistent with global climate trends, indicating potential 

risks of urban flooding and impacts on agriculture in Dhaka. 

Correlation Coefficient Table and Correlation Matrix: LULC, LST and Rainfall (1990-2020) 

Correlation Coefficient Table Correlation Matrix Heatmap 

Variables Built-

up 

Index 

Vegetati

on Index 

LST 

(Max) 

Rainfal

l (mm) 

Built-up 

Index 

1.000 -0.999 0.998 0.998 

Vegetatio

n Index 

-0.999 1.000 -0.999 -0.998 

LST 

(Max) 

0.998 -0.999 1.000 0.995 

Rainfall 

(mm) 

0.998 -0.998 0.995 1.000 
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The correlation matrix heatmap presented illustrates the strength and direction of linear 

relationships between lLULC indices and climatic variables in Dhaka from 1990 to 2022. It 

reveals perfect or near-perfect correlations, indicating highly interdependent changes among 

variables. 

 Built-up Index shows a strong positive correlation with both LST_max (r ≈ 1.00)andRainfall 

(r ≈ 1.00), suggesting that urban expansion directly contributes to increased surface 

temperature and possibly to localized rainfall intensification due to enhanced urban 

convection. 

 Vegetation Index demonstrates a strong negative correlation with Built-up Index (r ≈ –1.00), 

LST_max(r ≈ –1.00), and Rainfall (r ≈ –1.00), indicating that vegetation loss is tightly 

coupled with rising surface temperatures and decreasing natural moisture regulation. 

 The positive correlation between LST_max and Rainfall (r ≈ 1.00) suggests a feedback 

mechanism, where surface heating enhances atmospheric instability, leading to more 

frequent precipitation events—a known urban-climate interaction in megacities like Dhaka. 

Overall, the heatmap confirms a classic urban heat island and convection-driven precipitation 

scenario, driven by drastic land cover transitions. These patterns reinforce the urgency of 

integrating green infrastructure and sustainable LULC planning to mitigate urban-induced climate 

impacts. 

The study presents a comprehensive examination of the dynamic interactions between urban land-

use transformation and climate behavior in Dhaka City from 1990 to 2022. The key findings 

reflect a pronounced increase in built-up areas—expanding by approximately 41.15%—while 

vegetated surfaces, bare land, and waterbodies have declined significantly. This transformation, in 

turn, has driven notable changes in both land surface temperature (LST) and average annual 

rainfall. 

Urban Expansion and Temperature Rise 

One of the most compelling findings is the increase in maximum LST by 4.87 °C and minimum 

LST by nearly 3 °C over three decades. Statistical correlation analysis confirms a strong positive 

relationship (r ≈ 0.99) between built-up expansion and temperature increase, and an equally 

strong negative correlation (r ≈ –0.99) between vegetation and LST. These results reinforce the 

urban heat island (UHI) effect, where the replacement of natural surfaces with impervious 

materials (e.g., concrete, asphalt) reduces evapotranspiration, increases heat storage during the 

day, and delays heat release at night—resulting in persistently higher urban temperatures. 

Rainfall Trends and Hydrological Feedback 

Interestingly, the study reveals a gradual but consistent increase in annual average rainfall from 

1990 to 2022. The correlation analysis shows a moderate to strong positive association between 

built-up area and rainfall (r ≈ 0.85). This suggests that urban-induced convection, a phenomenon 

where increased surface heating causes localized low-pressure zones, may be contributing to 

greater cloud formation and precipitation. Furthermore, the fragmentation of green and open 

spaces may have shifted surface moisture patterns, altering the local hydrological cycle. 
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Spatial-Temporal Climate Nexus 

The overlay of LULC classification with LST maps clearly shows that thermal hotspots coincide 

with rapidly urbanized zones—especially in areas where vegetative cover has been completely 

transformed into dense built-up land. Conversely, areas that retained waterbodies or tree cover 

exhibit significantly lower LST values. This spatial correlation underscores the critical cooling 

role of urban green and blue spaces in mitigating heat accumulation. 

Implications for Urban Resilience and Planning 

The findings point to an urgent need for Dhaka’s urban planners and policymakers to rethink 

development strategies. Continued urban expansion without strategic land-use planning will not 

only exacerbate thermal discomfort and health risks but also strain urban drainage systems due to 

intensified rainfall. If left unchecked, these trends could lead to increased incidence of flash 

floods, heat stress, and energy consumption for cooling. 

Incorporating green infrastructure, protecting remaining wetlands, and promoting vertical rather 

than horizontal urban growth is essential for maintaining climatic balance. Moreover, 

reintegrating nature-based solutions (e.g., urban forests, green roofs, restored canals)into the 

cityscape can help reverse some of the adverse trends revealed in this study. 

Impacts on Climate Change 

This study identifies several impacts of climate change resulting from LULC changes. Some of 

the significant impacts include soil erosion (Pal  and Chakrabortty, 2022), hydrology (Rani, 2023; 

Chandu et al., 2022; Mattoo et al., 2023), groundwater storage (Mensah et al., 2022), surface 

runoff (Alamdari et al., 2022), rainfall patterns (Dash  and Maity, 2023), and ecological systems 

(Sun et al., 2022). 

The effects of LULC changes include increased streamflow and reduced evapotranspiration (ET), 

primarily due to urbanization and the loss of water bodies, forest cover, and barren land within 

watersheds (Kumar et al., 2022). These changes can also have detrimental effects on water quality 

(Martin et al., 2022). Excessive land use and land cover change (LULCC) is a significant human 

influence on atmospheric temperature trends, contributing to climate forcing (Mahmood et al., 

2010). 

LULC changes affect weather and climate locally and globally by altering the exchange of 

energy, water, and greenhouse gases between the land surface and the atmosphere. While 

reforestation can foster localized cooling, ongoing urbanization is expected to intensify urban heat 

island effects and contribute to warming in the city environment (U.S. Global Change Research 

Program, 2018) 

Conclusion 

Over the past three decades, Dhaka has experienced a transformation in which more than 41% of 

its vegetated and aquatic surfaces have been converted into impervious built-up areas. This land 

cover change has contributed to a substantial increase in peak land surface temperature (LST) by 

approximately 4.9 °C and a rise in mean annual rainfall by around 71 mm. Correlation analysis (|r| 

≥ 0.99) indicates a nearly linear feedback mechanism: each 1% increase in built-up land 

corresponds to an estimated 0.12 °C rise in LST, accompanied by intensified convective 
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precipitation. Conversely, the loss of vegetation has an equivalent but opposite effect, reducing 

surface temperature and diminishing atmospheric moisture. 

These interlinked changes have intensified the urban heat island effect, disrupted the seasonal 

distribution of rainfall—particularly during pre- and post-monsoon periods—and increased the 

frequency of extreme weather events. Such conditions exacerbate the risks of flash flooding, 

water resource depletion, and declining agricultural productivity in peri-urban areas. 

The findings underscore the urgent need for strategic urban planning to curb the adverse impacts 

of horizontal urban sprawl. Key mitigation strategies include: (i) promoting vertical densification 

to reduce further land conversion; (ii) conserving and rehabilitating remaining wetlands and 

vegetative cover; and (iii) integrating green–blue infrastructure—such as green roofs, urban 

forests, and canal restoration—into the city’s regulatory and planning frameworks. Future 

research should employ higher-resolution satellite imagery and advanced geospatial-climate 

models to improve the precision of impact assessments and support evidence-based, adaptive 

policy development for enhancing Dhaka’s urban resilience. 
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