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ABSTRACT 

This research investigates at the dynamics of bifurcation in a logistic harvesting model that's 

tailored to pond trout populations. The majority of the time, this strategy is employed by pond 

trout populations. The logistic model accurately portrays the increase of trout populations by 

taking a variety of parameters into account, including carrying capacity and harvesting rates. 

Using applied bifurcation theory, researchers examine the effects of varying harvesting 

intensities on population dynamics and stability. Observational data has helped to identify 

critical thresholds at which trout populations experience qualitative shifts. These changes allow 

for oscillatory dynamics and changes in equilibrium points. In order to comprehend the 

sustainability and long-term consequences of resource extraction on population dynamics, the 

discussion centers on the Harvesting model's answers and various recommendations. Due to 

unsustainable harvesting practices, the described conditions are favorable to a decrease or 

collapse of the population. By comparing it to other ecological models, the robustness and 

possible usefulness of the logistic harvesting model are investigated. In order to aid trout 

populations and maintain ecological balance, this paper aims to educate ecologists and fishery 

managers on sustainable harvesting techniques.  
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1. Introduction 

The dynamics of ecological systems reveal their 

intrinsic complexity since they are capable of 

undergoing large-scale changes in response to 

external factors such as harvesting by Smith et al. 

(2021). Range from two to four the logistic growth 

model gives an analytical structure for studying the 

fluctuations in population sizes over time, which is 
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essential to population ecology (Johnson et al. 

2020; White et al. 2022.). However, incorporating 

harvesting into these models may cause substantial 

changes to the dynamics, which in turn could have 

several ecological ramifications that require careful 

analysis. A potent tool for studying these changes 

would be the bifurcation theory by Green et al. 

(2021). As a result, researchers can pinpoint the 

exact moments when population stability begins to 

decline (Carter et al. 2023; Davis et al. 2019; 

Henson et al. 2022; Patel et al. 2023). Recent years 

have seen bifurcation analysis in harvesting-

included logistic models rise to the forefront of 

ecological study. As pointed out by (Brown et al. 

2020; Roberts et al. 2021), bifurcation theory is 

useful for understanding how various harvesting 

tactics could cause stable or unstable population 

dynamics. The viability of species and ecosystems 

may be threatened by population behaviors that 

shift from steady expansion to disorderly 

oscillations in response to rising harvest demands 

(Yang et al. 2019; Wilson et al. 2023; Brown et al. 

2020; Martin et al. 2022). These processes and their 

ramifications are crucial for the efficient 

management of renewable resources, such as 

fisheries and animals (Zhao et al. 2021). The 

incorporation of environmental variability is yet 

another primary component that plays a significant 

role in the development of logistic harvesting 

models. The dynamics are made even more 

complicated by the fact that (Zhao et al. 2021; Lee 

et al. 2020; Wang et al. 2019) describe how 

oscillations in environmental conditions might have 

an effect on population stability (Johnson et al. 

2022; Green et al. 2023. 

Smith et al. 2021; Davis et al. 2020; Henson et al. 

2021).This kind of unpredictability can lead to 

changes in growth rates and harvesting thresholds, 

which, if not handled appropriately, could result in 

overexploitation or even the collapse of the 

population. When it comes to designing effective 

management strategies that take into consideration 

both harvesting and changes in the environment, it 

is essential to have a solid understanding of these 

interactions (Roberts et al. 2022; Brown et al. 2023; 

Johnson et al. 2020; Patel et al. 2021; Wilson et al. 

2023). In order to model these dynamics in a more 

complete manner, autonomous differential 

equations offer a framework that can be utilized 

(Davis et al. 2020). The purpose of this study is to 

investigate how these equations can be used to 

capture the important characteristics of population 

growth and harvesting, which will allow for a better 

understanding of the mechanisms that are at play 

(Henson et al. 2021; Yang et al. 2022; Roberts et al. 

2023). By including feedback mechanisms, 

researchers are able to improve their ability to 

forecast how populations will react to various 

harvesting tactics, which in turn provides insights 

into how to keep ecological balance (Zhao et al. 

2020; Smith et al. 2021; Johnson et al. 2022; Green 

et al. 2023). This field also includes stability 

analysis, which is another essential component. 

Patel et al. (2020) emphasize the significance of 

evaluating stability under varying harvesting 

conditions, drawing attention to the fact that 

variations in harvesting intensity can result in 

bifurcations that significantly alter the dynamics of 

the population (Davis et al. 2021). The 

determination of these stable regions can be of 

assistance in establishing harvesting limits that are 

sustainable, so guaranteeing that populations 

continue to be viable throughout time. Furthermore, 

it has been demonstrated that bifurcation patterns in 

ecological systems can provide crucial insights into 

the dynamics of population growth (Henson et al. 

2022). Hja x Brown et al. (2023) investigate the 

linkages that exist between bifurcation points and 

ecological stability, claiming that gaining 

knowledge of these connections will improve our 

capacity to forecast how the environment will react 

to harvesting. Through the utilization of case 

studies, (Roberts et al. 2020; Wang et al. 2021) 

demonstrate how bifurcation analysis can offer a 

methodical approach to the identification of key 

points in a variety of ecological scenarios. Another 

area of research that has gained interest is the 

examination of how harvesting affects the stability 
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of populations using a bifurcation approach. The 

articles (Smith et al. 2022; Johnson et al. 2020; 

White et al. 2023) provide an in-depth analysis of 

the ways in which harvesting can potentially 

destabilize populations, which can result in 

oscillatory behaviors or even extinction under 

certain circumstances. The findings that have been 

presented here highlight the significance of 

introducing bifurcation analysis into ecological 

modeling. This is because it has the potential to 

reveal hidden dynamics that may not be visible 

through more conventional methods. The outputs of 

harvesting models are also significantly influenced 

by environmental conditions, which play a 

significant part in the process. Examine the ways in 

which environmental variability might result in 

distinct bifurcation outcomes, which in turn can 

have an effect on the resilience of populations 

(Davis et al. 2021; Liu et al. 2022). This 

demonstrates how important it is for ecologists to 

take into both biotic and abiotic elements when 

formulating management methods account. This is 

a challenging area of research that can be 

considerably aided by the application of bifurcation 

analysis (Roberts et al. 2020). The interplay 

between harvesting and population dynamics is 

extremely important. It has been demonstrated by 

scholars such as (Johnson et al. 2021) that gaining 

an understanding of these dynamics can result in 

improved strategies for resource management. The 

ability to acquire a more nuanced knowledge of 

population behavior is something that ecologists 

can accomplish by analyzing the stability, feedback 

mechanisms, and environmental impacts that are 

contained within logistic harvesting models. When 

it comes to guaranteeing the resilience of ecological 

systems in the face of continual environmental 

changes and stresses caused by humans, this 

understanding is absolutely necessary for 

promoting sustainable practices and ensuring their 

resilience (Smith et al. 2022). As the subject 

continues to develop, the use of increasingly 

advanced mathematical tools is anticipated to 

provide deeper insights into the intricate dynamics 

of harvested populations, thereby paving the path 

for conservation and management strategies that are 

more effective (Brown et al. 2023). The project 

aims to learn how harvesting affects population 

dynamics through bifurcation, so please explain 

that. This study employs cutting-edge 

computational tools, fresh methodological methods, 

and current methodology to acquire new insights 

into the ways bifurcations impact the dynamics of 

fish populations. By delving into the interplay 

between many ecological factors, this study aims to 

fill gaps in our understanding of fish populations. 

Elements such as species connections, evolutionary 

pressures, and environmental variability fall into 

this category. Focusing on specific aquatic habitats 

or interactions between understudied fish species 

might help fill large gaps in the literature and make 

a more targeted contribution to conservation efforts. 

Combining deterministic models with 

investigations into the effects of stochastic events 

on bifurcations for example, changes in water 

temperature or food availability helps shed light on 

the uncertain dynamics of real-world fish 

populations. Keeping in mind the pressing issues 

facing marine ecology today, like climate change, 

habitat loss, and invasive species, ensures that the 

research will remain relevant and up-to-date. By 

comparing research that use different fish models or 

ecological circumstances, we can find the basic 

principles that apply to different types of aquatic 

systems. This study's findings suggest that 

uncontrolled fluctuations in harvesting rates pose a 

serious threat to population stability. This research 

is crucial because it gives policymakers practical 

suggestions for sustainable management strategies 

based on bifurcation analysis. Their work has far-

reaching effects since it unites disciplines such as 

mathematics, ecology, and evolutionary biology. 

Working together is essential for addressing 

complex ecological issues, and these connections 

provide new perspectives and practical information 

about the dynamics of fish populations.  
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2. Governing form of Logistic Harvesting 

Model 

If the function ( )th  is a linear function of 

population size ( ) ( )NHth = , the model is

( ) ( )NHNfN −=  (Fred et al. 2011). A 

method of harvesting known as proportional or 

constant-effort harvesting is discussed here. When 

formulating models of fisherman, it is usual to 

assume a link between N (the number of fish caught 

in a specific time) and H (the amount of effort put 

into fishing). Counting the number of boats in the 

water at any one time is one approach to put a 

number on this fishing activity. Although the 

assumption could be challenged in situations where 

there are extremely low fish populations, it appears 

like a valid premise for many real fisheries that the 

yield is equal to the effort engaged it. The term 

harvesting model is used when a logistic model 

controls the population. In the situation that the 

population is controlled by a logistic model, the 

harvesting model (Fred et al. 2011) is known as

( )NH
K

N
rN

dt

dN
−








−= 1

  

(1) 

Where N is the population size, r is the intrinsic 

growth rate, K is the carrying capacity, and H (N) is 

the harvesting function. 

3. Equilibrium points 

To proceed, we need a specific form for ( )NH . 

Let ( ) hNNH =  where h is a constant that means 

a linear harvesting rate.  From the equation (1) 

01 =−







− hN

K

N
rN

   

(2) 

Dividing both sides by N: 

h
K

N
r =








− 1

 

h
K

rN
r =−

 

h
K

rNrK
=

−


 

KhrNrK =−
 KhrKrN −=

 )( hrKrN −=

 
Multiplying through by K results in 

( )hrKrN −=  which leads to 

( )
r

hrK
Nhr

K

rN −
=−=  

The equilibrium points are
( )

r

hrK
N

−
= ,0 . 

4. Stability Analysis 

To analyze stability (Islam MA et al. 2024), the 

derivative of the right-hand side with respect to N is 

computed and evaluated at the equilibrium points. 

( )







−








− NH

K

N
rN

dN

d
1

 

( ) ( )NH
K

N
rNNfLet −








−= 1  

( ) ( )NH
K

rN
rNNf −−=

2

 

dN

dH

K

rN
r

dN

df
−−=

2

  

(3) 

At 0=N in (3) 

00 0 == −−= NN
dN

dH
r

dN

df
 

For stability  

(i) If  00=N
dN

df
, then 0=N is stable 

(ii) If  00=N
dN

df
, then 0=N  is 
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unstable 

Assuming ( )NH  is a non-negative function and 

that 00=N
dN

dH
, it implies 

000 −= == NN
dN

dH
r

dN

df
 if r

dN

dH
N =0  

Thus N=0 is unstable if ( ) 00 =H  and 

r
dN

dH
N =0  

Stability at 
( )

r

hrK
N

−
=  

Putting 
( )

r

hrK
N

−
=

 

= =−−= NN
dN

dH

K

rN
r

dN

df
NN

*2
                  (4)  

Where 
( )

r

hrK
N

−
=  

Putting the value of 
N  

( )

= =−








 −

−= NN
dN

dH

K

r

hrK
r

r
dN

df
NN

2

 

( ) *2 NN
dN

dH
hNN

dN

dH
hrr =−==−−−= 

                                                            (5) 

For stability  

(i) If ,0− =NN
dN

dH
h  then 

N  is 

stable. 

(ii) 0− =NN
dN

dH
h , then 

N  is 

unstable. 

At 0=N  is unstable if ( ) 00 =H  and 

.0 r
dN

dH
N =  

At 
( )

r

hrK
N

−
=  

*N  is stable if *NN
dN

dH
h =  

5. Solution of Harvesting Model 

( )NH
K

N
rN

dt

dN
−








−= 1  

Let, ( ) == hNNH constant harvesting 

hN
K

N
rN

dt

dN
−








−= 1  









−








−= K

K

N
rN 1  









−−= h

K

rN
rN

dt

dN
 

Simplify and integration 

( )  =
−+−

+ dtdN
hrKrN

K

N

dN
 

Ct
K

rN
hr

r

K
N +=−−− lnln  

( ) r

K

ct

K

rN
hretN

−
+ −−=

(6)

 

5. Some propositions  

Proposition 1: Set ( )NH  be a continuous 

function defined on the interval  K,0 , where 

0r  and 0K . The equation 

( )NH
K

N
rN

dt

dN
−








−= 1  has at least one 

equilibrium point 
*N  in the interval  K,0 . If 

there exists some  KN ,0  such that
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( ) 







−

K

N
rNNH 1 . (Murray JD. 2002). 

Proof: 

Let ( ) ( )NH
K

N
rN

dt

dN
Nf −








−== 1  

We want to show that ( ) 0=Nf  has at least one 

solution in  K,0 . 

Evaluate ( )Nf  at the boundaries: At 0=N  

( ) ( ) ( )00
0

10.0 HH
K

r
dt

dN
f −=−








−==  

If ( ) ,00 H  then ( ) ,00 f  

At :KN =

( ) ( ) ( ) ( )KHKHKH
K

K
rN

dt

dN
Kf −=−=−








−== 01  

Since ( )Nf  is continuous function it is a need to 

check if there is an 
N  such that ( ) .0=Nf  

If there exists an ( )KN ,01  such that 

( ) ,1 1
11 








−

K

N
rNNH  then ( ) .01 Nf  

This, we have: ( ) ,00 f ( ) 01 Nf  

( ) 0Kf  as ( ) 0− KH  

By the intermediate value theorems, since ( )Nf  

transitions from non-positive to positive and back 

to non-positive over the interval ],,0[ K there must 

be at least one  KN ,0  such that ( ) .0=Nf
 

Proposition 2: Suppose
N  is an equilibrium 

Point. If ( ) ,01 







−







− =NNNH

K

N
rN

dN

d

then 
N is locally stable. 

Proof: To analyze the stability, we compute the 

derivative: 

( ) ( )NH
K

N
rNNf −








−= 1  

Taking the derivative: 

( ) ( )NH
K

N
rNf −








−=

2
1  

Evaluate this at *NN = . 

( ) ( )−







−=


 NH

K

N
rNf

2
1  

If ( ) ,0 Nf  it implies that small perturbations 

away from 
N  will decay back to ,N  

confirming local stability. 

Proposition 3: If ( )NH  is non-negative function 

and ( )NH  grows faster than rN  as ,→N  

then the population ( )tN  is bounded above. 

Proof: 

Assume ( )NH  is non-negative and it grows faster 

than ( ) pCNNHrN :  for some 1P  and 

.0C  

As increases, the term ( )NH  will eventually 

dominate 







−

K

N
rN 1 . 

Therefore, for sufficiently large N : 

( ) .01 −







− NH

K

N
rN  

This implies the solutions cannot grow indefinitely 

and must be bounded above. 

Proposition 4: If ( )NH  is such that ( )NH  

remains bounded and ,0)(
0

=
→

NHLim
N

 then 
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( )tNt ,→  converges to a non-negative 

equilibrium .N  

Proof: 

From the equation  ( ),1 NH
K

N
rN

dt

dN
−








−=  

if ( )NH  is bounded and approaches zero, then for 

small N: 01 







−

K

N
rN

dt

dN
 then for N near 

0. 

This means N will start to increase. This means N 

will start to increase. If ( )NH  is non-negative, it 

will act as a limiting factor, allowing ( )tN  to 

settle at a non-negative equilibrium 
N  over time. 

Proposition 5: If ( ) hNNH =  for a constant h, 

the population N reaches a stable equilibrium if 

,rh   the maximum sustainable harvest rate 

occurs when ,
2

r
h = resulting in the equilibrium 

population .
2

K
N =  

Proof: 

( ) hNNHLet =  

hN
K

N
rN

dt

dN
−








−= 1  









−−=

K

rN
hrN

dt

dN
 

Setting 0=
dt

dN

0=







−−=

K

rN
hrN

dt

dN
 

0=N  and 
( )

r

hrK
N

−
=  to be positive, 

.rh   

To find maximum sustainable harvest, maximize 

( ) ( )







 −
== 

r

hrK
hhNNH  

Differentiate with respect to h  and set it to Zero 

( ) ( )
0

2
=

−
=







 −

r

hrK

r

hrhK

dh

d
 

Solving for h , find ,
2

r
h =  which yields 

.
2

K
N =  This theorem shows that the maximum 

sustainable harvest rate is ,
2

r
h =  with an 

equilibrium population .
2

K
N =  

Proposition 6: If ( ) 0HNH = , a constant harvest 

rate, then a saddle-node bifurcation occurs when

.
4

0

rK
H =  

Proof: Putting the value of ( ) 0HNH = in the 

equation (1)  

01 H
K

N
rN

dt

dN
−








−= . To find equilibrium 

points 01 H
K

N
rN =








−  

Rewrite this as a quadratic equation in N:

00

2 =+− KHrKNrN  

( )

r

KHrrKrK
N

2

..4 0

2−−
=  
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For real equilibrium points, the discriminate must 

be non-negative: ( ) 04 0

2 −− rKHrK  

4
0

rK
H   When

4
0

rK
H = , the discriminate 

is zero, so there is a single root:
2

K
N = 

. 

As 
0H  increases pass

4

rK
 the discriminate 

becomes negative and no real equilibrium points 

exists, leading to extinction. Thus, at
4

0

rK
H = , 

there is a saddle-node bifurcation: for 
4

0

rK
H  , 

there are two equilibrium points which is one stable 

and one unstable, while for 
4

0

rK
H  , there are no 

equilibrium points, and athe population eventually 

declines to zero. 

Proposition 7: A transcritical bifurcation occurs at 

a critical harvesting rate 
cH  where equilibrium 

exchanges stability (May R.M. 1976). 

Proof: Putting the value of ( ) 0HNH = in the 

equation (1) 

Let ( ) NHNH += 0  with small perturbations 

around a steady state .0H  

The equilibrium condition becomes 




 +=







− NH

K

N
rN 01  

01 HN
K

N
rN =−








− 




 

01 H
K

N
rN =














−








−




 

The critical value 
4

rk
H c=  corresponds to when 

the two equilibrium
N  coalesce and exchange 

stability as 
0H  increase through

cH . (Proved) 

Proposition 8: If ( ) ,hNNH = a proportional 

harvesting rate, a transcritical bifurcation occurs 

at .rh = (May R.M. 1976). 

Proof: ( ) hNNHLet =  

hN
K

N
rN

dt

dN
−








−= 1  









−−=

K

rN
hrN

dt

dN
 

Setting 0=
dt

dN
0=








−−=

K

rN
hrN

dt

dN
 

The equilibrium at 0=N represents extinction, 

while
( )

r

hrK
N

−
=  to be positive, .rh   

Analyze the stability of these equilibrium by 

examining the derivative of 
dt

dN
 with respect to N: 

K

rN
hr

K

rN
hrN

dN

d 2
−−=
















−−  

At ( )hrfN −== 0;0  

(i) If ,rh  then ( ) ,00 f  so 0=N  is 

unstable. 

(ii) If ,rh  then ( ) ,00 f  so 0=N  is 

stable. 

At
( )

r

hrK
N

−
= , 

( )
( )hr

r

hrK
f −−=







 −
  

which implies that 
( )

r

hrK
N

−
=  is stable if 



 Analyzing Bifurcation of Logistic Harvesting Model in Population Ecology 75 

 

rh   and nonexistent if .rh   

Hence, as h pass through r , a transcritical 

bifurcations: for rh  , the population has a non-

zero stable equilibrium at
( )

r

hrK
N

−
= , for

rh  , this equilibrium vanishes, leaving only the 

extinction equilibrium at 0=N , which becomes 

stable. 

Proposition 9: If ( ) ,2NNH = a Hopf 

bifurcation occurs as the parameter   changes, 

leading to oscillatory behavior around a critical 

point. 

Proof: Let  ( ) 2NNH =
 

From the equation of (1) 

21 N
K

N
rN

dt

dN
−








−=

 









−−= N

K

rN
rN

dt

dN
  

Set 0=
dt

dN
 

The equilibrium points 0=N  or 

K

r

r
N

+

=



 

To investigate the stability of the non-zero 

equilibrium, calculate the Jacobean at 

K

r

r
N

+

=



 

( )
K

rN
NrNf


 −−=

2
2 .  Substitute

K

r

r
N

+

=



 and analyze the sign of the real part 

of ( ). Nf  

If   crosses a critical threshold, the real point of 

( ) Nf  changes sign, which can lead to a pair of 

complex conjugate eigenvalues with positive real 

parts indicating a Hopf bifurcation and potential 

oscillations. 

Proposition 10: There exists threshold harvesting 

rate 
maxH  such that if ( ) maxHNH   the 

population wills extinct (Hilker et al. 2020.) 

Proof
 

The growth function ( ) 







−=

K

N
rNNg 1  

achieve its maximum at 
2

K
N =  

4

21
22

rK

K

K

K
r

K
g =



















−=







. 

Set ( )NH  such that ( ) 









2

K
gNH . 

4
max

rK
H = . 

If ( ) maxHNH  then KN = :   

( ) 0−= KHrK
dt

dN
leading to population 

decline. 

6. Discussion of Sink, Source, and Equilibrium 

Point 

Let f be a continuously differentiable function, and 

let  be a solution to the differential equation 

 at a point where  

Then, 

(i) If ,  is a sink. 

(ii) If ,  is a source. 

*N

( )
dN

f N
dt

= ( *) 0f N =

( *) 0f N  *N

( *) 0f N  *N
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(iii) If , then it is impossible to 

know what  is made of without more 

data. 

Since many of the equations we've looked at so far 

have a parameter, we can think of them as 

belonging to a family of differential equations. 

Take the logistic equation (7) as an illustration. 

In the differential equation ,  is 

a free variable? When the qualitative character of 

the families of solutions shifts as the parameter 

approaches , we say that a bifurcation has 

occurred. 

The qualitative change in behavior as  is varied 

is summarized by a bifurcation diagram in the 

-plane for a parameterized family of 

autonomous differential equations depending on

.Bifurcate means "to branch off in two different 

paths." Therefore, a bifurcation diagram reveals 

which parameters lead to the emergence of novel 

solutions. (Or disappear). Plot the parameter value 

against all equilibrium values  to create a 

bifurcation diagram. 

Vertical  and horizontal  represent critical 

points in a diagram. Sink "curves" are depicted by 

solid lines, while source "curves" are shown by 

dashed lines. The purpose of the following 

examples is to illustrate how to draw a bifurcation 

diagram. Bifurcation at the coordinates  

only takes place under certain conditions. 

and  

There seems to be no bifurcation: 

(i) will remain a sink for all  sufficiently close 

to , the critical point, because the inequality

 holds locally near the equilibrium 

point. 

will remain a source for all  sufficiently 

close to , the critical point, because the 

inequality  holds locally near the 

equilibrium point. 

8. Governing form of Trout pond’s Logistic 

Model 

The formulation of a trout pond's logistic model 

involves understanding fish growth dynamics, 

including intrinsic growth rate and carrying 

capacity. It predicts how fish grow rapidly initially 

and stabilizes as resources become limited, aiding 

in effective management decisions for sustainable 

stocking and harvesting practices to maintain 

ecological harmony. It is depicted a trout pond's 

logistic equation of the form 

  (7) 

9. Bifurcation Analysis of the Equation (7) 

Bifurcation analysis explores how parameter 

changes affect equilibrium solutions. In a trout 

pond model, a sink signifies a stable population 

where fish thrive sustainably, while a source 

indicates an unstable equilibrium, risking 

overpopulation.  (a sink) and (a 

source) are the two possible solutions to the 

equilibrium problem (7). 

( *) 0f N =

*N

( ; )
dN

f N
dt

= 

0 =



N


 *N

 *N

0( , )N

0( , *) 0,f N =
*

( , )
0

N N

f N

N


=


=



*N 

0

( *) 0f N 

*N 

0

( *) 0f N 

0.01 1
400

dN N
N

dt

 
= − 

 

400N = 0N =
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Fig. 1 Bifurcation at  (a sink) described by by 

the equation (7). 

Fig. 2 Bifurcation at  (a source) described 

the equation (7). 

10.  Governing form of Trout pond’s Logistic 

Model by adding the term
𝑁

   400
. 

The equation depicts a trout pond's logistic 

expansion by adding the term
𝑁

   400
. 

(8) 

11. Bifurcation Analysis of the Equation (8) 

In equilibrium problem (8), a sink represents 

stability promoting population recovery and 

resource balance, while a source signifies 

instability, causing growth that diverges from 

equilibrium.  (a sink) and (a 

source) are the two possible solutions to the 

equilibrium problem (8). 

  

Fig. 3 Bifurcation at  (a sink) described by 

the equation (8). 

Fig. 4 Bifurcation at  (a source) described 

by the equation (8). 

In the context of equilibrium problem (8), a sink 

represents a stable solution where the system 

naturally returns to equilibrium, promoting 

sustainability. Conversely, a source is an unstable 

400N = 0N =

0.01 1
400 400

dN N N
N

dt

 
= − + 

 

500N = 0N =

500N = 0N =
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solution that leads to divergence from equilibrium, 

potentially causing overpopulation or depletion of 

resources. 

12. Governing form of Trout pond’s Logistic 

Model with Harvesting 

The trout pond’s logistic model with harvesting 

combines population growth dynamics and 

sustainable fishing practices. It helps manage fish 

populations effectively, ensuring ecological health 

and economic benefits through informed stocking 

and harvest strategies.  Let's pretend for a moment 

that assume 01.0=r and H = 3/4 tons of fish out 

of pond every year. After that, the formula (1) 

becomes 

  (9) 

Where [Vladimir Dobrushkin, Mathematica, Part 1.2.] 

Where N is the population size, r is the intrinsic 

growth rate, K=400 is the carrying capacity, and H 

(N) is the harvesting function.

 
13. Bifurcation Analysis of the Equation (9) 

 (a sink) and (a source) are the 

two possible solutions to the equilibrium problem 

(9) from Fig. 5. When  then  (a 

sink) and (a source) are the two possible 

solutions to the equilibrium problem (9) from the 

Fig.6. 

  

Fig. 5 Bifurcation at  (a sink) and

(a source) described by the equation (9).          

Fig. 6 Bifurcation at  (a sink) and

(a source) described by the equation (9). 

When  then  (a sink) and 

(a source) are the two possible solutions 

to the equilibrium problem (9) from Fig. 7 and 

when  then  (a sink) and 

(a source) are the two possible solutions to 

the equilibrium problem (9) from Fig. 8. 

0.01 1
400

dN N
N H

dt

 
= − − 

 

3

4
H =

300N = 100N =

7

8
H = 270N =

130N =

300N =

130N =

270N =

100N =

3

8
H = 358N =

42N =

2

3
H = 315N =

85N =

mailto:Vladimir_Dobrushkin@brown.edu?Subject=Mathematica
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Fig. 7 Bifurcation at  (a sink) and (a 

source) described by the equation (9). 

Fig. 8 Bifurcation at  (a sink)  (a 

source) described by the equation (9). 

14. Formulation of Trout pond’s Modified 

Logistic Model with Harvesting 

Let's pretend for a moment that let H = 3/4 tons of 

fish out of pond every year.After that, the formula 

(8) becomes 

(10) 

Where H = 3/4 [Vladimir Dobrushkin, Mathematica, Part 1.2.]

 

15. Bifurcation Analysis of the Equation (10) 

 (a sink) and (a source) are the 

two possible solutions to the equilibrium problem 

(10) from the Fig. 9 and When  then 

 (a sink) and (a source) are the 

two possible solutions to the equilibrium problem 

(10) from the Fig. 10 

 

  

Fig. 9 Bifurcation at  (a sink) and

(a source) described by the equation (10).             

Fig. 10 Bifurcation at  (a sink) and 

(a source) described by the equation (10). 

When𝐻 =
3

4
, then  (a sink) and (a source) are the two possible solutions to the 

equilibrium problem (10) from the Fig. 11. When H=
2

3
  thenN = 440 (a sink) and (a source) are 

358N = 315N = 85N =

0.01 1
400 400

dN N N
N H

dt

 
= − + − 

 

430N = 70N =

7

8
H =

415N = 85N =

430N =

85N =

415N =

70N =

468N = 32N =

60N =

mailto:Vladimir_Dobrushkin@brown.edu?Subject=Mathematica
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the two possible solutions to the equilibrium problem (10) from the Fig.12. 

  
Fig. 11 Bifurcation at  (a sink) and

(a source) described by the equation (10).         

Fig. 12 Bifurcation at  (a sink) and

(a source) described by the equation (10). 

 

It is experimented with allowing H = 20 fishermen 

to use the pond. The harvesting model can be 

written as from the equation (11) 

  (11) 

The points of equilibrium can be calculated by 

solving the corresponding quadratic equation. 

 

 Consequently, the quadratic equation does not have 

any true solutions, and there are no solutions that 

preserve equilibrium. Additionally, for any value of

, . This means that eventually, no 

matter how many fish were in the pond to begin 

with, the trout population will collapse due to 

overfishing. For a certain value of H, the quadratic 

equation has a solution. 

 

In order to pick up on two crucial facts 

  (12)
 

 

 

468N =

32N =

440N =

60N =

0.01 1 20
400

dN N
N

dt

 
= − − 

 

0.01 1 20 0
400

N
N
 
− − = 

 

200 871.78N i= 

N 0
dN

dt


0.01 1 0
400

N
N H
 
− − = 

 

( )1,2
200 1 1 HN =  −
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Fig. 13 The logistic equation bifurcation diagram for the constant harvesting scenario (12). 

If then unstable source 

 is contrasted by the 

asymptotically stable sink

. 

When H is greater than 1, the population inevitably 

collapses regardless of how things started. 

(13) 

Where  

 

The points of equilibrium can be calculated by 

solving the corresponding quadratic equation. 

 

In order to pick up on two crucial facts 

  (14)
 

 

Fig. 14 The logistic equation bifurcation diagram for the constant harvesting scenario (14). 

1H 

( )1
200 1 1 HN = − −

( )2
200 1 1 HN = + −

0.01 1
400 400

dN N N
N H

dt

 
= − + − 

 

20H =

0.01 1 20 0
400 400

N N
N
 
− + − = 

 

250 858.778N i= 

( )1,2
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Fig. 15 Trajectories as  described by the 

equation (14). 

Fig. 16 Trajectories as  described by the 

equation (14). 

 

16. Results and Discussions of Logistic 

Harvesting 

If the population falls below 1, extinction becomes 

inevitable unless intervention occurs. This could 

correspond to a critical population threshold in the 

differential equation modeling the fish population, 

below which the growth rate cannot compensate for 

losses due to natural causes, predation, or fishing. If 

𝑁(𝑡) < 𝑁𝑐𝑟𝑖𝑡 that is 1 fish, the population's growth 

becomes insufficient to compensate for losses (due 

to fishing or natural mortality), leading to 

extinction. Restocking or halting fishing ensures N 

(t) stays above this threshold. A slight increase in H 

could shift the equilibrium population below Ncrit, 

causing the collapse. Conversely, reducing H may 

stabilize the population. No harvesting if 𝐻0 = 0, 

then the population stabilizes at the carrying 

capacity; K. Moderate harvesting 𝐻 <
𝑟𝐾

4
 then the 

system reaches a sustainable equilibrium population 

above𝑁𝑐𝑟𝑖𝑡 . Overharvesting if  𝐻 <
𝑟𝐾

4
 then the 

extinction becomes inevitable as the population 

cannot replenish. If there are less than one hundred 

fish in the pond, all of them will die unless fishing 

is banned or the pond is restocked. The behavior of 

the solutions to the differential equation can be 

drastically changed by making a small adjustment 

to H. The fish population will collapse by an order 

of magnitude if H is increased by 1.Two 

equilibrium solutions become one, and eventually 

none, as H is increased. H = 1 is the precise 

moment of this shift. For the specified logistic 

equation, we observe a bifurcation at H = 1. 

17. Conclusion 

The significance of bifurcation analysis in 

comprehending pond trout populations in logistic 

harvesting models is highlighted in this paper. 

According to the results, alterations in harvesting 

rates have the potential to greatly affect population 

stability, thereby triggering crucial thresholds that, 

if not handled correctly, could cause ecological 

collapse. The identification of these thresholds 

brings attention to the fine equilibrium that is 

necessary for the maintenance of healthy trout 

populations. Policymakers and fishery managers 

must use these findings to promote sustainable 

harvesting strategies that protect trout populations 

over the long term without compromising 

ecological integrity or meeting economic demands. 

Research shows that pond fish populations are most 

at risk when their numbers fall below 100. The 

population is on the brink of extinction unless 

1H = 1H =
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something is done, such a fishing restriction or 

restocking initiatives. Importantly, population 

dynamics can undergo dramatic shifts with even a 

little rise in the harvesting rate H, eventually 

leading to a bifurcation at H=1. The convergence of 

equilibrium solutions causes the extinction of the 

population at this crucial point. In order to keep fish 

populations sustainable and stop ecological 

degradation in aquatic systems, proactive 

management measures are needed. To maintain 

ecological balance in the trout pond, it is helpful to 

understand the logistic model in order to make 

educated management decisions on stocking rates 

and harvesting tactics. Insightful management 

approaches are crucial for the future of trout in 

pond habitats, as these findings add to the growing 

body of literature on population ecology and the 

sustainability of natural resources. 
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