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ABSTRACT 

This paper introduces a novel composite numerical integration method specifically designed for 

domains with complex nonlinear boundaries, where nonlinear functions define the boundaries. 

The proposed method aims to evaluate double integrals over such complex domains efficiently. 

The domain is initially divided into a mesh of uniform or non-uniform triangles, each of which is 

transformed into a standard triangular finite element using basis functions in a local coordinate 

system. The standard triangle is further subdivided into right isosceles triangles, facilitating 

composite numerical integration. Each right isosceles triangle is mapped onto a unit square finite 

element, where the Gauss-Legendre quadrature rule is employed to evaluate the double integrals. 

The integrals across the entire domain are computed by summing the contributions from all sub-

triangles. Numerical examples are provided to demonstrate the effectiveness and accuracy of the 

proposed method. 
 

Key words: Double integrals, Quadrilateral and triangular finite element, Gaussian quadrature, Complex 

domain, Triangular mesh 

1. Introduction 

Numerical integration is essential in numerous 

scientific, engineering, and mathematical fields, 

where obtaining exact analytical solutions to 

integrals is often challenging or even impossible, 

especially over complex domains. By 

approximating double integrals, numerical 

integration facilitates the calculation of volumes 

and other critical quantities encountered in real-

world applications. 

The literature review indicates that numerical 

integration over triangular regions was first 

introduced by Hammer et al. [1–3] and later 

extended by Stroud [4]. In finite element methods, 
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triangular elements are commonly employed in 

numerical integration schemes [5]. Building on 

Hammer et al.'s work [1–3], Cowper [6] developed 

Gaussian quadrature formulas for symmetrically 

positioned integration points. Lethor [7] and Hillion 

[8] formulated integration for triangles by applying 

one-dimensional Gauss quadrature rules, and 

Laursen and Gellert [9] discussed symmetric 

integration formulas with precision up to the tenth 

degree.  

The literature reveals extensive studies on 

numerical integration using Gauss quadrature over 

triangular regions [1–9] and on composite 

numerical integration over triangular [10–12], 

quadrilateral regions [13] and polygon [15]. A 

comprehensive survey by Jayan Sarada and K.V. 

Nagaraja [14] presents formulas for specific 

triangular and quadrilateral shapes, which they then 

generalized for arbitrary polygons. Their approach 

employs higher-order Gauss-Legendre formulas to 

achieve greater accuracy. Hossain and Islam [15], 

introduces a general composite integration rule for 

arbitrary polygons with high precision. 

Nevertheless, a comprehensive approach to 

composite numerical integration over domains with 

complex nonlinear boundaries has yet to be 

developed. 

In a two-dimensional domain, a nonlinear boundary 

refers to a boundary whose shape cannot be 

described by a linear equation of the form 𝑎𝑥 +

𝑏𝑦 + 𝑐 =  0. Instead, it is defined by equations or 

curves that involve higher-order terms, 

trigonometric functions, or other nonlinear 

relationships between the 𝑥 and 𝑦 coordinates. 

Nonlinear boundaries typically exhibit curved or 

irregular shapes. For example, the boundary 𝑥2 +

𝑦2 = 𝑟2 is nonlinear because it involves squared 

terms. As noted in the literature [10–15], most 

existing methods are designed for domains with 

linear boundaries. Nonlinear boundaries, however, 

significantly increase the complexity of the 

problem. To address this challenge, we propose a 

novel composite numerical integration method 

specifically designed for domains with complex 

nonlinear boundaries. Our approach involves 

constructing a uniform or non-uniform triangular 

mesh to manage such domains effectively. For this 

purpose, we utilize DistMesh, a MATLAB tool for 

generating unstructured triangular meshes, to 

handle nonlinear domains efficiently [17]. 

In Section 2, we introduced a novel numerical 

method for evaluating double integrals over 

complex domains with nonlinear boundaries. In 

Section 3, we demonstrated the application of this 

method with two examples, each evaluated over 

five different domains. This method is validated 

through comparison with numerical examples and 

is implemented using MATLAB. In Section 4, we 

discussed the numerical results obtained from 

Section 3. Finally, in Section 5, we presented the 

conclusions of the study. 

2. Formulation of integrals over a complex 

domain 

The integral of an arbitrary function, 𝑓(𝑥,  𝑦) over 

an arbitrary domain 𝑅  is expressed as:  

       𝐼  =   ∫ ∫ 𝑓(𝑥,  𝑦)
 

𝑅

 

 
 𝑑𝑦 𝑑𝑥          (1) 

2.1 Decompose Domain 𝑅  into Triangular Mesh 

The arbitrary domain 𝑅  is decomposed into 

𝑁 number of triangular mesh, refining the mesh 

where necessary, such as around complex 

boundaries. Consequently, the integral 𝐼  in Eq. (1) 

becomes the sum of 𝑁 integrals, each defined over 

a triangular subdomain. For instance, if the region 

𝑅 is a rectangle with a circular hole, a triangular 

mesh is generated over the domain, with finer mesh 

near the boundary of the circle, as illustrated in 

Figure 1.  The integral 𝐼  is the sum of all triangle 

elements (𝑇𝐸𝑖  where 𝑖  =  1,  2,   … ,  𝑁 ) then given 

by: 

𝐼  =   ∑ 𝐼𝑖
𝑁
𝑖=0   =   ∑ ∫ ∫ 𝑓(𝑥,  𝑦)

 

𝑇𝐸𝑖

 

 
𝑁
𝑖=0  𝑑𝑦 𝑑𝑥        (2) 

2.2 Map Each Triangle to a Standard 

Triangular Finite Element  

Each triangular element is transformed into a 

standard triangular finite element using basis 

functions defined in local coordinates. The integral  
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𝐼𝑖  from Eq. (2) is then mapped to an integral over 

the region of the standard triangular element 

(𝑆𝑇𝐸𝑖  ) by transforming the vertices of the arbitrary 

triangular element (𝑥1,  𝑦1),  (𝑥2,  𝑦2), and (𝑥3,  𝑦3) 

to (−1,   − 1),  (1,   − 1), and (−1,  1), respectively. 

The standard triangular element 𝑆𝑇𝐸  is defined as:  

𝑆𝑇𝐸𝑖   =  {(𝛼,  𝛽):   − 1 ≤ 𝛽 ≤ 1,   − 1 ≤ 𝛼 ≤ −𝛽}. 

This transformation is performed using the linear 

triangular finite element basis functions: 

𝐿1(𝛼,  𝛽)  =   −  
1

2
(𝛼  +  𝛽),  𝐿2(𝛼,  𝛽)  =

  
1

2
(1 + 𝛼 ) , and 𝐿3(𝛼,  𝛽)  =  

1

2
(1  +  𝛽). 

Therefore, from equation (2),  𝐼𝑖  becomes 

 𝐼𝑖   =   ∫ ∫ 𝑓(𝛼,  𝛽)|𝐽𝛼𝛽|
−𝛽

−1

1

−1
 𝑑𝛼 𝑑𝛽  =

  ∫ ∫ 𝜙(𝛼,  𝛽)
−𝛽

−1

1

−1
 𝑑𝛼 𝑑𝛽 ,                                  (3)  

where 𝜙(𝛼,  𝛽)  =  𝑓(𝛼,  𝛽)|𝐽𝛼𝛽|, the coordinate 

transformation 𝑥  =   ∑ 𝑥𝑗
3
𝑗=1  𝐿𝑗(𝛼,  𝛽) and 𝑦  =

  ∑ 𝑦𝑗
3
𝑗=1  𝐿𝑗(𝛼,  𝛽), and the corresponding Jacobian,  

𝐽𝛼𝛽 =
𝜕𝑥

𝜕𝛼

𝜕𝑦

𝜕𝛽
−

𝜕𝑥

𝜕𝛽

𝜕𝑦

𝜕𝛼
. 

 

Fig.1 Triangular mesh over a rectangle with 

circular hole, refined at circle boundary. 

2.4 Apply Composite Numerical Integration 

We decompose the standard triangular element 

𝑆𝑇𝐸𝑖  in (𝛼,  𝛽)-space as described in Eq. (3) into 

4 × 𝑚2 right isosceles triangles, denoted as 𝐼𝑆𝑇𝑘, 

each with side lengths of 
1

𝑚
 [10 – 13]. We apply an 

affine transformation to convert each right isosceles 

triangle into a 2-square finite element [−1,  1] ×
[−1,  1]. Using Gauss-Legendre quadrature, we 

calculate the sampling points, (𝜆𝑎,  𝜇𝑏), and weight 

coefficients, (𝜔𝑎,  𝜔𝑏), for numerical integration, 

where 𝑎,  𝑏  =  1,  2,   …  ,  𝑠 and 𝑠 is the order of 

Gauss-Legendre quadrature rule. Finally, we 

compute the double integral for each triangle using 

the quadrature points and weight coefficients. 

Therefore, the integral form (3) is expressed as: 

𝐼𝑖   =  
1

4𝑚2
∑ ∑ 𝜌𝑎,𝑏

𝑠

𝑏=1

𝑠

𝑎=1

𝜓(𝑥𝑎,𝑏 ,  𝑦𝑎,𝑏) 

where 

𝜓(𝑥𝑎,𝑏 ,  𝑦𝑎,𝑏) 

=   ∑ ∑ 𝜙 (
𝑥𝑎,𝑏 + 2(𝑖 − 𝑚) + 1

2𝑚
,  

𝑦𝑎,𝑏 + 2(𝑗 − 𝑚) + 1

2𝑚
)

2𝑚−1−𝑖

𝑗=0

2𝑚−1

𝑖=0

  

+   ∑ ∑ 𝜙 (
−𝑥𝑎,𝑏 + 2(𝑖 − 𝑚) + 1

2𝑚
,  

−𝑦𝑎,𝑏 + 2(𝑗 − 𝑚) + 1

2𝑚
)

2𝑚−2−𝑖

𝑗=0

2𝑚−2

𝑖=0

 

and 𝜌𝑎,𝑏 =
1

4
(2 − 𝜆𝑎 − 𝜇𝑏) 𝜔𝑎  𝜔𝑏 

𝑥𝑎,𝑏 =
1

4
(−1 + 3𝜆𝑎 − 𝜇𝑏(1 + 𝜆𝑎)) 

𝑦𝑎,𝑏 =
1

4
(−1 + 3𝜇𝑏 − 𝜆𝑎(1 + 𝜇𝑏)) 

where 𝑎,  𝑏  =  1,  2,   …  ,  𝑠.   

3. Numerical Examples 

In this section, we evaluate two integrals over the 

following regions:  

(d1) Inside a circle: 𝑅𝐶   =  {(𝑥,  𝑦) :  𝑥2 + 𝑦2 ≤ 1}.   

(d2) Inside an ellipse:  𝑅𝐸   =   {(𝑥,  𝑦) :  
𝑥2

4
+ 𝑦2 ≤ 1}. 

(d3) Inside a square: 𝑅𝑆  =  {(𝑥, 𝑦):   − 1 ≤ 𝑥 ≤

1,   − 1 ≤ 𝑦 ≤ 1}. 

(d4) Inside a polygon, 𝑅𝑝, defined by the vertices  

(-0.4, -0.5), (0.4, -0.2), (0.4, -0.7),  (1.5, -0.4), (0.9, 

0.1), (1.6, 0.8), (0.5, 0.5), (0.2, 1), (0.1, 0.4), (-0.7, 
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0.7) and (-0.4, -0.5). 

(d5) A circular hole in a square, i.e., the area 

outside a circle but inside a square: 𝑅𝐶𝐻   =

 𝑅𝑆 / 𝑅𝐶𝑖𝑛   =  {(𝑥, 𝑦):  (𝑥, 𝑦) ∈ 𝑅𝑆 𝑎𝑛𝑑  (𝑥, 𝑦) ∉

𝑅𝐶𝑖𝑛  } 

where 𝑅𝐶𝑖𝑛   =  {(𝑥,  𝑦) :  𝑥2 + 𝑦2 < 1} and 𝑅𝑆   =

 {(𝑥, 𝑦):   − 1 ≤ 𝑥 ≤ 1,   − 1 ≤ 𝑦 ≤ 1}. 

Regions (d1) through (d4) are divided into a mesh 

of uniform triangles, while region (d5) is divided 

into a mesh of non-uniform triangles (see Figures 2, 

3, 4, 5 and 6).  

 

Fig. 2 Uniform triangular mesh over a unit circle 

𝑅𝐶: (a) 𝑁  =  143 , (b) 𝑁  =  2774 . 

 
Fig. 3 Uniform triangular mesh over an ellipse 𝑅𝐸: 

(c) 𝑁  =  311 , (d) 𝑁  =  5608 . 

 

Fig. 4 Uniform triangular mesh on complex 

polygon 𝑅𝑃: (e) 𝑁  =  9    (f) 𝑁  =  378 . 
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Fig. 5 Non-uniform triangular mesh on rectangular 

region with a circular hole, refined at the circular 

boundary 𝑅𝐶𝐻: (g) 𝑁  =  93 , (h) 𝑁  =  2936 . 

 

Fig. 6 Uniform triangular mesh over an square 𝑅𝑆: 

(i) 𝑁  =  10 , (j) 𝑁  =  899 . 

 

Example 1: Evaluation of 𝐼1  = ∫ ∫
  

 
 𝑑𝑦 𝑑𝑥. 

Example 2:  Evaluation of 

𝐼2  = ∫ ∫
𝑐1𝑥8+𝑐2𝑦9+𝑐3𝑥7𝑦6

𝑑1𝑥9+𝑑2𝑦7+𝑑3

  

 
 𝑑𝑦 𝑑𝑥where𝑐1 =

65625

208
, 

𝑐2 =
328125

104
, 𝑐3 =

239062

208
, 𝑑1 = 1, 𝑑2 = −

125

4
and 

𝑑3 =
175

4
.[16] 

We denote the double integration for 𝐼1 over the 

regions 𝑅𝐶 ,  𝑅𝐸 ,  𝑅𝑃, and 𝑅𝐶𝐻 as 𝐼1
𝑅𝐶 ,  𝐼1

𝑅𝐸 ,  𝐼1
𝑅𝑃, and 

𝐼1
𝑅𝐶𝐻 , respectively. Similarly, the double integrals 

for 𝐼2 over the regions  𝑅𝐶 ,  𝑅𝑆,  𝑅𝑃, and 𝑅𝐶𝐻 in the 

same way. Table 1 and 2 present the results for 

integrals  𝐼1and 𝐼2. For each example, a lower-order 

Gauss quadrature of order (𝑠  =  3) is applied to 

evaluate the integrals. 
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Table 1: Evaluation of the integral 𝐼1 over the regions 𝑅𝐶 ,  𝑅𝐸,  𝑅𝑃 ,  𝑅𝐶𝐻  . 

Integrals Initial edge 

length of 

triangular 

elements 

Number of 

triangular 

elements  

(𝑇𝐸𝑖) in the 

mesh, 𝑁  

Evaluation of 

integrals using the 

proposed method 

for 4 sub-triangles 

(𝐼𝑆𝑇𝑘) 

Evaluation of 

integrals using the 

proposed method for 

100 sub-triangles  

(𝐼𝑆𝑇𝑘) 

Exact 

solution 

𝐼1
𝑅𝐶 0.2 [Fig. 2(a)] 143 3.1200435040 3.1359060489 𝜋 = 

3.1415926

53589793 
0.05 [Fig. 2(b)] 2774 3.1403149656 3.1403149656 

0.01 71898  3.1415406359 3.1415406359 

0.005 288935  3.1415796145 3.1415796145 

      

𝐼1
𝑅𝐸 0.2 [Fig. 3(c)] 311 6.2614670844 6.2614670844 2𝜋 = 

6.2831853

071795 
0.05 [Fig. 3(d)] 5608  6.2818756914 6.2818756914 

0.01 144066 6.2831327450 6.2831327450 

0.005 578397  6.2831720887 6.2831720887 

      

𝐼1
𝑅𝑃  1 [Fig. 4(e)] 9 1.899999999978 1.8999999999787 1.9 

0.1 [Fig. 4(f)] 378 1.899999999686 1.8999999996865 

      

𝐼1
𝑅𝐶𝐻 0.1 [Fig. 5(g)] 93 3.2229443141123 3.2229443141123 3.2146018

366025 0.05 481 3.2159672469509 3.2159672469509 

0.02 [Fig. 5(h)] 2936 3.21482839158 3.21482839158 

0.01 12058 3.21465864122 3.21465864122 

0.005 49482 3.21461595617 3.21461595617 

0.001 1250566 3.214602379 3.214602379 

Table 2: Evaluation of the integral 𝐼2 over the regions 𝑅𝐶 ,  𝑅𝑆,  𝑅𝑃,  𝑅𝐶𝐻  . 

Integrals Initial Edge 

length of 

triangular 

elements 

Number of 

triangular 

elements  

(𝑇𝐸𝑖) in the 

mesh,  𝑁  

Evaluation of integrals 

using the proposed 

method for 4 sub-

triangles  

(𝐼𝑆𝑇𝑘) 

Evaluation of integrals using 

the proposed method for 

100 sub-triangles 

(𝐼𝑆𝑇𝑘) 

𝐼2
𝑅𝐶  0.2 [Fig. 2(a)] 143 5.4238889038 5.4241942501 

0.05 [Fig. 2(b)] 2774 5.8253884870 5.8253890940 

0.01 71898  5.8549596569 5.8549596570 

0.005 288935  5.8557489007 5.8557489007 
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𝐼2
𝑅𝑆 

[13, 16] 

1 10 19.237011987635 20.817429371742 

0.1 899 20.828491136835 20.828740353281 

0.01 91772    20.82874055109 20.82874055127 

     

𝐼2
𝑅𝑃  1 [Fig. 2(e)] 9 10.9089926539429 10.9130953698007 

0.1 [Fig. 2(f)] 378 10.9130843634477 10.9130950767563 

     

𝐼2
𝑅𝐶𝐻 0.1 [Fig. 2(g)] 93 20.7941674121594 20.827541129123 

0.05 481 20.8166341261711 20.827534823139 

0.02 [Fig. 2(h)] 2936 20.8273882341180 20.827518425378 

0.01 12058 20.8275122046300 20.827517609650 

0.005 49482 20.8275162997800 20.827516504240 

0.001 1250566 20.8275171400000 20.827517140000 

 

4. Discussion 

The results presented in Tables 1 and 2 showcase 

the high accuracy and convergence characteristics 

of the proposed integration method over various 

complex domains. For each example (d1 through 

d5), the computed integral values approach the 

exact solutions as the triangular mesh becomes 

finer, demonstrating the method’s robustness in 

handling diverse geometric regions, including 

circles, ellipses, squares, polygons, and regions 

with holes. 

In Example 1, which involves evaluating the 

integral 𝐼1 over regions 𝑅𝐶 ,  𝑅𝐸 ,  𝑅𝑃 and 𝑅𝐶𝐻   show 

a clear trend of convergence to the known exact 

values as the number of triangular elements 

increases. For the integral 𝐼1
𝑅𝐶 , the results reveal a 

systematic reduction in error as the initial edge 

length of triangular elements decreases. For 

instance, with an initial edge length of 0.2 (143 

triangular elements), the evaluation approximates 𝜋 

as 3.1200435040 using 4 sub-triangles, improving 

to 3.1359060489 with 100 sub-triangles. As the 

mesh is refined to an edge length of 0.005 (288,935 

elements), the result converges to 3.1415796145, 

closely matching the exact value of 𝜋 =

 3.141592653589793. Similarly, for 𝐼1
𝑅𝐸 , 

representing 2𝜋, the method shows rapid 

convergence. At an initial edge length of 0.2 (311 

elements), the integral evaluates to 6.2614670844. 

Refining the mesh to 0.005 (578,397 elements) 

yields 6.2831720887, which is within a small 

margin of the exact value 2𝜋 =

 6.28318530717952. The integral 𝐼1
𝑅𝑃 , with exact 

value 1.9, also showcases high precision. At an 

edge length of 1.0 (9 elements), the result is 

1.899999999978, maintaining this accuracy even 

with finer meshes, confirming the method's 

robustness. For 𝐼1
𝑅𝐶𝐻 , the results validate the 

method's effectiveness for more complex domains. 

With an initial edge length of 0.1 (93 elements), the 

computed value of 3.2229443141123 improves 

significantly as the mesh is refined to 0.001 

(1,250,566 elements), achieving 3.214602379, 

closely matching the exact value 3.2146018366025. 
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In Example 2, for the more complex integral 

expression 𝐼2, the method continues to exhibit 

convergence and accuracy across each domain. The 

challenging nature of the rational function 

evaluated in 𝐼2, especially over domains like 𝑅𝑃  

and 𝑅𝐶𝐻, further demonstrates the method's 

capacity for handling non-trivial integrands. The 

second integral, 𝐼2
𝑅𝐶, displayed similar trends of 𝐼1

𝑅𝐶

. With an initial edge length of 0.2, the computed 

value (5.4238889038) deviated more significantly, 

but refinement to 0.005 yielded accurate results 

(5.8557489007). For 𝐼2
𝑅𝑆 , as the edge length 

decreased from 1 to 0.01, the computed values 

converged from 19.237011987635 to 

20.82874055109, closely matching the exact 

solution. Finally, for 𝐼2
𝑅𝐶𝐻 , the proposed method 

exhibited high precision with increasing mesh 

refinement. At 0.1, the computed value 

(20.7941674121594) was close to the exact value, 

and at 0.001, the computed value 

(20.827517140000) matched it almost perfectly. 

Overall, the proposed method demonstrated robust 

convergence for both linear and nonlinear 

boundaries, with finer meshes significantly 

reducing errors. This highlights the effectiveness of 

the method in achieving high accuracy in a variety 

of domains with complex geometries and varying 

mesh densities. 

 

5. Conclusions 

In this paper, we introduced a novel method for 

evaluating double integrals over arbitrary complex 

domains with nonlinear boundaries. The method 

begins by decomposing the domain into a mesh of 

regular or irregular triangles, enabling flexibility in 

handling complex geometries. Each triangular 

element is mapped to a standard triangle using 

triangular basis functions defined in the local 

coordinate system and is further subdivided into 

smaller triangles for enhanced accuracy. These 

standard triangles are then mapped onto a unit 

square using quadrilateral basis functions, ensuring 

uniformity in numerical treatment. For each square, 

lower-order Gauss quadrature of order (𝑠 = 3) is 

applied to evaluate the integrals. This approach 

ensures precise computation while maintaining 

computational efficiency. The computed results 

demonstrate convergence toward exact solutions, 

even for domains with intricate nonlinear 

boundaries. Numerical examples highlight the 

method's robustness and its ability to maintain high 

accuracy across diverse geometric regions with 

varying mesh densities. 

The proposed method not only balances accuracy 

and computational efficiency but also offers a 

systematic framework for handling complex 

domains, including those with irregular shapes and 

boundaries. Its convergence properties validate its 

reliability, making it a suitable and versatile tool for 

evaluating integrals in engineering, physics, and 

other applications involving complex domains. 
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