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ABSTRACT 

Important characteristics preserved from the standard 1-dimensional cubic map are studied 

here. Many important features of the original 1-dimensional cubic map have survived, and 

their behavior is being studied here. Attracting, repelling, and neutral fixed points are 

analyzed. The use of the map as an aid in the study of period doubling bifurcation has been 

depicted. On the other hand, map can display an exorbitance of additional behaviors.  It can be 

seen that nearby spots on trajectories move closer together and further apart as time progresses. 

These are the paths that never seem to settle into regular orbits or stop moving altogether. 

Modifying the starting conditions even slightly can shift the course of evolution. In reality, 

patterns drive chaotic systems despite their seemingly nonlinear and unpredictable behavior. 

Exploring the chaotic behavior of the cubic equation by varying the governing parameters, 

finding Bifurcation diagrams, etc., are all subtopics of this work, but finding the cubic map is 

the main focus. 
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1. Introduction 

Studies of dynamical systems often focus on 

periodic change. Problems with the Solar System's 

enduringness and continuing development inspired 

the late 19th-century development of the theory of 

dynamical systems by Prajapatiet al. (2019). 

Finding solutions to these problems has spawned a 

robust academic discipline with widespread 

implications in fields as diverse as physics, biology, 

meteorology, astronomy, economics (Sarmahet 

al.,2014,Daset al., 2010, May, 1974), and many 

others (Hamacher, 2012, McCartney, 2012, 

Philominathanet al., 2011). Scientists in the 

mathematical field often work with maps that are 

not linear to investigate the myriad identifying traits 

and properties linked to the disordered state of the 

systemby Kuznetsovet al. (1996). Despite the 

quadratic map's apparent simplicity, the dynamics it 

exhibits are surprisingly nuancedby May (1976). 

May (1979) analyzed the generalized cubic map is 
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much more challenging. Oscillatory processes, such 

as those with a high number of fixed points or 

chaotic behaviorby Mahecha et al. (2006), have 

been the topic of a considerable lot of research in 

recent years, particularly in light of the most recent 

downturnby Sridhar (2011) and Zhang et al. (2016). 

In addition to analyzing the system in its natural 

state, the bifurcation analysis seeks to quantify the 

complexity of the system's dynamic behavior after 

periodic forcing is applied. Abasharet al. (2011) 

examined the Stroboscopy Poincare maps and one-

dimensional limit cycle bifurcations are common 

techniques. Comprehensive map explanations are 

available in (Gallas, 1983 and Collet et al. 1980). 

The nonlinearity of logical maps is represented by a 

quadratic function, whereas the nonlinearity of 

cubic maps is represented by a cubic function. Both 

the standard Feingenbaum scaling and the period-

doubling bifurcation eventually result in total 

anarchy for the two models (Feigenbaum 1978 and 

1979). For many problems, the distribution of 

solutions and the topology of the manifolds on 

which they lie undergo drastic changes as the 

parameter approaches its critical value. Changes of 

this magnitude could have far-reaching 

consequences. In this context, bifurcation refers to 

the phenomenon itself, whereas bifurcation values 

and "bifurcation points" refer to specific values for 

the relevant parameters. Like other dynamical 

systems, it has been shown that the properties of 

fixed points on iterated maps can vary as a function 

of the system's control parameters. One method for 

explaining period-doubling sequences is the 

Feingenbaum scaling by Grebogiet al.(1982). 

Grebogiet al. (1983) depicted the previously 

unrelated chaotic bands were only pulled together 

by a crisis involving a number of chaotic attractors. 

There was no alternative explanation that made 

sense.Murray (2001) and Agarwalet al. (1997) 

created the richer dynamics and more impressive 

computing outputs, it should be emphasized that the 

discrete dynamical system is superior to the 

continuous one. Remember this, because it's 

important. This method also works well and is valid 

when used to models of chemical oscillatory 

reactions (Kapral, 1991, Pearson 1991, Floudaset 

al., 2004). This is why, in addition to the 

bifurcation analysis, It is also considered the 

stability analysis of the discrete-time model of the 

system (Zafar et al., 2017,Xuet al., 2013, Yuet al. 

2001). Golovinet al. (2008),Din (2018) and Leachet 

al.(1992) explain their work on a chemical 

oscillatory model in discrete time. Higher-order 

Hopf normal form expansions are needed to 

improve cycle approximations or study more 

complex dynamical systems. The harmonic balance 

approach generates higher-order approximations in 

the frequency domain. Because nonlinear maps 

often have weak and strong resonances, 

extrapolating this conclusion to discrete time is 

risky by Robinson (1990). The higher-order 

harmonic balance enables for sufficient accuracy to 

be attained while estimating the invariant cycle. 

Mees (1981) and Moiolaet al. (1996), who also 

studied continuous-time systems, used approaches 

quite similar to this one. Farmers can choose from a 

wide variety of pest control methods (Freedman, 

1976, Vanet al., 1988), each of which may reduce 

the financial losses incurred as a result of insect 

pests. Recent mathematical models have considered 

resource exhaustion. Recent academic research has 

generated such models. Most of this research (Qinet 

al., 2014, Yanget al., 2016, Tianet al., 2019) 

examined how control measures that are non-

deterministic and impulsive affect pest 

management. These articles study nonlinear 

impulsive functions independent of all parameters 

except natural enemy population density. Operator 

theoretic methods (Zhaoet al., 2009, Zhanget al., 

2008, Zhao et al., 2011, Wanget al., 2014) simplify 

nontrivial periodic solutions to problems involving 

fixed points and bifurcations.The main objective is 

to have an understanding of how the dynamics of 

the cubic map shift depending on the value of the 

parameter. 

2. Governing form of Cubic Map 

Assume the 1-dimensional representation of the 

cubic form. 

,   

 (1) 

Where is a parameter value and . 

Bimodal map describes a recursive dynamical 

system that operates over quantifiable time steps. 

( ) ( ) 3,f x f x x x


 = = − +

22 − x

 30  
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This is what is meant when talking about a bimodal 

map. This type of system can be identified by its 

indefinitely many unstable periodic hotspots and a 

chaotic pattern of behavior. This kind of 

mechanism is also completely uncontrollable. 

Furthermore, a system of this kind has the 

possibility of containing an endless number of 

cyclic nodes. This type of map is also called a cubic 

map in numerous fields all over the world. The 

term bimodal map is commonly used when 

discussing cubic map within the framework of 

cartography. This term refers to the same category 

of map as the one it has been discussing. 

An approach that predicts up to n alternative steady 

orbits for a particular set of parameters in maps 

with n critical points reveals that the cubic's 

behaviors are far more probable to be chaotic than 

the quadratic's. This arises from the fact that the 

idea can be used to analyze maps with a limitless 

amount of critical nodes. From the hypothesis that 

maps with n critical points can sustain up to n 

steady distinct positions, this finding can be 

deduced as an obvious consequence. This theory 

predicts that, for maps with n critical points, the 

number of unique stable orbits may range from zero 

to n, based on the quantities that are entered for the 

parameters. The results of this investigation have 

given evidence that the dynamics of the cubic are 

more complex than those of the quadratic. This 

warning is the outcome of my investigation. When 

looking at maps, if there is just one hump, this 

suggests that there is only one stable state, which is 

also known as an attractor, but there is only one of 

them. On the other hand, it's not impossible for 

maps that are generally cubic to have two distinct 

kinds of attractor patterns. This is something that 

can happen. A number of authors have provided an 

in-depth explanation of the procedure that can lead 

to the development of a pair of alternative stable 

orbits by making use of the cubic map.  

3. Solution of the Cubic Map 

 

The first statement, which is one with which we are 

already familiar, is the statement that .   

Now,  

 

 

 

( ) 012 =−+− xx  

Either  or,  

 

 

 (2)
 

4.  Analysis of Fixed Points 

In mathematical concepts, a value can be 

considered fixed if it does not change due to the 

procedure that is carried out on it. A fixed point is 

characterized as this specific value.  

The values that can take on are what decide 

where each of the there are three stable spots 

located within the space.. 

and                           (3) 

Case 1: When , then is the only fixed 

point for . 

Case 2: When , then , and

 is the fixed point for . 

Case 3: When , then and  is 

the fixed point for . 

Case 4: When , then and 

 is the fixed point for . 

Case 5: When , then and 

 is the fixed point for . 

( ) ( ) 3,f x f x x x


 = = − +

y x=

( ) 3,f x x x = − +

3x x x− + =

3 0x x x− + − =

0x= 2 1 0x − + − =

2 1x − = −

2 1x  = −

1x  =  −



0, 1,x = + − 1.− −

1 = 0x =

( ),f x 

1.5 = 0, 0.5x =

0.5− ( ),f x 

2 = 0, 1,x = + 1−

( ),f x 

2.5 = 0, 1.5x =

1.5− ( ),f x 

3 = 0, 1.5x =

1.5− ( ),f x 
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5. Enunciation in Case the Fixed Points 

 and  are Attracting, 

Repelling, or Neutral 

It has been demonstrated that the traits of anchor 

points on repeated maps can shift in appearance 

based on the settings of the technique's control 

factors. This is similar to what has been discovered 

in the past with regard to other dynamical systems. 

Differentiating (1) we have 

 

 

 

 

 

 

(i) When , then 

 so by definition, 

0 is an attracting fixed point.                                                                                                                                

 

So by definition,   is repelling fixed 

point.                                                                                     

(ii) When , then 

 so by definition, 0 is 

a neutral fixed point. 

When , then 

 

So by definition,   is neutral fixed 

point. 

(iii) When , then  so by 

definition, 0 is an attracting fixed point. 

When , take then 

 

So by definition,   is repelling fixed 

point. 

(iv) When , then  so by 

definition, 0 is a repelling fixed point. 

When , take then 

 

So by definition,   is attracting fixed 

point.         

 (v) When , then  so by 

definition, 0 is a repelling fixed point. 

When , then 

 

So by definition,   is neutral fixed 

point. 

(vi) When , then  so by 

definition, 0 is a repelling fixed point. 

When , take 2.5, then 

 

So by definition,   is a repelling 

fixed point. 

To visualize these scenarios across a broad range 

of values, we employ the "cobweb" graphical 

analysis here. 

0, 1,x = + − 1.− −

( ) 23f x x


 = − +

( ) 23f x x


 = − +

( ) ( ) 21 3 1f


    − = −  − +

( ) ( )1 3 1f


    − = − − +

( )1 3 3f


    − = − + +

( )1 2 3f


   − = − +

0 =

( ) 23.0 0 0 1f x

 = − + = 

( )1 2 3 2.0 3 3 1f


   − = − + = − + = 

1x =  −

1 =

( ) 23.0 1 1f x

 = − + =

1 =

( )1 2 3 2.1 3 1f r


  − = − + = − + =

1x =  −

0 1  1f   = 

0 1  0.5 =

( )1 2 0.5 3 1 3 2 1f r

  − = −  + = − + = 

1x =  −

1 2  1f   = 

1 2  1.5 =

( )1 2 1.5 3 3 3 0 1f r

  − = −  + = − + = 

1x =  −

2 = 1f   = 

2 =

( )1 2 2 3 1 1f r

  − = −  + = − =

1x =  −

2 3  1f   = 

2 3 

( )1 2 2.5 3 2 2 1f r

  − = −  + = − = 

1x =  −


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(a) When  (b) When  

 

 

(c) When  (d) When  

 
 

(e) When  (f) When  

 
 

(g) When 
 

(h) When 
 

.1= .5.1=

.96.1= .2=

.12.2= .25.2=

.40.2= .50.2=
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(i) When  (j) When  

  

(k) When 
 

(l) When 
 

  

(m) When 
 

(n) When 
 

Figure 1.  Cobweb graph of the equation (1) different values of .  

(a) When , the cobweb graph demonstrates 

that the fixed points at 0 and are 

neutral fixed point. 

(b) When , the cobweb graph 

demonstrates that the fixed points at 0 is a 

repelling fixed point and is an 

attracting fixed point respectively.. 

(c) When , the cobweb graph 

demonstrates that the fixed points at 0 is a 

repelling fixed point and  is an 

attracting fixed point. 

(d) When , the cobweb graph demonstrates 

that the fixed points at 0 is a repelling fixed 

point and  is a neutral fixed point. 

(e) When , the cobweb graph 

demonstrates that the fixed points at 0 and 

 are repelling fixed point.  

.57.2= .68.2=

.79.2= .88.2=

.94.2= .3=

1=

1− 

5.1=

1− 

96.1=

1− 

2=

1− 

12.2=

1− 
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(f) When , the cobweb graph 

demonstrates that the fixed points at 0 and 

are repelling fixed point. 

(g) When , the cobweb graph 

demonstrates that the fixed points at 0 and 

are repelling fixed point. 

(h) When , the cobweb graph 

demonstrates that the fixed points at 0 and 

are repelling fixed point. 

(i) When , the cobweb graph 

demonstrates that the fixed points at 0 and 

 are repelling fixed point. 

 (j) When , the cobweb graph 

demonstrates that the fixed points at 0 and 

  are repelling fixed point. 

(k) When , the cobweb graph 

demonstrates that the fixed points at 0 and 

 are repelling fixed point. 

(l) When , the cobweb graph 

demonstrates that the fixed points at 0 and 

are repelling fixed point. 

(m) When , the cobweb graph 

demonstrates that the fixed points at 0 and 

 are repelling fixed point. 

 (n) When , the cobweb graph demonstrates 

that the fixed points at 0 and are 

repelling fixed point. 

6. Dynamics of the Cubic Map 

Due to their sensitivity to the initial conditions, the 

orbits of neighboring seeds end up behaving very 

differently from one another after a few repetitions. 

These deviations are not always negligible. In many 

situations, the solution to a mathematical equation 

presents a formidable challenge. The task may 

appear to be impossible. Computing 

approximations to mathematical problem solutions 

is the most common use of computers in the 

scientific community. Scientists have often been 

unable to make predictions based on the results 

produced by computers, despite major 

improvements in the speed and precision of 

calculation. Despite the fact that both of these 

facets of calculation have witnessed tremendous 

progress, this remains the case. Due to the nature of 

the situation, they are forced to go through a 

significant amount of mental suffering. Because of 

its inherent simplicity, the cubic map serves as an 

excellent starting point for conversations about 

chaos. The anarchic state is depicted in a 

straightforward manner by the cubic map for  -

values. One of the defining characteristics of 

chaotic systems is their sensitivity to the parameters 

with which they are first seeded. 

 

Figure 2. Dynamics of the cubic map (1) for iteration number, and  

25.2=

1− 

40.2=

1− 

50.2=

1− 

57.2=

1− 

68.2=

1− 

79.2=

1− 

88.2=

1− 

94.2=

1− 

3=

1− 

80=n .2,99.2=
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Figure 3. Dynamics of the cubic map (1) for iteration number, and  

 

Figure 4. Dynamics of the cubic map (1) for iteration number, and  

 

Figure 5. Dynamics of the cubic map (1) for iteration number, and  

 

Figure 6. Dynamics of the cubic map (1) for iteration number, and  

200=n .97.2,78.2=

350=n .99.2,88.2=

500=n .7.2,88.1=

700=n .92.2,68.2=
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Figure 7. Dynamics of the cubic map (1) for iteration number, and  

 

Figure 8. Dynamics of the cubic map (1) for iteration number, 1200=n  and .65.2,55.2=  

Many various parameter values were employed, 

and the oscillations, both periodic and non-periodic, 

that occurred across the many repetitions are shown 

in fig. 2-8. Figure 2-8 depicts an abnormal 

circumstance that leads to anarchy, and it's worth 

mentioning in passing. Depending on what is used 

as a starting point, the previously stated statistics 

can be recalculated in either an upward or 

downward direction. Short bursts of periodicity 

might emerge when the level of chaos rises to a 

particular threshold. Long-term periodic behavior 

in a deterministic system is said to be chaotic if its 

occurrence is highly dependent on the initial 

conditions. It seems unlikely that a long-term 

trajectory will ever fail to reach a stable site or a 

periodic orbit. Certain intervals of increasing 

numbers may exhibit chaotic behavior, punctuated 

by brief periods of periodic behavior. A image 

representing a plot of a time series displays the 

iterated values. The values have become 

increasingly erratic over time, as depicted by this 

graph. 

7. Bifurcation Analysis of the Cubic Map (1) 

 

Figure 8. Bifurcation diagram of the equation (2).
 

900=n .44.2,24.2=
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When , consequently, the response to issue (1) is going to be 

and                                                                                                                                     (4) 

is stable (sink) and  is unstable(a source). 

 
Figure 9. Bifurcation diagram of the equation (4). 

When then stable (sink) and (a source) are the three possible solutions to the 

equation (1). 

 

Figure 10. Bifurcation diagram of the equation (1) as  

When then stable (sink) and  (a source) are the three possible 

solutions to the equation (1). 

 
Figure 11. Bifurcation diagram of the equation (1) as  

3=

0=x 3=x

3=x 0=x

1= 1,1−=x 0=x

.1,1,1 −== x

5.1= 22474.1,22474.1 −=x 0=x

.22474.1,22474.1,5.1 −== x
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When then stable (sink) and  (a source) are the three possible solutions 

to the equation (1). 

 

Figure 12. Bifurcation diagram of the equation (1) as 
 

When then stable (sink) and  (a source) are the three possible 

solutions to the equation (1). 

 

Figure 13. Bifurcation diagram of the equation (1) as 
 

When then stable (sink) and  (a source) are the three 

possible solutions to the equation (1). 

2= 414.1,414.1 −=x 0=x

.414.1,414.1,2 −== x

5.2= 58114.1,58114.1 −=x 0=x

.58114.1,58114.1,5.2 −== x

79.2= 67003.1,67033.1 −=x 0=x
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Figure 14. Bifurcation diagram of the equation (1) as 
 

When then stable (sink) and  (a source) are the three possible solutions 

to the equation (1). 

 

Figure 15. Bifurcation diagram of the equation (1) as 
 

8. Period Doubling Bifurcation of Cubic Map 

It suggests that there was a division in a dynamic 

system, when the variation in the control 

parameter causes a significant change in the 

qualitative behavior of the system. Stated 

simply, the system will exhibit distinct 

qualitative behaviors at the onset of a 

bifurcation. This happens every time there is a 

change in the control parameter's value. The 

process of splitting a system's behavior into two 

distinct zones, each of which has a definite 

parameter value at which the transition occurs, is 

known as bifurcation. The process of 

bifurcation, which splits a system's behavior into 

two separate zones, is also referred to as 

bifurcation. Almost invariably, a shift in one of 

the system's parameters will be reflected in a 

similarly gradual shift in the available options to 

address the issue. This can be attributed to the 

closed-loop nature of the system. In the vast 

majority of situations, this is the situation. 

Nonetheless, a large number of problems exhibit 

a dramatic change in the number of solutions 

and a large modification in the structure of the 

manifolds that include those solutions as a 

parameter approaches certain critical levels. This 

.67033.1,67033.1,79.2 −== x

3= 732.1,732.1 −=x 0=x

.732.1,732.1,3 −== x
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happens in a variety of circumstances. This is 

something that could occur in a number of 

contexts. This occurs in a sizable portion of 

situations with a diverse range of issues. 

  

(a)  (b)  

 

 

 

 

 

  

(c)  (d)  

 

(e) .32.2    

Figure 16. Bifurcation orbit diagram of the cubic map. 

0 3  1 3 

1.5 3  2 3 
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From the interval, , the trajectory's 

behavior changes for the better, and it stays that 

way all the way to the finish. The trajectories begin 

to stabilize into a pattern of change that occurs 

between two locations when from Fig.16 (a). 

Between those two locations, this pattern of change 

manifests itself. As a result of their mutual 

attraction, these two points stay put to form what is 

known as a two cycle. This allows us to confidently 

assert that the trajectories of the cubic map endure a 

period doubling splitting at the value of . This 

occurs because the parameter at this time. 

From the interval, , the Fig.16 (b) 

contains two cycle when From the interval,

, the Fig. 16 (c) contains four-cycle 

when From the interval, , the 

figure Fig. 16 (d) contains "four cycle" when 

and the interval, , the figure (d) 

contains "eight cycle". For the interval, 

32.2  , the figure Fig. 16 (e) contains 

“sixteen cycle” as .4.2=  

When periods are doubled, there is a path leading to 

chaos.   

Table 1. Bifurcation points and periods of the cubic 

map. 

Bifurcation points Periods of the cubic 

map 

 2 

 4 

 8 

 16 

 32 

 64 

The system is now organized in a 4-cycle pattern, 
which is an improvement over its previous 2-cycle 
structure. As a result, the four cycle is generated 

once the derivative that is put in place of is At 

the culmination of the second cycle, when the 

derivation of was obtained at the fixed value, . 

Period duplication is a method by which a is carried 
out several times, which leads to cycles of 

periodicity 2 when the derivative of

…...etc. till the extent is reached at which the 

derivative ceases to exist of , where period 

doublings start piling up to use another name for it. 

This point ( ) is where it reaches the limit 

of the number of period doublings that may be 
performed and chaotic situation occur. That is, 

when period is infinitive then chaotic situation 

occur. The procedure comes to an end once it 

reaches this point. Because the periodicity is , it 
may be deduced that the iterate of the map have 
transitioned into a periodic state. 
 

9. Conclusion 

In a cubic map, some equilibrium points are stable 
while others are unstable. With this map, we can 
pinpoint several distinct locations. It has become 
apparent that some fixed points have an alluring 
characteristic, whilst others are repellent, and a 
third group has an essentially neutral personality. 
The bifurcations that the cubic map's control 
parameter can generate set it apart from other maps. 
The period is said to have doubled when a 
bifurcation occurs and the cubic map converges to a 
fixed point at the bifurcation. Once the bifurcation 
graph reaches the maximum number of period 
doublings that can be performed at the point 

= the system enters a chaotic state. It is 

inevitable that an unstable circumstance will arise 
once the period is infinitive. When we reach this 
point in the process, we will have successfully 
finished everything that needed to be done.  A time 
series graphic depicting the iterated values shows 
how the values gradually get more chaotic over 
time. 
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