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ABSTRACT 

One of the most basic models in epidemiology, the SEIR (Susceptible-Exposed-Infectious-

Recovered) model explains how viral infections spread through communities. This study 

analyzes the SEIR model's differential equations to learn more about its dynamic behaviors. This 

study discusses the 2019 corona virus disease (COVID-19) epidemic model using numerical 

methods of susceptible exposed infected recovered (SEIR). A numerical description of the 

notion is provided using two numerical approaches, including forward Euler and RK-4 

approaches. The subplots of SEIR model are drawn by ode 45 commands. The stability of 

disease free equilibrium and Endemic equilibrium points are depicted. The significance of 

comprehending the interaction between epidemiological variables and population dynamics in 

developing efficient public health treatments is brought to light in this study, which investigates 

the consequences of these equations on the transmission and management of infectious diseases. 

Insights into the dynamics of illness transmission and potential measures for mitigating its 

effects are presented through the use of mathematical analysis and computational simulations.  

Keywords: Susceptible, Transmission, Disease free equilibrium, Endemic equilibrium, Stability, Recovery 

rate 

1. Introduction 

A vast family of viruses is known as corona 

viruses. All the way from the average cold to SARS 

and beyond, these viruses are notorious for causing 

a wide variety of illnesses. A major outbreak of 

pneumonia cases in late 2019 was shown to be 

caused by SARS-CoV-2. Wuhan, a city in the 

Chinese province of Hubei, was the site of the 

cluster of incidents(Chen et al. 2020). Mathematical 

modeling of the new corona virus is an area where 

numerous authors have contributed. The 

transmission rates of the Middle East respiratory 

syndrome corona virus (MERSCoV) were assessed 

in two separate time periods as a result of 
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significant interventions using a mathematical 

model for the transmission dynamics of the virus 

(Hsieh, 2015, Kim et al. 2016, Chen et al. 2020, 

Sookaromdee et al. 2020). Researchers from a wide 

variety of disciplines looked at the COVID-19 virus 

from many perspectives in an attempt to stem the 

spread of the disease. Pathology, sociology, 

infectious disease dynamics, and forecasting are all 

part of this framework (Zhu et al. 2020, Ji et al. 

2020). COVID-19 is a novel corona virus 

generating a respiratory epidemic. Public health is 

threatened by this infectious disease's spread. This 

work used a modified susceptible-exposed-

infectious-recovered (SEIR) compartmental 

mathematical model to predict COVID-19 

pandemic dynamics. The environmental pathogen 

and medicines evaluated in this model (Samuel et 

al. 2020). Dengue fever, malaria, influenza, the 

plague, and HIV/AIDS are just a few of the 

diseases that have spread throughout the years. The 

number of outbreaks and illness transmissions has 

also increased significantly. The difficult but 

essential work of creating an appropriate 

epidemiological model for such epidemics must be 

finished. Using a network-level perspective, some 

researchers have attempted to model and forecast 

the diseases spread (Keeling et al. 2005, Prasse et 

al. 2020). Scientists discovered that SARS-CoV-2 

exhibited a high viral load in the upper respiratory 

tracts of asymptomatic or mildly symptomatic 

individuals (Zou et al. 2020). Subclinical infection 

may thus be crucial to the pandemic's ability to 

linger. The application of mathematical models 

allows for the prediction and control of corona 

virus propagation (Anderson et al. 1992, Diekmann 

et al.200, Hethcote, 2000, Brauer et al. 2012). 

Predicting the number of cases with high accuracy 

is, thus, the best way to stop the pandemic from 

getting worse. The government can then organize 

their efforts to contain the pandemic more 

effectively. Common models that are not 

appropriate for epidemic impact prediction include 

SIR(Cantó et al. 2017, Chen et al. 2020), SEIR (Liu 

et al. 2004), and SEIJR (Zareie et al. 2020). This is 

because these models are very simplistic and fail to 

account for important details like asymptomatic 

patients, isolation instances, and other relevant 

elements. For this reason, it is imperative that we 

present a model that takes into consideration the 

overlooked aspects in order to acquire an accurate 

count of the infection cases. In a number of cases 

reported from India, the patient had absolutely no 

symptoms. Consequently, symptomless scenarios 

must be accounted for in the mathematical model. 

A new mathematical model, SEIAQRDT, was the 

intended outcome of this research. For this model, 

we expanded upon the generalized SEIR approach 

put out by Geng et al. (2020) and tailored it to the 

specific needs of India and its most hit states. Due 

to the continuous nature of the COVID-19 

pandemic, mathematical models are helpful for 

monitoring the progression of the disease and 

predicting its future spread. In their quest to thwart 

such broadcasts, governments may find this data 

useful. There are a plethora of mathematical models 

being worked on right now to analyze the COVID-

19 pandemic and forecast its future trajectory 

(Fanelli et al. 2020, Giordano et al. 2020, He et al. 

2020). The number of confirmed cases of the 

pandemic worldwide exceeded 120 million by mid-

March 2021 (Kaxiras et al. 2020). To minimize the 

simulation timeframes, a technique similar to that 

of an earlier work (Balsa et al. 2020) was used: a 

fixed number of independent simulations were 

executed for each run of the stochastic SEIR model 

with specific parameters to account for uncertainty. 

A compartmental non-autonomous diseases model 

is constructed by expanding upon the well-known 

susceptible-exposed-invectives-removed (SEIR) 

framework (Li, 2018, Martcheva, 2015). This 

indicates that, in comparison to reality, the long-

term predictions are significantly inaccurate. 

Isolated participants are replaced with those who 

did not exhibit any symptoms during the SEIJR. In 

comparison to the SEIAR, that is the most notable 

difference between the two. It is utilized this model 

(Bai et al. 2020) in their investigation and 

discovered that it was similar to the SEIJR model. 

The model, known as SEIAQRDT throughout its 

development, consists of eight separate sections. 
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Substantially susceptible (S), exposed (E), infected 

(I), asymptomatic (A), quarantined (Q), recovered 

(R), dead (D), and inadequately susceptible (T) are 

all parts of these areas. In order to forecast the 

consequences of the pandemic, this model is 

applied within the framework of India and the 

states hit the hardest by Preety et al. (2021). Using 

mathematical models of epidemics is one approach 

(Fazal et al. 2023) to comprehend the transmission 

of infectious illnesses and their potential future 

occurrences. These findings are vital for the 

development of public policies that can control 

epidemics. The overall number of infected 

individuals and the duration of the epidemic are 

two examples of epidemic-related outcomes that 

can be forecasted using mathematical models. The 

results of various preventative interventions, such 

as immunization, social distance, or isolation, can 

also be predicted by them.   

2. Formulation of SEIR model 

The model consists of four compartments 

representing different stages of infection: 

susceptible individuals (S), exposed individuals (E), 

infectious individuals (I), and recovered individuals 

(R). The differential equations governing the model 

describe the rates of change of each compartment 

over time, taking into account parameters such as 

the transmission rate (β), the rate of transition from 

exposed to infectious (σ), the recovery rate (γ), and 

the intrinsic decease rate (μ). 

𝑑𝑆

𝑑𝑡
= µ −

𝛽𝑆𝐼

𝑁
  (1) 

𝑑𝐸

𝑑𝑡
=
𝛽𝑆𝐼

𝑁
− 𝜎𝐸  (2) 

𝑑𝐼

𝑑𝑡
= 𝜎(1 − 𝛼)𝐸 − 𝛾𝐼  (3) 

       
𝑑𝑅

𝑑𝑡
= 𝛾𝐼‒µR (4) 

 

Fig. 1: Flow Chart of SEIR Model (1-4). 

The term βSI/N is used to describe the rate of 

exposure for susceptible individuals. The symbol 

σE represents the pace at which exposed people 

advance to the infectious phase. The coefficient α 

represents the proportion of exposed individuals 

who never become infectious, while the equation 

σ(1-α)E represents the rate at which exposed 

individuals become contagious. The notation γI is 

used to represent the rate of recovery or removal of 

infectious persons, where γ is the rate of recovery 

itself. The symbol µR is used to represent the rate at 

which individuals depart from the restored 

population.

Table 1 SEIR model Description of Parameters 

Parameter Parameter Description Parameter Parameter Description 

S Susceptible Individuals β Transmission rate 

E Exposed Individuals ϒ Recovery rate 

I Infected Individuals μ Rate at which individuals enter and 

exit the system (births and deaths). 

R Recovered Individuals σ Rate at which individuals move 

from the exposed to the infectious 

compartment. 

N Total population α The fraction of exposed individuals 

who become asymptomatic. 
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Table 2 Initial values of parameters for S, E, I, R, β, σ, μ, α, ϒ, N 

Parameter Values Data Source Parameter Values Data Source 

S 800 Assume β 0.2 Assume 

E 27 [12] ϒ 0.05 [19] 

I 100 Assume μ 0.01 [26] 

R 23 [31] σ 0.1 Assume  

N 1000 - α 0.2 Assume 

2.1 Positivity Results (Piu et al. 2020) 

Theorem 01: Assume the initial data set by 

( ) ,0,,, RIES then the solution set 

( )( )tRIES ,,,  of the equation (1-4) is positive for 

all  .0t  

Proof: From the equation (1) we assume  

( ) ( )tSt
N

SI

dt

dS
1


 −=−=  

Where ( )
( ) ( )
( )tN

tItS
t


 =1  

By integration, we have the following expression 

( ) ( ) ( )
( )

0expexp 0
1

000
10 







−+





−=  dsedssdstStS

s

duuttt 



The above expression depicts that ( )tS  is 

nonnegative for all t. 

Similarly, E (t), I (t), and R (t) are positive for all t. 

2.2 Existence and Uniqueness of Solution for the 

SEIR Model(Samuel et al. 2019)   

The section that follows is a visual representation 

of an overall first-order ODE:  

( ) ,th= , ( ) 00  =t
   (5)

 

N

SI
h


 −=1  

E
N

SI
h 


−=2  

( ) IEh  −−= 13  

RIh  −=4  

Theorem 2(Uniqueness of Solution) 

Assume that the domain is represented by D 

( ) ( )03020100,3200 ........,,,,...............,,1,, nnbatt  ==−−

( ) ( )03020100,3200 ........,,,,...............,,1,, nnbatt  ==−−
 (6)

 

And let that ( ),th satisfies the Lipschitz condition:  

( ) ( ) 2121 ,,  −− Mthth (7) 

Even though there is a certain circumstance where 

both pairs ( )1,t ) and ( )2,t are members of the 

domain D, where M is a positive constant. A 

distinct continuous vector solution ( )t  exists in 

system (5) for each non-zero constant d on the 

interval .0 −tt A crucial requirement that 

condition (7) meets is:  

nji
h

j

i ...,2,1,, =











be continuous and bounded 

in the domain D.
 

Lemma 1: If a function ( ),tf  has a continuous 

partial derivative 

j

ih




on a limited closed convex 

domain R, where R is a convex set of real numbers, 

then the function satisfies a Lipschitz condition in 

R.  

.1 R   (8) 

Finding a bounded solution of the type is hence our 

objective .0  R  
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Theorem 3(Uniqueness of Solution): This domain 

is defined in (6) and holds in (7) and (8), therefore 

we'll mark it as D. An equation solution to the 

model system (1)-(4) is contained in domain D if 

that is right. 

Proof:  

Let 
N

SI
h


 −=1     (9) 

E
N

SI
h 


−=2  (10) 

( ) IEh  −−= 13    (11) 

RIh  −=4  (12) 

Our proof establishes that the functions

4,3,2,1,, =



ji

h

j

i


 are continuous and have 

boundaries. In other words, the partial derivatives 

are discrete as well as continuous. For all of the 

model equations, the following partial derivatives 

were examined: 

From the equation (9) 

−=



−=





N

I

S

h

N

I

S

h  11 ,  

=



=




0,0 11

E

h

E

h
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


=




0,0 11

I

h

I

h
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


=




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R

h

R

h

 

Similarly, from the equation (10) 
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


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
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From the equation (11) 
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


=




0,0 33

S

h

S

h
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From the equation (12) 
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It is without dispute that these partial derivatives 

are continuous and bounded; hence, we can assert 

that the D-region includes a singular solution to the 

(1)-(4) equations, in accordance with Theorem (2). 

3. Stability Analysis  

The system (1-4) has a Disease-Free Equilibrium 

(DFE) point for the given SEIR model is 

(𝑺𝟎, 𝑬𝟎, 𝑰𝟎, 𝑹𝟎) = (
𝝁𝑵

𝜷
, 𝟎, 𝟎, 𝟎)and an endemic 

equilibrium 
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points(𝑺∗, 𝑬∗, 𝑰∗, 𝑹∗)=(
𝝁𝑵

𝜷
,
𝝁

𝝈
,
𝝁(𝟏−𝜶)

𝜸
, (𝟏 −

𝜶)) respectively. 

The Jacobean of the system (1-4) is 

J =

(

  
 

−βI
N⁄ 0

−βS
𝑁⁄ 0

βI
N⁄ −σ

βS
𝑁⁄ 0

0 σ(1 − α) −γ 0
0 0 γ −µ)

  
 

                                                                                              

3.1 Stability at Disease Free Equilibrium Point 

Jacobean matrix at the DFE point is, 

JDFE =

(

  
 

−βI0
N⁄ 0

−βS0
N⁄ 0

βI0
N⁄ −σ

βS0
N⁄ 0

0 σ(1 − α) −γ 0
0 0 γ −µ)

  
 

 

Suppose I0=1 and by using MATLAB we find that, 

the eigenvalues are 


−−−− ,,,
N

. The 

Disease-Free Equilibrium (DFE) point is 

asymptomatic stable. 

3.2 Stability at Endemic Equilibrium Point 

Jacobean matrix at the EE point is, 

J EE =

(

 
 
 
−β 

I∗

N
0 −β 

S∗

N
0

β 
I∗

N
−σ β 

S∗

N
0

0 σ(1 − α) −γ 0
0 0 γ −µ)

 
 
 

 

Now, substitute 𝑺∗, 𝐄∗, 𝑰∗, 𝑹∗ 

JEE = (

−βµ(1 − α)/Nγ 0 −µ 0

βµ(1 − α)/Nγ −σ µ 0

0 σ(1 − α) −γ 0
0 0 γ −µ

) 

The MATLAB database was used to generate a 

visualization that shows the biggest eigenvalues of 

the formula J(E*). Based on the previous image, it 

is evident that the maximum value of the Jacobean 

spectral radius is smaller than one, proving the 

correctness of the assumed assertion [31]. By using 

MATLAB we find that, the eigenvalues are

( )





−−−

−
− ,,,

1

N
. The Endemic 

Equilibrium (EE) point is asymptomatic stable. 

4.  Numerical Simulations of Dynamical 

Behavior 

The findings are discussed in detail in this section. 

Additionally, Euler and RK-4 methods in the model 

are compared in terms of their use.

 

Fig. 2: Dynamics of SEIR model (1-4) by using Euler Method; initial value (N=1000, S=800, E=10, I=100, 

R=23, β=0.2, σ=0.1, α=0.2, μ=0.01 and ϒ=0.05, h=1). 
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Fig.3: Dynamics of SEIR model (1-4) by using Euler Method; initial value (N=1000, S=800, E=10, I=100, 

R=23, β=0.2, σ=0.1,α=0.2, μ=0.01 and ϒ=0.05, h=1). 

 

Fig.4: Dynamics of SEIR model (1-4) by using RK-4; initial value (N=1000, S0=800, E=10, I=100, R=23, 

β=0.2, σ=0.1, α=0.2, μ=0.01,ϒ=0.05 and h=1). 
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Fig.5: Dynamics of SEIR model (1) by using RK-4; initial value (N=1000, S0=800, E=10, I=100, R=23, 

β=0.2, σ=0.1,α=0.2, μ=0.01,ϒ=0.05 and h=1). 

The SEIR model's behavior is depicted in the 

graphs up above. Figures 5 and 6 show how the 

Euler technique behaves favorably for minor step 

sizes h=1. Figures 7 and 8, which implement the 

RK-4 approach, demonstrate that the model 

exhibits identical characteristics at step sizes h=1.

S-Susceptible: 

 

(a)                                                                                                                                                                

 

(b) 
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(c) 

 

(d) 

Fig. 6: Dynamics of Susceptible individual (S):(a), (b), (c), and (d) with initial value (N=1000, S=800, 

σ=0.1, α=0.2, ϒ= 𝟎. 𝟎𝟓). 

The behavior of the susceptible population (S) 

equation graph in the SEIR model for different 

values of β and μ depends on how these parameters 

influence the dynamics of disease transmission and 

population growth.  

Here's an overview of the expected behaviors:A 

higher transmission rate leads to a faster spread of 

the disease within the population. This results in a 

more rapid decrease in the susceptible population 

over time because more individuals are becoming 

infected at a faster rate.Conversely, a lower 

transmission rate slows down the spread of the 

disease, resulting in a slower decrease in the 

susceptible population over time.A higher birth rate 

increases the rate at which new susceptible 

individuals enter the population. This tends to 

counteract the decrease in the susceptible 

population due to disease transmission, resulting in 

a slower decline or even an increase in the 

susceptible population over time.Decreasing μ: 

Conversely, a lower birth rate reduces the influx of 

new susceptible individuals into the population, 

which may accelerate the decrease in the 

susceptible population over time. 

E-Exposed: 

 

(e) 

 

(f) 
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(g) 

 
(h) 

Fig. 7: Dynamics of Exposed Individuals (E): (e), (f), (g), and (h) with initial value (E=10). 

Higher transmission rates lead to more 

swiftpropagation of the disease within the 

population. This can result in a steeper increase in 

the exposed population early in the outbreak, as 

more susceptible individuals become exposed to 

infectious individuals at a faster rate.Lower 

transmission rates slow down the spread of the 

disease, resulting in a slower increase in the 

exposed population over time.Increasing σ: A 

higher rate of transition from the exposed to the 

infectious state means that individuals spend less 

time in the latent period. This can lead to a time 

frame of implantation that is shorter and a quicker 

rise in the infectious population, potentially 

resulting in a sharper peak in the exposed 

population before it declines. Conversely, a lower 

rate of transition results in a longer latent period, 

leading to a more gradual increase in the exposed 

population and potentially a smoother curve 

overall.When observing the graph of the exposed 

population over time for different values of σ and β, 

we may notice the following patterns: 

• Higher values of both β and σ generally 

lead to more rapid increases in the exposed 

population and earlier peaks. 

• Lower values of β and σ result in slower 

increases and delays in the peak of the 

exposed population. 

• The specific shape and timing of the curve 

will depend on the interplay between these 

parameters and other factors such as 

population size, initial conditions, and the 

effectiveness of control measures. 

I-Infected: 

 
(i) 

 
(j) 
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(k) 

 
(l) 

Fig. 8: Dynamics of Infected (I): (i), (j), (k), and (l) with initial value (E=27, I=100). 

Increasing the transmission rate (σ) typically results 

in a faster spread of the disease, leading to a higher 

peak in the infectious population. This is because a 

higher transmission rate means that exposed 

individuals become infectious more 

quickly.Decreasing the transmission rate slows 

down the spread of the disease, resulting in a lower 

peak in the infectious population. This occurs 

because exposed individuals take longer to become 

infectious.Increasing the recovery rate (γ) speeds up 

the recovery process, causing infectious individuals 

to recover and leave the infectious compartment 

more quickly. This results in a shorter duration of 

the epidemic and a lower peak in the infectious 

population.Decreasing the recovery rate slows 

down the recovery process, prolonging the duration 

of the epidemic and leading to a higher peak in the 

infectious population.The dynamics of the 

infectious population are influenced by the 

interplay between σ and γ. Higher values of σ 

accelerate the spread of the disease, while higher 

values of γ accelerate recovery. The combination of 

these parameters determines the overall trajectory 

of the epidemic, including the peak height, 

duration, and eventual decline of the infectious 

population.Depending on the specific values of σ 

and γ, the infectious population may exhibit stable 

behavior, where it reaches a peak and then declines 

steadily. In some cases, particularly when the 

parameters are finely balanced, oscillations or 

fluctuations in the infectious population may occur 

over time. 

R-Recovered: 

 
(m) 

 
(n) 
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(o) 

 

(p) 

Fig. 9: Dynamics of Recovered (R): (m), (n), (o), and (p) withinitial value (I=100). 

Higher values of γ lead to faster recovery 

rates. As a result, the duration of the 

epidemic curve shortens, and the peak of 

the infectious population decreases. Lower 

values of γ prolong the duration of the 

epidemic curve and increase the peak of 

the infectious population. μ affects the 

total population size over time due to 

natural mortality. If μ is significant, it can 

reduce the overall population size, 

affecting the dynamics of the disease 

spread.However, in most SEIR models, μ 

is relatively small compared to other rates 

such as transmission and recovery rates. 

Therefore, its effect on the dynamics may 

be less pronounced compared to other 

parameters.The interplay between γ and μ 

can influence the overall impact of the 

disease on the population. Higher γ values 

may counteract the effect of μ by reducing 

the duration of infectiousness, thereby 

limiting the number of deaths due to the 

disease. 

Conversely, if μ is relatively high and γ is 

low, the disease may have a more 

significant impact on mortality, especially 

in scenarios where healthcare resources 

are limited. 

5. Conclusion 

When examining the susceptible equation graph, 

the parameters' implications on population 

management and disease control are examined. 

Graph shape would also be influenced by additional 

model parameters, initial conditions, and outside 

variables influencing the dynamics of the 

population and the spread of illness. The behavior 

of the infectious population graph over time is 

influenced by the parameters σ, γ, and their 

interplay. Predicting and limiting infectious disease 

spread requires understanding how these 

characteristics affect epidemic dynamics. The 

infectious population graph's behavior over time 

depends on the interaction between γ and μ, which 

impact disease propagation and population 

dynamics. High γ values promote faster recovery 

and lower infectious peaks, while high μ values 

may affect population growth and mortality rates. 

The SEIR model has shown the complicated 

relationship between epidemiological factors and 

population dynamics in COVID-19 transmission 

dynamics. Our research of SEIR equations reveals 

how characteristics like transmission rate (β),rate of 

transition from exposed to infectious (σ), recovery 

rate (γ), and birth rate (μ) impact disease spread and 

control in populations. Our data show that public 

health initiatives are crucial to COVID-19 
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mitigation. Effective strategies include social 

distancing, mask-wearing, vaccination campaigns, 

and quarantine have reduced transmission rates (β) 

and slowed the epidemic curve. Our analysis 

highlights the significance of including population 

dynamics (μ) alongside illness characteristics, as 

demographic considerations can considerably 

impact control methods' effectiveness. Our analysis 

emphasizes the need for ongoing COVID-19 

surveillance and policy adaptation. As novel 

variations emerge and vaccination efforts evolve, 

tactics must be reassessed and refined to manage 

transmission dynamics while minimizing social and 

economic disturbances. Future studies may use 

more complex models that combine regional 

heterogeneity, age structure, and behavioral 

dynamics to better explain COVID-19 transmission 

dynamics and inform targeted treatments. The 

findings underscore the importance of timely 

intervention strategies, such as social distancing, 

mask mandates, and vaccination campaigns, in 

mitigating the spread of COVID-19. The SEIR 

model can inform decision-making by predicting 

the impact of different interventions on disease 

transmission dynamics. Our research expands 

COVID-19 epidemiological expertise and 

emphasizes the need for interdisciplinary 

approaches to global health issues. Mathematical 

modeling and empirical data help us understand 

infectious disease dynamics and develop 

sustainable control and prevention techniques. 
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