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ABSTRACT 

Picture fuzzy set is the latest influential conception to conduct ambiguous data effectively. The 

distance and similarity measures are two dominant concepts to calculate the characteristics 

between two PFSs. The similarity measure evaluates the closeness between the two PFSs where 

the larger similarity measure corresponds to the closer degree of two PFSs. In this article, a new 

similarity measure is developed considering the influence of the abstain and refusal groups as 

each of these influences the results. Finally, a pattern recognition application is illustrated to 

justify the effectiveness of this new technique and compare the results with other existing 

methods. 
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1    Introduction 

In the present world, many situations are to deal 

where the data are more imprecise than precise. To 

deal with these uncertain situations Zadeh 

(Zadeh1965) introduced the notion of fuzzy set 

theory in 1965. The fuzzy set is the generalization 

of classical set theory and takes into account 

membership degree of an element and the non- 

membership degree is the direct complement of the 

membership degree. However, many applications in 

real life found some problems because of 

considering the value of non- membership degree. 

To over come this problem, Atanassov (Atanassov 

1986) developed the concept of intuitionistic fuzzy 

set by allowing for the membership and non-

membership degrees of an element in 1986, where 

the non-membership degree is not the direct 

complement of the membership degree. But, the 

degree of hesitation of an element in an 

intuitionistic fuzzy set revealed a dilemma. In 2013, 

Cuong and Kreinovich (Cuong et al. 2013, Cuong 

2014) introduced the notion of picture fuzzy set 
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which is a powerful tool to deal with vagueness and 

uncertainty including the idea of positive, negative, 

and neutral membership degrees of an element. 

Many research works have been done since it’s 

development. In 2013, Cuong (Cuong et al. 2013, 

Cuong 2014) gave the Hamming distance and the 

Euclidean distance between picture fuzzy sets. In 

2016, Son (Son 2016) proposed a generalized 

distance measure between picture fuzzy sets and 

applied it to fuzzy clustering. In 2017, Dutta (Dutta 

2017) discussed distance measures on picture fuzzy 

sets and applied in Medical diagnosis.  Also Son 

(Son 2016) discussed picture distance measures to 

picture association measures for measuring 

analogousness in PFSs. Also many applications on 

distance and similarity measures have been done in 

resect years (see: Chau 2020, Cuong et al. 2013, 

Kadian 2021, Khan et al. 2021, Luo et al. 2020, Liu 

et al. 2019, Peng et al. 2017, Singh et al. 2018, 

Thao 2019, Wei 2017, Wei et al. 2018, Wei 2016). 

However, many measures of similarity between 

PFSs have been proposed earlier but did not 

consider the abstention and refusal groups 

influence. On the other side, some existing 

similarity measures provide the count-intuitive 

results in some situations or cannot identify which 

two picture fuzzy sets are closer. In this work, a 

new similarity measure based on the influence of 

the abstain and refusal groups is proposed. An 

application of pattern recognition is discussed and 

the results are compared with the results of existing 

methods.   

2   Preliminaries 

In this section, we recall some basic definitions for 

picture fuzzy sets which are used in later sections. 

Definition 2.1: (Zadeh1965) A fuzzy set 𝑨 in 𝑋 ≠

𝜙 is defined by 𝐴 = {(𝑥, 𝜇𝐴(𝑥)): 𝑥 ∈ 𝑋}, 

where 𝜇𝐴: 𝑋 → [0, 1]. 

Definition 2.2: (Atanassov 1986) An intuitionistic 

fuzzy set 𝑨 in 𝑋 ≠ 𝜙 is defined by  

𝐴 = {(𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥)): 𝑥 ∈ 𝑋}, where 𝜇𝐴: 𝑋 →

[0, 1] and 𝜈𝐴: 𝑋 → [0, 1]. 

The values 𝜇𝐴(𝑥) and 𝜈𝐴(𝑥) represent the 

membership and non-membership degrees of the 

element 𝑥 to the set 𝐴 respectively and 0 ≤

𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1; ∀𝑥 ∈ 𝑋 and 𝜋𝐴(𝑥) is called the 

hesitancy degree and 𝜋𝐴(𝑥) = 1 − (𝜇𝐴(𝑥) +

 𝜈𝐴(𝑥)). 

Definition 2.3: (Cuong et al. 2013, Cuong 2014) A 

picture fuzzy set  𝑨 in 𝑋 ≠ 𝜙 is defined by 

𝐴 = {(𝑥, 𝜇𝐴(𝑥), 𝜂𝐴(𝑥), 𝜈𝐴(𝑥)): 𝑥 ∈ 𝑋}, 

where 𝜇𝐴(𝑥), 𝜂𝐴(𝑥), 𝜈𝐴(𝑥) ∈ [0, 1] are the degrees 

of positive, neutral and negative memberships of 𝑥 

in 𝐴 and 0 ≤ 𝜇𝐴(𝑥) + 𝜂𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1; ∀𝑥 ∈ 𝑋 

and the refusal membership of 𝑥 is 𝜋𝐴(𝑥) = 1 −

(𝜇𝐴(𝑥) + 𝜂𝐴(𝑥) + 𝜈𝐴(𝑥)); ∀𝑥 ∈ 𝑋.  

Definition 2.4: (Singh et al. 2018) Let 𝑠: 𝑃𝐹𝑆(𝑋) ×

𝑃𝐹𝑆(𝑋) ⟶ [0, 1] so that for any PFSs 𝐴, 𝐵 and 𝐶 

of 𝑋, it satisfies the following four properties : 

i. 0 ≤ 𝑠(𝐴, 𝐵) ≤ 1, 

ii. 𝑠(𝐴, 𝐵) = 1 iff 𝐴 = 𝐵, 

iii. 𝑠(𝐴, 𝐵) = 𝑠(𝐵, 𝐴), 

iv. 𝑖𝑓 𝐴 ⊂ 𝐵 ⊂ 𝐶, then 𝑠(𝐴, 𝐶) ≤  𝑠(𝐴, 𝐵) 

and 𝑠(𝐴, 𝐶) ≤  𝑠(𝐵, 𝐶). 

Then 𝑠 is called a similarity function of PFSs and  

𝑠(𝐴, 𝐵) is called the similarity degree between the 

PFSs 𝐴 and 𝐵. 

Definition 2.5: (Son 2016) Let 𝑑: 𝑃𝐹𝑆(𝑋) ×

𝑃𝐹𝑆(𝑋) ⟶ [0, 1] so that for any PFSs 𝐴, 𝐵 and 𝐶 

of 𝑋, it satisfies the following four properties : 

i. 0 ≤ 𝑑(𝐴, 𝐵) ≤ 1, 

ii. 𝑑(𝐴, 𝐵) = 0 iff 𝐴 = 𝐵, 

iii. 𝑑(𝐴, 𝐵) = 𝑑(𝐵, 𝐴), 

iv. 𝑑(𝐴, 𝐵) ≤  𝑑(𝐴, 𝐶) + 𝑑(𝐶, 𝐵). 

Then, 𝑑(𝐴, 𝐵) is called the normalized distance 

between the PFSs 𝐴 and 𝐵. 

 

3. Similarity and Distance between two Picture 

Fuzzy Sets 

Definition 3.1: Let 𝑋 = {𝑥1, 𝑥2, ⋯⋯⋯ , 𝑥𝑛} be a 

finite universal set and 𝐴 and 𝐵 are two 
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PFSs on 𝑋, the Minkowski similarity degree 

between 𝐴 and 𝐵 can be is 
𝑠𝑞(𝐴, 𝐵) = 1 −

√
1

2𝑛
 ∑ [(𝜇𝐴(𝑥𝑗) − 𝜇𝐵(𝑥𝑗))

𝑞

+ (𝜂𝐴(𝑥𝑗) − 𝜂𝐵(𝑥𝑗))
𝑞

+ (𝜐𝐴(𝑥𝑗) − 𝜐𝐵(𝑥𝑗))
𝑞

+ (𝜋𝐴(𝑥𝑗) − 𝜋𝐵(𝑥𝑗))
𝑞

]𝑛
𝑗=1

𝑞

    

(1.1) 

,where 𝜋𝐴(𝑥𝑗) = 1 − 𝜇𝐴(𝑥𝑗) − 𝜂𝐴(𝑥𝑗) − 𝜐𝐴(𝑥𝑗) 

and 𝜋𝐵(𝑥𝑗) = 1 − 𝜇𝐵(𝑥𝑗) − 𝜂𝐵(𝑥𝑗) − 𝜐𝐵(𝑥𝑗) 

(𝑗 = 1 , 2 , ⋯⋯⋯ , 𝑛); 𝑞 > 0 indicates the distance 

parameter. 

If 𝑞 = 1, then it becomes the Hamming similarity 

degree 𝐴 and 𝐵 which is as follows: 

𝑠1(𝐴, 𝐵) = 1 −
1

2𝑛
 ∑ [|𝜇𝐴(𝑥𝑗) − 𝜇𝐵(𝑥𝑗)| +

𝑛
𝑗=1

|𝜂𝐴(𝑥𝑗) − 𝜂𝐵(𝑥𝑗)| + |𝜐𝐴(𝑥𝑗) − 𝜐𝐵(𝑥𝑗)| +

|𝜋𝐴(𝑥𝑗) − 𝜋𝐵(𝑥𝑗)|]            (1.2)  

If 𝑞 = 2, then it becomes the Euclidean similarity 

degree 𝐴 and 𝐵 which is 

𝑠2(𝐴, 𝐵) = 1 −

√
1

2𝑛
 ∑ [(𝜇𝐴(𝑥𝑗) − 𝜇𝐵(𝑥𝑗))

2

+ (𝜂𝐴(𝑥𝑗) − 𝜂𝐵(𝑥𝑗))
2

+ (𝜐𝐴(𝑥𝑗) − 𝜐𝐵(𝑥𝑗))
2

+ (𝜋𝐴(𝑥𝑗) − 𝜋𝐵(𝑥𝑗))
2

]𝑛
𝑗=1    

(1.3)

If 𝑞 = +∞, then it becomes the Chebyshev 

similarity degree between 𝐴 and 𝐵 which is 

𝑠+∞(𝐴, 𝐵) = 1 −

𝑚𝑎𝑥
1 ≤ 𝑗 ≤ 𝑛 {

|𝜇𝐴(𝑥𝑗)−𝜇𝐵(𝑥𝑗)|+|𝜂𝐴(𝑥𝑗)−𝜂𝐵(𝑥𝑗)|+|𝜐𝐴(𝑥𝑗)−𝜐𝐵(𝑥𝑗)|+|𝜋𝐴(𝑥𝑗)−𝜋𝐵(𝑥𝑗)|

2𝑛
} 

(1.4) 

The weights of each element may be considered for 

their importance. Let the weight of each element 𝑥𝑗 

(𝑗 = 1, 2,⋯⋯⋯ , 𝑛) is 𝜔𝑗 and 𝜔𝑗 ∈ [0,1] and 

∑ 𝜔𝑗 = 1
𝑛
𝑗=1 . 

The weighted Minkowski similarity degree between 

𝐴 and 𝐵 is  

�̅�𝑞(𝐴, 𝐵) = 1 −

√
1

2𝑛
 ∑ 𝜔𝑗 [(𝜇𝐴(𝑥𝑗) − 𝜇𝐵(𝑥𝑗))

𝑞

+ (𝜂𝐴(𝑥𝑗) − 𝜂𝐵(𝑥𝑗))
𝑞

+ (𝜐𝐴(𝑥𝑗) − 𝜐𝐵(𝑥𝑗))
𝑞

+ (𝜋𝐴(𝑥𝑗) − 𝜋𝐵(𝑥𝑗))
𝑞

]𝑛
𝑗=1

𝑞

   

(1.1w)

The weighted Hamming similarity degree 𝐴 and 𝐵 

is  

�̅�1(𝐴, 𝐵) = 1 −
1

2𝑛
 ∑ 𝜔𝑗[|𝜇𝐴(𝑥𝑗) − 𝜇𝐵(𝑥𝑗)| +

𝑛
𝑗=1

|𝜂𝐴(𝑥𝑗) − 𝜂𝐵(𝑥𝑗)| + |𝜐𝐴(𝑥𝑗) − 𝜐𝐵(𝑥𝑗)| +

|𝜋𝐴(𝑥𝑗) − 𝜋𝐵(𝑥𝑗)|]            (1.2w)  

The weighted Euclidean similarity degree between 

𝐴 and 𝐵 is  

�̅�2(𝐴, 𝐵) = 1 −

√
1

2𝑛
 ∑ 𝜔𝑗 [(𝜇𝐴(𝑥𝑗) − 𝜇𝐵(𝑥𝑗))

2

+ (𝜂𝐴(𝑥𝑗) − 𝜂𝐵(𝑥𝑗))
2

+ (𝜐𝐴(𝑥𝑗) − 𝜐𝐵(𝑥𝑗))
2

+ (𝜋𝐴(𝑥𝑗) − 𝜋𝐵(𝑥𝑗))
2

]𝑛
𝑗=1   

(1.3w) 

The weighted Chebyshev similarity degree between 

𝐴 and 𝐵 is  

�̅�+∞(𝐴, 𝐵) = 1 −

𝑚𝑎𝑥
1 ≤ 𝑗 ≤ 𝑛 {

𝜔𝑗[|𝜇𝐴(𝑥𝑗)−𝜇𝐵(𝑥𝑗)|+|𝜂𝐴(𝑥𝑗)−𝜂𝐵(𝑥𝑗)|+|𝜐𝐴(𝑥𝑗)−𝜐𝐵(𝑥𝑗)|+|𝜋𝐴(𝑥𝑗)−𝜋𝐵(𝑥𝑗)|]

2𝑛
} (1.4w)

Obviously, if all weights 𝜔𝑗 =
1

𝑛
 (𝑗 =

1 , 2 , ⋯⋯⋯ , 𝑛) i.e., weights of all elements 𝑥𝑗 are 
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identical, then equations (1.1w) – (1.4w) are 

reduced to equations (1.1) – (1.4), respectively. 

Example 1: Let 𝐴 =

{(𝑥1, 0.5,0.2,0.3), (𝑥2, 0.2,0.3,0.4), (𝑥3, 0.6,0.3,0.1)} 

and  

𝐵 =

{(𝑥1, 0.6,0.3,01), (𝑥2, 0.5,0.2,0.2), (𝑥3, 0.4,0.4,0.1)} 

be two PFSs on the universal set 𝑋 = {𝑥1, 𝑥2, 𝑥3}. 

Assume that weights of the elements 𝑥1, 𝑥2 and 𝑥3 

are given as follows:  𝜔1 = 0.5, 𝜔2 = 0.2 and 

𝜔3 = 0.3.  

From the equation (1.2), we get 

𝑠1(𝐴, 𝐵) = 1 −
1

2𝑛
 ∑ [|𝜇𝐴(𝑥𝑗) − 𝜇𝐵(𝑥𝑗)| +

𝑛
𝑗=1

|𝜂𝐴(𝑥𝑗) − 𝜂𝐵(𝑥𝑗)| + |𝜐𝐴(𝑥𝑗) − 𝜐𝐵(𝑥𝑗)| +

|𝜋𝐴(𝑥𝑗) − 𝜋𝐵(𝑥𝑗)|]  

= 1 −
1

2×3
 [(|𝜇𝐴(𝑥1) − 𝜇𝐵(𝑥1)| + |𝜂𝐴(𝑥1) −

𝜂𝐵(𝑥1)| + |𝜐𝐴(𝑥1) − 𝜐𝐵(𝑥1)| + |𝜋𝐴(𝑥1) −

𝜋𝐵(𝑥1)|) + (|𝜇𝐴(𝑥2) − 𝜇𝐵(𝑥2)| + |𝜂𝐴(𝑥2) −

𝜂𝐵(𝑥2)| + |𝜐𝐴(𝑥2) − 𝜐𝐵(𝑥2)| + |𝜋𝐴(𝑥2) −

𝜋𝐵(𝑥2)|) + (|𝜇𝐴(𝑥3) − 𝜇𝐵(𝑥3)| + |𝜂𝐴(𝑥3) −

𝜂𝐵(𝑥3)| + |𝜐𝐴(𝑥3) − 𝜐𝐵(𝑥3)| + |𝜋𝐴(𝑥3) −

𝜋𝐵(𝑥3)|)]  

= 1 −
1

6
 [(|0.5 − 0.6| + |0.2 − 0.3| +

|0.3 − 0.1| + |0.0 − 0.0|) + (|0.2 − 0.5| +

|0.3 − 0.2| + |0.4 − 0.2| + |0.1 − 0.1|) +

(|0.6 − 0.4| + |0.3 − 0.4| + |0.1 − 0.1| +

|0.0 − 0.1|)]  

= 1 −
1

6
 [(0.1 + 0.1 + 0.2 + 0.0) + (0.3 + 0.1 +

0.2 + 0.0) + (0.2 + 0.1 + 0.0 + 0.1)]  

= 1 −
1

6
 [(0.1 + 0.1 + 0.2 + 0.0) + (0.3 + 0.1 +

0.2 + 0.0) + (0.2 + 0.1 + 0.0 + 0.1)]  

= 1 −
1

6
 [0.4 + 0.6 + 0.4] = 1 −

1.4

6
 = 1 −

0.23 = 0.77   

From the equation (1.3), we get 

𝑠2(𝐴, 𝐵) = 1 −

√
1

2𝑛
 ∑ [(𝜇𝐴(𝑥𝑗) − 𝜇𝐵(𝑥𝑗))

2

+ (𝜂𝐴(𝑥𝑗) − 𝜂𝐵(𝑥𝑗))
2

+ (𝜐𝐴(𝑥𝑗) − 𝜐𝐵(𝑥𝑗))
2

+ (𝜋𝐴(𝑥𝑗) − 𝜋𝐵(𝑥𝑗))
2

]𝑛
𝑗=1      

= 1 − {
1

2×3
[{(𝜇𝐴(𝑥1) − 𝜇𝐵(𝑥1))

2
+ (𝜂𝐴(𝑥1) −

𝜂𝐵(𝑥1))
2
+ (𝜐𝐴(𝑥1) − 𝜐𝐵(𝑥1))

2
+ (𝜋𝐴(𝑥1) −

𝜋𝐵(𝑥1))
2
} + {(𝜇𝐴(𝑥2) − 𝜇𝐵(𝑥2))

2
+ (𝜂𝐴(𝑥2) −

𝜂𝐵(𝑥2))
2
+ (𝜐𝐴(𝑥2) − 𝜐𝐵(𝑥2))

2
+ (𝜋𝐴(𝑥2) −

𝜋𝐵(𝑥2))
2
} + {(𝜇𝐴(𝑥3) − 𝜇𝐵(𝑥3))

2
+

(𝜂𝐴(𝑥3) − 𝜂𝐵(𝑥3))
2
+ (𝜐𝐴(𝑥3) − 𝜐𝐵(𝑥3))

2
+

(𝜋𝐴(𝑥3) − 𝜋𝐵(𝑥3))
2
}]}

1

2
   = 1 − {

1

6
[{(−0.1)2 +

(−0.1)2 + (0.2)2 + (0.0)2} + {(−0.3)2 +

(0.1)2 + (0.2)2 + (0.0)2} + {(0.2)2 + (−0.1)2 +

(0.0)2 + (−0.1)2}]}

1

2
   = 1 − {

1

6
[{0.01 + 0.01 +

0.04 + 0.0} + {0.09 + 0.01 + 0.04 + 0.0} +

{0.04 + 0.01 + 0.0 + 0.01}]}

1

2
  = 1 −

{
1

6
[0.06 + 0.14 + 0.06]}

1

2
  = 1 − {0.04}

1

2  = 1 −

0.20  = 0.80    

From the equation (1.4), we get 

𝑠+∞(𝐴, 𝐵) = 1 − 

=

𝑚𝑎𝑥
1 ≤ 𝑗 ≤ 𝑛 {

|𝜇𝐴(𝑥𝑗)−𝜇𝐵(𝑥𝑗)|+|𝜂𝐴(𝑥𝑗)−𝜂𝐵(𝑥𝑗)|+|𝜐𝐴(𝑥𝑗)−𝜐𝐵(𝑥𝑗)|+|𝜋𝐴(𝑥𝑗)−𝜋𝐵(𝑥𝑗)|

2𝑛
} 1 −

𝑚𝑎𝑥

{
 
 

 
 
|𝜇𝐴(𝑥1)−𝜇𝐵(𝑥1)|+|𝜂𝐴(𝑥1)−𝜂𝐵(𝑥1)|+|𝜐𝐴(𝑥1)−𝜐𝐵(𝑥1)|+|𝜋𝐴(𝑥1)−𝜋𝐵(𝑥1)|

2×3
 ,

|𝜇𝐴(𝑥2)−𝜇𝐵(𝑥2)|+|𝜂𝐴(𝑥2)−𝜂𝐵(𝑥2)|+|𝜐𝐴(𝑥2)−𝜐𝐵(𝑥2)|+|𝜋𝐴(𝑥2)−𝜋𝐵(𝑥2)|

2×3
 ,

|𝜇𝐴(𝑥3)−𝜇𝐵(𝑥3)|+|𝜂𝐴(𝑥3)−𝜂𝐵(𝑥3)|+|𝜐𝐴(𝑥3)−𝜐𝐵(𝑥3)|+|𝜋𝐴(𝑥3)−𝜋𝐵(𝑥3)|

2×3 }
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=

1 −

𝑚𝑎𝑥 {
0.1+0.1+0.2+0.0

6
 ,
0.3+0.1+0.2+0.0

6
 ,
0.2+0.1+0.0+0.1

6
}  

= 1 −𝑚𝑎𝑥 {
0.4

6
 ,
0.6

6
 ,
0.4

6
 } = 1 −

𝑚𝑎𝑥 {0.07 ,0.10 ,0.07 } = 1 − 0.10 = 0.90   

From the equation (1.2w), we get 

�̅�1(𝐴, 𝐵) = 1 −
1

2𝑛
 ∑ 𝜔𝑗[|𝜇𝐴(𝑥𝑗) − 𝜇𝐵(𝑥𝑗)| +

𝑛
𝑗=1

|𝜂𝐴(𝑥𝑗) − 𝜂𝐵(𝑥𝑗)| + |𝜐𝐴(𝑥𝑗) − 𝜐𝐵(𝑥𝑗)| +

|𝜋𝐴(𝑥𝑗) − 𝜋𝐵(𝑥𝑗)|]  = 1 −
1

2×3
 [𝜔1{|𝜇𝐴(𝑥1) −

𝜇𝐵(𝑥1)| + |𝜂𝐴(𝑥1) − 𝜂𝐵(𝑥1)| + |𝜐𝐴(𝑥1) −

𝜐𝐵(𝑥1)| + |𝜋𝐴(𝑥1) − 𝜋𝐵(𝑥1)|} + 𝜔2{|𝜇𝐴(𝑥2) −

𝜇𝐵(𝑥2)| + |𝜂𝐴(𝑥2) − 𝜂𝐵(𝑥2)| + |𝜐𝐴(𝑥2) −

𝜐𝐵(𝑥2)| + |𝜋𝐴(𝑥2) − 𝜋𝐵(𝑥2)|} + 𝜔3{|𝜇𝐴(𝑥3) −

𝜇𝐵(𝑥3)| + |𝜂𝐴(𝑥3) − 𝜂𝐵(𝑥3)| + |𝜐𝐴(𝑥3) −

𝜐𝐵(𝑥3)| + |𝜋𝐴(𝑥3) − 𝜋𝐵(𝑥3)|}]   

= 1 −
1

6
 [0.5{0.1 + 0.1 + 0.2 + 0.0} +

0.2{0.3 + 0.1 + 0.2 + 0.0} + 0.3{0.2 + 0.1 +

0.0 + 0.1}]  = 1 −
1

6
 [0.5{0.4} + 0.2{0.6} +

0.3{0.4}]  = 1 −
1

6
 [0.20 + 0.12 + 0.12]  = 1 −

0.07  = 0.93   

From the equation (1.3w), we get 

�̅�2(𝐴, 𝐵) = 1 −

√
1

2𝑛
 ∑ 𝜔𝑗 [(𝜇𝐴(𝑥𝑗) − 𝜇𝐵(𝑥𝑗))

2
+ (𝜂𝐴(𝑥𝑗) − 𝜂𝐵(𝑥𝑗))

2
+ (𝜐𝐴(𝑥𝑗) − 𝜐𝐵(𝑥𝑗))

2
+ (𝜋𝐴(𝑥𝑗) − 𝜋𝐵(𝑥𝑗))

2
]𝑛

𝑗=1    

= 1 − {
1

2𝑛
 ∑ 𝜔𝑗 [(𝜇𝐴(𝑥𝑗) − 𝜇𝐵(𝑥𝑗))

2

+𝑛
𝑗=1

(𝜂𝐴(𝑥𝑗) − 𝜂𝐵(𝑥𝑗))
2

+ (𝜐𝐴(𝑥𝑗) − 𝜐𝐵(𝑥𝑗))
2

+

(𝜋𝐴(𝑥𝑗) − 𝜋𝐵(𝑥𝑗))
2

]}

1

2
 = 1 −

{
1

2×3
  {𝜔1 [(𝜇𝐴(𝑥1) − 𝜇𝐵(𝑥1))

2
+ (𝜂𝐴(𝑥1) −

𝜂𝐵(𝑥1))
2
+ (𝜐𝐴(𝑥1) − 𝜐𝐵(𝑥1))

2
+ (𝜋𝐴(𝑥1) −

𝜋𝐵(𝑥1))
2
]  + 𝜔2 [(𝜇𝐴(𝑥2) − 𝜇𝐵(𝑥2))

2
+

(𝜂𝐴(𝑥1) − 𝜂𝐵(𝑥2))
2
+ (𝜐𝐴(𝑥2) − 𝜐𝐵(𝑥2))

2
+

(𝜋𝐴(𝑥2) − 𝜋𝐵(𝑥2))
2
] + 𝜔3 [(𝜇𝐴(𝑥3) − 𝜇𝐵(𝑥3))

2
+

(𝜂𝐴(𝑥3) − 𝜂𝐵(𝑥3))
2
+ (𝜐𝐴(𝑥3) − 𝜐𝐵(𝑥3))

2
+

(𝜋𝐴(𝑥3) − 𝜋𝐵(𝑥3))
2
]}}

1

2
 = 1 − {

1

6
  {0.5[0.01 +

0.01 + 0.04 + 0.0] + 0.2[0.09 + 0.01 + 0.04 +

0.0] + 0.3[0.04 + 0.01 + 0.0 + 0.01]}}

1

2
 = 1 −

{
1

6
  {0.5[0.6] + 0.2[0.14] + 0.3[0.06]}}

1

2
 = 1 −

{
1

6
  {0.30 + 0.03 + 0.02}}

1

2
= 1 − {0.06}

1

2 = 1 −

0.24 = 0.76  

From the equation (1.4w), we get 

�̅�+∞(𝐴, 𝐵) = 1 −

𝑚𝑎𝑥
1 ≤ 𝑗 ≤ 𝑛 {

𝜔𝑗[|𝜇𝐴(𝑥𝑗)−𝜇𝐵(𝑥𝑗)|+|𝜂𝐴(𝑥𝑗)−𝜂𝐵(𝑥𝑗)|+|𝜐𝐴(𝑥𝑗)−𝜐𝐵(𝑥𝑗)|+|𝜋𝐴(𝑥𝑗)−𝜋𝐵(𝑥𝑗)|]

2𝑛
}    

= 1 −

𝑚𝑎𝑥

{
 
 

 
 
𝜔1[|𝜇𝐴(𝑥1)−𝜇𝐵(𝑥1)|+|𝜂𝐴(𝑥1)−𝜂𝐵(𝑥1)|+|𝜐𝐴(𝑥1)−𝜐𝐵(𝑥1)|+|𝜋𝐴(𝑥1)−𝜋𝐵(𝑥1)|]

2×3
 ,

𝜔2[|𝜇𝐴(𝑥2)−𝜇𝐵(𝑥2)|+|𝜂𝐴(𝑥2)−𝜂𝐵(𝑥2)|+|𝜐𝐴(𝑥2)−𝜐𝐵(𝑥2)|+|𝜋𝐴(𝑥2)−𝜋𝐵(𝑥2)|]

2×3
 ,

𝜔3[|𝜇𝐴(𝑥3)−𝜇𝐵(𝑥3)|+|𝜂𝐴(𝑥3)−𝜂𝐵(𝑥3)|+|𝜐𝐴(𝑥3)−𝜐𝐵(𝑥3)|+|𝜋𝐴(𝑥3)−𝜋𝐵(𝑥3)|]

2×3 }
 
 

 
 

  



 Hasan/ JnUJSci, Vol 11, No. I, Jun. 2024, pp. 106─117 111 

= 1 −𝑚𝑎𝑥

{
 
 

 
 
0.5[0.1+0.1+0.2+0.0]

6
 ,

0.2[0.3+0.1+0.2+0.0]

6
 ,

0.3[0.2+0.1+0.0+0.1]

6 }
 
 

 
 

 = 1 −

𝑚𝑎𝑥 {
0.5[0.4]

6
 ,
0.2[0.6]

6
 ,
0.3[0.4]

6
}  

= 1 −𝑚𝑎𝑥 {0.03 , 0.02 ,0.02} = 1 − 0.03 =

0.97 

Theorem 3.2: If 𝑠(𝐴, 𝐵) is the similarity degree 

between two PFSs 𝐴 and 𝐵, then 𝑑(𝐴, 𝐵) = 1 −

𝑠(𝐴, 𝐵) is the normalized distance between 𝐴 and 

𝐵. 

Proof: Trivial. 

Theorem 3.3: If 𝑑(𝐴, 𝐵) is the normalized distance 

between two PFSs 𝐴 and 𝐵, then 𝑠(𝐴, 𝐵) = 1 −

𝑑(𝐴, 𝐵) is the similarity degree between 𝐴 and 𝐵. 

Proof: Trivial. 

Using the Theorem 3.2 and equation (1.1), the 

Minkowski normalized distance between 𝐴 and 𝐵 is  

𝑑𝑞(𝐴, 𝐵) =

√
1

2𝑛
 ∑ [(𝜇𝐴(𝑥𝑗) − 𝜇𝐵(𝑥𝑗))

𝑞

+ (𝜂𝐴(𝑥𝑗) − 𝜂𝐵(𝑥𝑗))
𝑞

+ (𝜐𝐴(𝑥𝑗) − 𝜐𝐵(𝑥𝑗))
𝑞

+ (𝜋𝐴(𝑥𝑗) − 𝜋𝐵(𝑥𝑗))
𝑞

]𝑛
𝑗=1

𝑞

  

(2.1)

From the equation (1.2), the Hamming normalized 

distance between 𝐴 and 𝐵 is  

𝑑1(𝐴, 𝐵) =
1

2𝑛
 ∑ [|𝜇𝐴(𝑥𝑗) − 𝜇𝐵(𝑥𝑗)| +

𝑛
𝑗=1

|𝜂𝐴(𝑥𝑗) − 𝜂𝐵(𝑥𝑗)| + |𝜐𝐴(𝑥𝑗) − 𝜐𝐵(𝑥𝑗)| +

|𝜋𝐴(𝑥𝑗) − 𝜋𝐵(𝑥𝑗)|]   (2.2) 

From the equation (1.3), the Euclidean normalized 

distance between 𝐴 and 𝐵 is  

𝑑2(𝐴, 𝐵) =

√
1

2𝑛
 ∑ [(𝜇𝐴(𝑥𝑗) − 𝜇𝐵(𝑥𝑗))

2

+ (𝜂𝐴(𝑥𝑗) − 𝜂𝐵(𝑥𝑗))
2

+ (𝜐𝐴(𝑥𝑗) − 𝜐𝐵(𝑥𝑗))
2

+ (𝜋𝐴(𝑥𝑗) − 𝜋𝐵(𝑥𝑗))
2

]𝑛
𝑗=1   

(2.3) 

From the equation (1.4), the Chebyshev normalized 

distance between 𝐴 and 𝐵 is  

𝑑+∞(𝐴, 𝐵) =

𝑚𝑎𝑥
1 ≤ 𝑗 ≤ 𝑛 {

|𝜇𝐴(𝑥𝑗)−𝜇𝐵(𝑥𝑗)|+|𝜂𝐴(𝑥𝑗)−𝜂𝐵(𝑥𝑗)|+|𝜐𝐴(𝑥𝑗)−𝜐𝐵(𝑥𝑗)|+|𝜋𝐴(𝑥𝑗)−𝜋𝐵(𝑥𝑗)|

2𝑛
}  

(2.4) 

Theorem 3.4: 𝑑𝑞(𝐴, 𝐵), 𝑑1(𝐴, 𝐵), 𝑑2(𝐴, 𝐵) and 

𝑑+∞(𝐴, 𝐵) defined by equations (2.1) – (2.4) are 

the normalized distances between the PFSs 𝐴 and 𝐵 

respectively.  

Now, the weighted Minkowski normalized distance 

between 𝐴 and 𝐵 is  

�̅�𝑞(𝐴, 𝐵) =

√
1

2𝑛
 ∑ 𝜔𝑗 [(𝜇𝐴(𝑥𝑗) − 𝜇𝐵(𝑥𝑗))

𝑞

+ (𝜂𝐴(𝑥𝑗) − 𝜂𝐵(𝑥𝑗))
𝑞

+ (𝜐𝐴(𝑥𝑗) − 𝜐𝐵(𝑥𝑗))
𝑞

+ (𝜋𝐴(𝑥𝑗) − 𝜋𝐵(𝑥𝑗))
𝑞

]𝑛
𝑗=1

𝑞

  

(2.1w)

The weighted Hamming normalized distance 

between 𝐴 and 𝐵 is  

�̅�1(𝐴, 𝐵) =
1

2𝑛
 ∑ 𝜔𝑗[|𝜇𝐴(𝑥𝑗) − 𝜇𝐵(𝑥𝑗)| +

𝑛
𝑗=1

|𝜂𝐴(𝑥𝑗) − 𝜂𝐵(𝑥𝑗)| + |𝜐𝐴(𝑥𝑗) − 𝜐𝐵(𝑥𝑗)| +

|𝜋𝐴(𝑥𝑗) − 𝜋𝐵(𝑥𝑗)|]   (2.2w) 

The weighted Euclidean normalized distance 

between 𝐴 and 𝐵 is 

�̅�2(𝐴, 𝐵) =
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√
1

2𝑛
 ∑ 𝜔𝑗 [(𝜇𝐴(𝑥𝑗) − 𝜇𝐵(𝑥𝑗))

2

+ (𝜂𝐴(𝑥𝑗) − 𝜂𝐵(𝑥𝑗))
2

+ (𝜐𝐴(𝑥𝑗) − 𝜐𝐵(𝑥𝑗))
2

+ (𝜋𝐴(𝑥𝑗) − 𝜋𝐵(𝑥𝑗))
2

]𝑛
𝑗=1   

(2.3w)

The weighted Chebyshev normalized distance between 𝐴 and 𝐵 is  

�̅�+∞(𝐴, 𝐵) =
𝑚𝑎𝑥

1 ≤ 𝑗 ≤ 𝑛 {
𝜔𝑗(|𝜇𝐴(𝑥𝑗)−𝜇𝐵(𝑥𝑗)|+|𝜂𝐴(𝑥𝑗)−𝜂𝐵(𝑥𝑗)|+|𝜐𝐴(𝑥𝑗)−𝜐𝐵(𝑥𝑗)|+|𝜋𝐴(𝑥𝑗)−𝜋𝐵(𝑥𝑗)|)

2𝑛
}  

(2.4w) 

Example 2: The PFSs 𝐴 and 𝐵 and the weights of 

the elements 𝑥1, 𝑥2and 𝑥3 are given as in Example 

1. 

From the equation (2.2), we get 

𝑑1(𝐴, 𝐵) =
1

2𝑛
 ∑ [|𝜇𝐴(𝑥𝑗) − 𝜇𝐵(𝑥𝑗)| +

𝑛
𝑗=1

|𝜂𝐴(𝑥𝑗) − 𝜂𝐵(𝑥𝑗)| + |𝜐𝐴(𝑥𝑗) − 𝜐𝐵(𝑥𝑗)| +

|𝜋𝐴(𝑥𝑗) − 𝜋𝐵(𝑥𝑗)|]  

=
1

2×3
 [(|𝜇𝐴(𝑥1) − 𝜇𝐵(𝑥1)| + |𝜂𝐴(𝑥1) − 𝜂𝐵(𝑥1)| +

|𝜐𝐴(𝑥1) − 𝜐𝐵(𝑥1)| + |𝜋𝐴(𝑥1) − 𝜋𝐵(𝑥1)|) +

(|𝜇𝐴(𝑥2) − 𝜇𝐵(𝑥2)| + |𝜂𝐴(𝑥2) − 𝜂𝐵(𝑥2)| +

|𝜐𝐴(𝑥2) − 𝜐𝐵(𝑥2)| + |𝜋𝐴(𝑥2) − 𝜋𝐵(𝑥2)|) +

(|𝜇𝐴(𝑥3) − 𝜇𝐵(𝑥3)| + |𝜂𝐴(𝑥3) − 𝜂𝐵(𝑥3)| +

|𝜐𝐴(𝑥3) − 𝜐𝐵(𝑥3)| + |𝜋𝐴(𝑥3) − 𝜋𝐵(𝑥3)|)]    

=
1

6
 [(|0.5 − 0.6| + |0.2 − 0.3| + |0.3 − 0.1| +

|0.0 − 0.0|) + (|0.2 − 0.5| + |0.3 − 0.2| +

|0.4 − 0.2| + |0.1 − 0.1|) + (|0.6 − 0.4| +

|0.3 − 0.4| + |0.1 − 0.1| + |0.0 − 0.1|)]  =
1

6
 [(0.1 + 0.1 + 0.2 + 0.0) + (0.3 + 0.1 + 0.2 +

0.0) + (0.2 + 0.1 + 0.0 + 0.1)] =
1

6
 [(0.1 + 0.1 +

0.2 + 0.0) + (0.3 + 0.1 + 0.2 + 0.0) +

(0.2 + 0.1 + 0.0 + 0.1)] =
1

6
 [0.4 + 0.6 + 0.4] =

1.4

6
 = 0.23   

From the equation (2.3), we get 

𝑑2(𝐴, 𝐵) =

√
1

2𝑛
 ∑[(𝜇𝐴(𝑥𝑗) − 𝜇𝐵(𝑥𝑗))

2

+ (𝜂𝐴(𝑥𝑗) − 𝜂𝐵(𝑥𝑗))
2

+ (𝜐𝐴(𝑥𝑗) − 𝜐𝐵(𝑥𝑗))
2

+ (𝜋𝐴(𝑥𝑗) − 𝜋𝐵(𝑥𝑗))
2

]

𝑛

𝑗=1

= {
1

2×3
[{(𝜇𝐴(𝑥1) − 𝜇𝐵(𝑥1))

2
+ (𝜂𝐴(𝑥1) −

𝜂𝐵(𝑥1))
2
+ (𝜐𝐴(𝑥1) − 𝜐𝐵(𝑥1))

2
+ (𝜋𝐴(𝑥1) −

𝜋𝐵(𝑥1))
2
} + {(𝜇𝐴(𝑥2) − 𝜇𝐵(𝑥2))

2
+ (𝜂𝐴(𝑥2) −

𝜂𝐵(𝑥2))
2
+ (𝜐𝐴(𝑥2) − 𝜐𝐵(𝑥2))

2
+ (𝜋𝐴(𝑥2) −

𝜋𝐵(𝑥2))
2
} + {(𝜇𝐴(𝑥3) − 𝜇𝐵(𝑥3))

2
+

(𝜂𝐴(𝑥3) − 𝜂𝐵(𝑥3))
2
+ (𝜐𝐴(𝑥3) − 𝜐𝐵(𝑥3))

2
+

(𝜋𝐴(𝑥3) − 𝜋𝐵(𝑥3))
2
}]}

1

2
    = {

1

6
[{(−0.1)2 +

(−0.1)2 + (0.2)2 + (0.0)2} + {(−0.3)2 +

(0.1)2 + (0.2)2 + (0.0)2} + {(0.2)2 + (−0.1)2 +

(0.0)2 + (−0.1)2}]}

1

2
   = {

1

6
[{0.01 + 0.01 +

0.04 + 0.0} + {0.09 + 0.01 + 0.04 + 0.0} +

{0.04 + 0.01 + 0.0 + 0.01}]}

1

2
  = {

1

6
[0.06 +

0.14 + 0.06]}

1

2
  = {0.04}

1

2  = 0.20   

From the equation (2.4), we get 

𝑑+∞(𝐴, 𝐵) =

𝑚𝑎𝑥
1 ≤ 𝑗 ≤ 𝑛 {

|𝜇𝐴(𝑥𝑗)−𝜇𝐵(𝑥𝑗)|+|𝜂𝐴(𝑥𝑗)−𝜂𝐵(𝑥𝑗)|+|𝜐𝐴(𝑥𝑗)−𝜐𝐵(𝑥𝑗)|+|𝜋𝐴(𝑥𝑗)−𝜋𝐵(𝑥𝑗)|

2𝑛
}  
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= 𝑚𝑎𝑥

{
 
 

 
 
|𝜇𝐴(𝑥1)−𝜇𝐵(𝑥1)|+|𝜂𝐴(𝑥1)−𝜂𝐵(𝑥1)|+|𝜐𝐴(𝑥1)−𝜐𝐵(𝑥1)|+|𝜋𝐴(𝑥1)−𝜋𝐵(𝑥1)|

2×3
 ,

|𝜇𝐴(𝑥2)−𝜇𝐵(𝑥2)|+|𝜂𝐴(𝑥2)−𝜂𝐵(𝑥2)|+|𝜐𝐴(𝑥2)−𝜐𝐵(𝑥2)|+|𝜋𝐴(𝑥2)−𝜋𝐵(𝑥2)|

2×3
 ,

|𝜇𝐴(𝑥3)−𝜇𝐵(𝑥3)|+|𝜂𝐴(𝑥3)−𝜂𝐵(𝑥3)|+|𝜐𝐴(𝑥3)−𝜐𝐵(𝑥3)|+|𝜋𝐴(𝑥3)−𝜋𝐵(𝑥3)|

2×3 }
 
 

 
 

    

= 𝑚𝑎𝑥 {
0.1+0.1+0.2+0.0

6
 ,
0.3+0.1+0.2+0.0

6
,
0.2+0.1+0.0+0.1

6
} = 𝑚𝑎𝑥 {

0.4

6
 ,
0.6

6
 ,
0.4

6
 } 

= 𝑚𝑎𝑥 {0.07 ,0.10 ,0.07 } = 0.10  

From the equation (2.2w), we get 

�̅�1(𝐴, 𝐵) =
1

2𝑛
 ∑ 𝜔𝑗[|𝜇𝐴(𝑥𝑗) − 𝜇𝐵(𝑥𝑗)| +

𝑛
𝑗=1

|𝜂𝐴(𝑥𝑗) − 𝜂𝐵(𝑥𝑗)| + |𝜐𝐴(𝑥𝑗) − 𝜐𝐵(𝑥𝑗)| +

|𝜋𝐴(𝑥𝑗) − 𝜋𝐵(𝑥𝑗)|]   

=
1

2×3
 [𝜔1{|𝜇𝐴(𝑥1) − 𝜇𝐵(𝑥1)| + |𝜂𝐴(𝑥1) −

𝜂𝐵(𝑥1)| + |𝜐𝐴(𝑥1) − 𝜐𝐵(𝑥1)| + |𝜋𝐴(𝑥1) −

𝜋𝐵(𝑥1)|} + 𝜔2{|𝜇𝐴(𝑥2) − 𝜇𝐵(𝑥2)| + |𝜂𝐴(𝑥2) −

𝜂𝐵(𝑥2)| + |𝜐𝐴(𝑥2) − 𝜐𝐵(𝑥2)| + |𝜋𝐴(𝑥2) −

𝜋𝐵(𝑥2)|} + 𝜔3{|𝜇𝐴(𝑥3) − 𝜇𝐵(𝑥3)| + |𝜂𝐴(𝑥3) −

𝜂𝐵(𝑥3)| + |𝜐𝐴(𝑥3) − 𝜐𝐵(𝑥3)| + |𝜋𝐴(𝑥3) −

𝜋𝐵(𝑥3)|}]   =
1

6
 [0.5{0.1 + 0.1 + 0.2 + 0.0} +

0.2{0.3 + 0.1 + 0.2 + 0.0} + 0.3{0.2 + 0.1 +

0.0 + 0.1}]  =
1

6
 [0.5{0.4} + 0.2{0.6} + 0.3{0.4}]  

=
1

6
 [0.20 + 0.12 + 0.12]  = 0.07   

From the equation (2.3w), we get 

�̅�2(𝐴, 𝐵) =

√
1

2𝑛
 ∑ 𝜔𝑗 [(𝜇𝐴(𝑥𝑗) − 𝜇𝐵(𝑥𝑗))

2

+ (𝜂𝐴(𝑥𝑗) − 𝜂𝐵(𝑥𝑗))
2

+ (𝜐𝐴(𝑥𝑗) − 𝜐𝐵(𝑥𝑗))
2

+ (𝜋𝐴(𝑥𝑗) − 𝜋𝐵(𝑥𝑗))
2

]𝑛
𝑗=1      

= {
1

2𝑛
 ∑ 𝜔𝑗 [(𝜇𝐴(𝑥𝑗) − 𝜇𝐵(𝑥𝑗))

2

+𝑛
𝑗=1

(𝜂𝐴(𝑥𝑗) − 𝜂𝐵(𝑥𝑗))
2

+ (𝜐𝐴(𝑥𝑗) − 𝜐𝐵(𝑥𝑗))
2

+

(𝜋𝐴(𝑥𝑗) − 𝜋𝐵(𝑥𝑗))
2

]}

1

2
  = {

1

2×3
  {𝜔1 [(𝜇𝐴(𝑥1) −

𝜇𝐵(𝑥1))
2
+ (𝜂𝐴(𝑥1) − 𝜂𝐵(𝑥1))

2
+ (𝜐𝐴(𝑥1) −

𝜐𝐵(𝑥1))
2
+ (𝜋𝐴(𝑥1) − 𝜋𝐵(𝑥1))

2
] + 𝜔2 [(𝜇𝐴(𝑥2) −

𝜇𝐵(𝑥2))
2
+ (𝜂𝐴(𝑥1) − 𝜂𝐵(𝑥2))

2
+ (𝜐𝐴(𝑥2) −

𝜐𝐵(𝑥2))
2
+ (𝜋𝐴(𝑥2) − 𝜋𝐵(𝑥2))

2
] + 𝜔3 [(𝜇𝐴(𝑥3) −

𝜇𝐵(𝑥3))
2
+ (𝜂𝐴(𝑥3) − 𝜂𝐵(𝑥3))

2
+ (𝜐𝐴(𝑥3) −

𝜐𝐵(𝑥3))
2
+ (𝜋𝐴(𝑥3) − 𝜋𝐵(𝑥3))

2
]}}

1

2
    

= {
1

6
  {0.5[0.01 + 0.01 + 0.04 + 0.0] +

0.2[0.09 + 0.01 + 0.04 + 0.0] + 0.3[0.04 +

0.01 + 0.0 + 0.01]}}

1

2
 = {

1

6
  {0.5[0.6] +

0.2[0.14] + 0.3[0.06]}}

1

2
= {

1

6
  {0.30 + 0.03 +

0.02}}

1

2
= {0.06}

1

2 = 0.24  

From the equation (2.4w), we get 

�̅�+∞(𝐴, 𝐵) =

𝑚𝑎𝑥
1 ≤ 𝑗 ≤ 𝑛 {

𝜔𝑗[|𝜇𝐴(𝑥𝑗)−𝜇𝐵(𝑥𝑗)|+|𝜂𝐴(𝑥𝑗)−𝜂𝐵(𝑥𝑗)|+|𝜐𝐴(𝑥𝑗)−𝜐𝐵(𝑥𝑗)|+|𝜋𝐴(𝑥𝑗)−𝜋𝐵(𝑥𝑗)|]

2𝑛
}   

= 𝑚𝑎𝑥

{
 
 

 
 
𝜔1[|𝜇𝐴(𝑥1)−𝜇𝐵(𝑥1)|+|𝜂𝐴(𝑥1)−𝜂𝐵(𝑥1)|+|𝜐𝐴(𝑥1)−𝜐𝐵(𝑥1)|+|𝜋𝐴(𝑥1)−𝜋𝐵(𝑥1)|]

2×3
 ,

𝜔2[|𝜇𝐴(𝑥2)−𝜇𝐵(𝑥2)|+|𝜂𝐴(𝑥2)−𝜂𝐵(𝑥2)|+|𝜐𝐴(𝑥2)−𝜐𝐵(𝑥2)|+|𝜋𝐴(𝑥2)−𝜋𝐵(𝑥2)|]

2×3
 ,

𝜔3[|𝜇𝐴(𝑥3)−𝜇𝐵(𝑥3)|+|𝜂𝐴(𝑥3)−𝜂𝐵(𝑥3)|+|𝜐𝐴(𝑥3)−𝜐𝐵(𝑥3)|+|𝜋𝐴(𝑥3)−𝜋𝐵(𝑥3)|]

2×3 }
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= 𝑚𝑎𝑥 {
0.5[0.1+0.1+0.2+0.0]

6
 ,
0.2[0.3+0.1+0.2+0.0]

6
 ,
0.3[0.2+0.1+0.0+0.1]

6
}  

= 𝑚𝑎𝑥 {
0.5[0.4]

6
 ,
0.2[0.6]

6
 ,
0.3[0.4]

6
} =

𝑚𝑎𝑥 {0.03 , 0.02 ,0.02} = 0.03 

It is easy to see from Examples 1 and 2 that, 

 𝑑1(𝐴, 𝐵) + 𝑠1(𝐴, 𝐵) = 1, 𝑑2(𝐴, 𝐵) + 𝑠2(𝐴, 𝐵) =

1, 𝑑+∞(𝐴, 𝐵) + 𝑠+∞(𝐴, 𝐵) = 1, 

�̅�1(𝐴, 𝐵) + �̅�1(𝐴, 𝐵) = 1, 𝑑̅2(𝐴, 𝐵) + �̅�2(𝐴, 𝐵) = 1 

and �̅�+∞(𝐴, 𝐵) + �̅�+∞(𝐴, 𝐵) = 1 , which are just 

the examples for the Theorems 3.1 and 3.2. 

4 A New Method for Similarity Measures 

between two Picture Fuzzy Sets 

Definition 4.1: Let 𝑋 = {𝑥1, 𝑥2, ⋯⋯⋯ , 𝑥𝑛} be a 

finite universe of discourse. For each PFS 𝐴 =

{(𝑥𝑖 , 𝜇𝐴(𝑥𝑖), 𝜂𝐴(𝑥𝑖), 𝜐𝐴(𝑥𝑖)): 𝑥𝑖 ∈ 𝑋}, let 

𝜇𝐴(𝑥𝑖) = 𝜇𝐴(𝑥𝑖) +
𝜇𝐴(𝑥𝑖)+𝜂𝐴(𝑥𝑖)+(1−𝜈𝐴(𝑥𝑖))

4
 ×

𝜋𝐴(𝑥𝑖), 𝜂𝐴(𝑥𝑖) = 𝜂𝐴(𝑥𝑖) and 𝜈𝐴(𝑥𝑖) = 𝜈𝐴(𝑥𝑖). (∗) 

Here the above formula will calculate the modified 

positive membership degree 𝜇𝐴(𝑥𝑖) which is 

influenced by the abstain and refusal groups i,e 

𝜇𝐴(𝑥𝑖)+𝜂𝐴(𝑥𝑖)+(1−𝜈𝐴(𝑥𝑖))

4
× 𝜋𝐴(𝑥𝑖) indicates the 

possibility that the abstain and refusal groups tend 

to support positive membership. 

Definition 4.2: In the following, we give a new 

definition for a similarity measure between two 

PFSs. Let 𝐴 = {(𝑥𝑖 , 𝜇𝐴(𝑥𝑖), 𝜂𝐴(𝑥𝑖), 𝜐𝐴(𝑥𝑖)): 𝑥𝑖 ∈ 𝑋}  

and 𝐵 = {(𝑥𝑖 , 𝜇𝐵(𝑥𝑖), 𝜂𝐵(𝑥𝑖), 𝜐𝐵(𝑥𝑖)): 𝑥𝑖 ∈ 𝑋} be 

two PFSs. Then the similarity measure between 𝐴 

and 𝐵 is given by: 

𝑠(𝐴, 𝐵) = 1 −
1

𝑛
1
𝛼

 [∑ |𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)|
𝛼 +𝑛

𝑖=1

|𝜂𝐴(𝑥𝑖) − 𝜂𝐵(𝑥𝑖)|
𝛼 + |𝜐𝐴(𝑥𝑖) − 𝜐𝐵(𝑥𝑖)|

𝛼]
1

𝛼 ; 𝛼 > 0 

If let 𝛼 = 1, then the above equation is reduced to 

the following formula: 

𝑠(𝐴, 𝐵) = 1 −
1

𝑛
 [∑ |𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)| +

𝑛
𝑖=1

|𝜂𝐴(𝑥𝑖) − 𝜂𝐵(𝑥𝑖)| + |𝜐𝐴(𝑥𝑖) − 𝜐𝐵(𝑥𝑖)|]   (∗∗) 

5 Algorithm and Applications  

5.1. Algorithm for Pattern Recognition 

Let 𝑋 = {𝑥1, 𝑥2, ⋯⋯⋯ , 𝑥𝑛} be a finite universe of 

discourse. Suppose that there exist m patterns 

represented by the PFSs  𝑃𝑗 =

{(𝑥𝑗 , 𝜇𝑃𝑗(𝑥𝑖), 𝜂𝑃𝑗(𝑥𝑖), 𝜐𝑃𝑗(𝑥𝑖)) : 𝑥𝑖 ∈ 𝑋}  (𝑗 =

1,2,⋯⋯ ,𝑚) and a test sample 𝐷 =

{(𝑥𝑗 , 𝜇𝑑(𝑥𝑖), 𝜂𝑑(𝑥𝑖), 𝜐𝑑(𝑥𝑖)) : 𝑥𝑖 ∈ 𝑋}. Which 

pattern does the sample 𝐷 belong to? The 

recognition steps are as follows: 

Step 1: Calculate the similarity measure 

𝑠(𝑃𝑗 , 𝐷)(𝑗 = 1,2,⋯⋯ ,𝑚)  between 𝑃𝑗 and 𝐷 by 

the equation (∗∗). 

Step 2:  Pick up the maximum value from 𝑠(𝑃𝑗 , 𝐷) 

(𝑗 = 1,2,⋯⋯ ,𝑚) and denoted by 𝑠(𝑃𝑗𝑜 , 𝐷). i,e 

𝑠(𝑃𝑗𝑜 , 𝐷) = 𝑚𝑎𝑥1≤𝑗≤𝑚{𝑠(𝑃𝑗 , 𝐷)} 

Then the test sample 𝐷 is classified to pattern 𝑃𝑗𝑜 

according to the  principle of the maximum of the 

similarity measure. i,e the sample 𝐷 belongs to the 

pattern 𝑃𝑗𝑜 .  

5.2 Application of the Picture Fuzzy Sets in 

Pattern Recognition 

Example (Dutta, 2017): Suppose the set of 

patients 𝑃 = {𝑃1, 𝑃2, 𝑃3, 𝑃4} and the set of 

symptoms 𝑆 = {𝑆1 = Temperature, 𝑆2 =

Headache, 𝑆3 = Stomach pain, 𝑆4 = Cough, 𝑆5 =

 Chest pain}.The set of diagnoses is 𝐷 =
{𝐷1 = Viral Fever, 𝐷2 = Malaria, 𝐷3 =

Typhoid, 𝐷4 = Stomach problem, 𝐷5 =

Chest problem}. 

Table-1 represents the symptoms of the patients 

and Table-2 represents the symptoms of the 

diseases and the tables are carried in the form of 

picture fuzzy information. The proposed similarity 

measure equation (∗∗) is used to make a proper 

diagnosis for each patient. As per the principle of 

the maximum of similarity measures, the greater 
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similarity measure indicates a proper diagnosis. 

Table-1: Symptoms Characteristic for the Patients. 

 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 

𝑃1 (0.80,0.00,0.10) (0.60,0.30,0.10) (0.20,0.40,0.40) (0.60,0.15,0.10) (0.10,0.40,0.40) 

𝑃2 (0.00,0.50,0.40) (0.40,0.25,0.30) (0.60,0.20,0.10) (0.10,0.30,0.60) (0.10,0.35,0.40) 

𝑃3 (0.80,0.00,0.10) (0.80,0.00,0.10) (0.00,0.40,0.50) (0.20,0.30,0.40) (0.00,0.40,0.40) 

𝑃4 (0.60,0.20,0.10) (0.50,0.25,0.25) (0.30,0.30,0.20) (0.70,0.00,0.25) (0.30,0.40,0.20) 

 

Table-2: Symptoms Characteristic for the Diagnoses. 

 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 

𝐷1 (0.40,0.00,0.00) (0.30,0.20,0.40) (0.10,0.35,0.50) (0.40,0.30,0.20) (0.10,0.25,0.50) 

𝐷2 (0.70,0.00,0.00) (0.20,0.40,0.35) (0.00,0.40,0.50) (0.70,0.10,0.00) (0.10,0.30,0.50) 

𝐷3 (0.30,0.40,0.30) (0.60,0.20,0.10) (0.20,0.30,0.40) (0.20,0.35,0.30) (0.10,0.20,0.60) 

𝐷4 (0.10,0.30,0.50) (0.20,0.40,0.30) (0.80,0.00,0.00) (0.20,0.40,0.30) (0.20,0.35,0.30) 

𝐷5 (0.10,0.30,0.50) (0.00,0.50,0.35) (0.20,0.30,0.50) (0.20,0.35,0.40) (0.80,0.00,0.10) 

According to the formula  (∗) , Table-3 and Table-4 will be formed by using the data in Table-1 and  

Table-2 respectively. 

Table-3: Symptoms Characteristic for the Patients. 

 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 

𝑃1 (0.84,0.00,0.10) (0.60,0.30,0.10) (0.20,0.40,0.40) (0.66,0.15,0.10) (0.13,0.40,0.40) 

𝑃2 (0.03,0.50,0.40) (0.42,0.25,0.30) (0.64,0.20,0.10) (0.10,0.30,0.60) (0.14,0.35,0.40) 

𝑃3 (0.84,0.00,0.10) (0.84,0.00,0.10) (0.02,0.40,0.50) (0.23,0.30,0.40) (0.05,0.40,0.40) 

𝑃4 (0.64,0.20,0.10) (0.50,0.25,0.25) (0.37,0.30,0.20) (0.72,0.00,0.25) (0.34,0.40,0.20) 

Table-4: Symptoms Characteristic for the Diagnoses. 

 𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 

𝐷1 (0.61,0.00,0.00) (0.33,0.20,0.40) (0.11,0.35,0.50) (0.44,0.30,0.20) (0.13,0.25,0.50) 

𝐷2 (0.83,0.00,0.00) (0.22,0.40,0.35) (0.02,0.40,0.50) (0.79,0.10,0.00) (0.12,0.30,0.50) 

𝐷3 (0.30,0.40,0.30) (0.64,0.20,0.10) (0.23,0.30,0.40) (0.25,0.35,0.30) (0.12,0.20,0.60) 

𝐷4 (0.12,0.30,0.50) (0.23,0.40,0.30) (0.89,0.00,0.00) (0.23,0.40,0.30) (0.25,0.35,0.30) 

𝐷5 (0.12,0.30,0.50) (0.04,0.50,0.35) (0.20,0.30,0.50) (0.21,0.35,0.40) (0.84,0.00,0.10) 

According to the formula  (∗∗) , Table-5 will be formed by using the data in Table-3 and Table-4 
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respectively. 

Table-5: Similarities of Symptoms for each Patient to the set of Possible Diagnoses. 

 𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 

𝑃1 0.608 0.678 0.474 0.054 0.002 

𝑃2 0.250 0.004 0.476 0.596 0.256 

𝑃3 0.556 0.438 0.482 0.010 0.038 

𝑃4 0.480 0.438 0.378 0.262 0.138 

For example, we can get 𝑠(𝑃1 , 𝐷1) by(∗∗): 

𝑠(𝑃1, 𝐷1) = 1 −
1

5
 [∑ |𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑥𝑖)| + |𝜂𝐴(𝑥𝑖) − 𝜂𝐵(𝑥𝑖)| + |𝜐𝐴(𝑥𝑖) − 𝜐𝐵(𝑥𝑖)|

𝑛
𝑖=1 ]  

 = 1 −
1

5
 [(|0.84 − 0.61| + |0.00 − 0.00| + |0.10 − 0.00|) + (|0.60 − 0.33| + |0.30 − 0.20| +

|0.10 − 0.40|) + (|0.20 − 0.11| + |0.40 − 0.35| + |0.40 − 0.50|) + (|0.66 − 0.44| + |0.15 − 0.30| +

|0.10 − 0.20|) + (|0.13 − 0.13| + |0.40 − 0.25| + |0.40 − 0.50|)] = 1 −
1

5
 [0.33 + 0.67 + 0.24 +

0.47 + 0.25] 

= 1 −
1

5
 [1.96] = 1 − 0.392 = 0.608 

Table-6: The Comparison of all the Results. 

 𝑃1 𝑃2 𝑃3 𝑃4 

The Result in Dutta (2017) Malaria Stomach problems Typhoid Viral Fever 

Our Result Malaria Stomach problems Viral Fever Viral Fever 

Then the proper diagnosis 𝐷𝑖  for the patient 𝑃𝑗 is 

derived according to the biggest numerical value 

from the obtained similarity measures in Table-5. 

From Table-5, we can see 𝑃1 suffers from Malaria, 

𝑃2 from Stomach problems, 𝑃3 from Viral Fever 

and 𝑃4 from Viral Fever. Compared with the results 

in [6], the diagnoses for 𝑃1, 𝑃2 and 𝑃4 are the same, 

but the diagnosis for 𝑃3 is different. 

6.  Conclusions 

Picture fuzzy set is a modern concept to handle 

vague data effectively. The measure of distance and 

similarity degrees are a pair of powerful concept to 

identify the degrees of similarity and dissimilarity 

between the PFSs. In this paper, a new method to 

measure the similarities between the picture fuzzy 

sets is developed by considering the influence of 

the abstain and refusal groups. Finally, the validity 

and reliability of the proposed similarity measure is 

illustrated through a pattern recognition in medical 

diagnosis and compare the result with the results 

found by other existing methods.  
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