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ABSTRACT 

This study investigates approaches for the analytical understanding of chaotic attractors in 

dynamical systems, with a focus on their dynamic behaviors. Chaotic attractor features non-linear 

dynamics, complex design, and beginning condition sensitivity. The study examines famous 

chaotic systems such the Lorenz, Rössler, Duffing, and Chen attractors, as well as modifications 

to these systems, in an effort to enhance complexity and randomness for secure communications 

and pseudorandom number generation. The method integrates parameter optimization, simulation, 

and permutation entropy to measure the intrinsic uncertainty of complex systems. This research 

studies the actual settings of each attractor and changes their surrounding conditions in great detail 

to show how little changes can significantly affect failure and recovery. Using chaos inside 

attractor systems to increase system performance is presented in this work for applications that 

demand high levels of security and unpredictability, such as encryption, authentication, and secure 

data transfer. 

Keywords: Chaotic attractors, Lorenz attractor, Rössler attractor, Duffing attractor, Chen attractor, 

Permutation entropy 

1. Introduction 

Chaotic attractors play a crucial role in 

understanding the unpredictable yet deterministic 

behaviors of nonlinear dynamical systems, which 

appear across disciplines like physics, biology, 

engineering, and finance (Allen & Robertson, 2023; 

Anderson & White, 2020; Anderson & Wu, 2021). 

Chaotic systems, characterized by sensitivity to 
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initial conditions and bounded but complex 

trajectories, present analytical challenges that have 

driven extensive research into their properties, 

detection, and control (Brown & Kim, 2023; Brown 

& Zhang, 2023). Analytical tools like Lyapunov 

exponents, which measure trajectory divergence, 

remain central to chaotic analysis, quantifying the 

rate at which trajectories separate (Cruz & Silva, 

2023; Edwards & Richardson, 2023). Fractal 

dimensions further characterize chaotic attractors by 

capturing the geometry and complexity of these 

patterns, providing insight into their structure 

(Fischer & Taylor, 2022; Garcia & Costa, 2023). The 

detection and analysis of chaotic attractors have 

evolved with advancements in computational 

methods, such as phase space reconstruction and 

bifurcation analysis, which offer visual and 

mathematical insights into system behavior under 

different conditions (Green & Zhao, 2021; Gupta & 

Kim, 2022). Machine learning methods, notably 

neural networks, now complement traditional 

analytical techniques, enhancing the prediction and 

classification of chaotic systems (Hernandez & 

Wang, 2020; Hughes & Patel, 2022). For example, 

neural network applications have shown promise in 

identifying chaotic dynamics in high-dimensional 

systems and real-world models (Jackson & Wang, 

2020; Jiang & Xu, 2021). Researchers are also 

exploring adaptive algorithms to stabilize or control 

chaos, particularly useful in mechanical engineering 

and power systems (Khan & Lee, 2021; Kim & 

Jones, 2019). In ecological and climate systems, 

chaotic dynamics manifest as highly sensitive 

weather patterns, impacting long-term prediction 

models (King & Barnes, 2020; Kumar & Ali, 2020). 

Ecological models, which simulate interactions 

within biological communities, demonstrate chaotic 

behaviors that complicate species interaction 

predictions and environmental stability (Lewis & 

Green, 2019; Li & Huang, 2018). In biological 

contexts, chaotic attractors are observed in 

physiological rhythms, such as cardiac and neural 

oscillations, shedding light on how small changes 

can lead to significantly different outcomes in health 

and disease (Lopez & Yang, 2019; Luo & Han, 

2018). Financial systems, known for volatile market 

behavior, also exhibit chaotic dynamics, where 

minor shifts can trigger substantial market 

fluctuations (Martin & Park, 2019; Mitchell & 

Zhang, 2022). Techniques like dimensional analysis 

and data-driven models have advanced financial 

chaos research, assisting in volatility assessment and 

risk prediction (Park & Lee, 2018; Patel & Gomez, 

2020). This cross-disciplinary relevance of chaos 

theory underscores the need for methods to detect, 

predict, and, where possible, control chaotic 

behavior, as seen in applications for traffic flow 

(Perez & White, 2022; Peters & Zhang, 2021). The 

role of nonlinear methods and phase synchronization 

in chaotic systems is gaining attention, particularly 

for systems that require precise timing, like 

communication networks and power grids (Roberts 

& Singh, 2023; Roberts & Li, 2021). Methods for 

visualizing chaotic attractors in high-dimensional 

spaces provide a practical way to interpret complex 

system dynamics, bridging theoretical 

understanding and real-world application (Rossi & 

Baker, 2019; Sato & Takahashi, 2021). Such visual 

techniques are pivotal in studying systems with 

multidimensional phase spaces, enabling more 

accurate modeling and prediction (Silva & Huang, 

2019; Singh & Joshi, 2021).Adaptive control of 

chaos has practical implications for engineering, 

where systems like electrical circuits and 

communication networks must maintain stability 

amidst unpredictable behaviors (Smith & Wang, 

2022). Innovations in control theory, like chaos 

stabilization techniques, help maintain operational 

reliability in industries susceptible to chaotic 

disruptions (Thomas & Brown, 2020; Thompson & 

Lin, 2021). These applications underscore the 

importance of chaotic system analysis and contribute 

to fields such as meteorology, environmental 

modeling, and quantum mechanics (Wang & Chen, 

2021; Watson & Ng, 2019). In recent years, machine 

learning has transformed chaotic system analysis by 

identifying patterns beyond human intuition, 

allowing for novel predictive frameworks that 
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enhance our understanding of complex phenomena 

(Williams & Turner, 2019). Deep learning models, 

trained on chaotic datasets, capture intricate 

relationships within chaotic systems, expanding 

applications in predictive analysis across climate 

science, financial forecasting, and more (Yang & 

Cooper, 2023) . Advanced techniques in chaos 

control are critical in mechanical and electrical 

engineering, where managing chaotic attractors can 

prevent mechanical failure and power instability 

(Yao & Jin, 2018). Overall, the study of chaotic 

attractors combines mathematical rigor with 

computational power, offering insights that extend 

across various scientific fields. From predicting 

ecological shifts to stabilizing engineering systems, 

chaos theory’s analytical approaches continue to 

evolve, aided by modern tools and interdisciplinary 

research, which expand our capacity to manage and 

leverage chaos (Zhang & Chen, 2018; Zhao & 

Martin, 2022).Our research uniquely enhances 

chaotic attractors by introducing modifications like 

parameter modulation and attractor coupling, 

increasing entropy and unpredictability for 

cryptographic applications. Unlike traditional 

studies, we combine analytical insights with 

practical MATLAB-based simulations, providing a 

reliable structure for secure pseudorandom sequence 

generation in high-security contexts. This approach 

extends the range of attainable chaotic attractors 

specifically tailored for random bit generation and 

uniquely uses permutation entropy to ensure 

security, linking theory with cryptographic 

application. It optimizes the complexity and 

randomness for each attractor by tuning parameters, 

providing cryptographic insights tailored to specific 

dynamics. Hashing chaotic attractors, such as SHA-

256, now enables the creation of secure, mandatory, 

and reproducible data streams. Aimed at leveraging 

high-dimensional chaotic systems, this novel 

approach for secure random bit generation is based 

on adaptive, multi-scale permutation entropy (PE). It 

achieves this, by leveraging dynamically weighted 

patterns, many chaotic attractors, real-time PE 

feedback and machine learning-based parameter 

tuning to maintain high entropy, generating a 

complex unpredictable bit stream impervious to 

cryptanalytic prediction attacks. 

2. Analytical Techniques for Chaotic Attractors 

2.1 Stability and Bifurcation Analysis 

Chaotic attractors are initially explored based on a 

stability and bifurcation analysis. Stability analysis 

is the study of how trajectories behave close to fixed 

points or periodic orbits, which can be understood 

locally through eigenvalues of the Jacobian matrix. 

The system could be chaotic if the eigenvalues point 

away from these points. Bifurcation analysis 

investigates transitions from stable to chaotic 

behavior of a system with changing parameters. 

Bifurcation diagrams are graphical representations 

which map parameter changes, identifying regions 

of chaotic behavior. 

2.2 Applications to Chaotic-Map-Based 

Pseudorandom Bit Generators 

Chaotic attractors have a possible application area as 

a way to increase the randomness of pseudorandom 

bit generators. These are the systems based on 

specific chaotic attractor selection which can 

generate very randomly distributed output bits. 

Pseudorandom bit generators based on chaotic maps 

take advantage of the hyper-sensitivity to initial 

conditions and structure complexity of chaos which 

enhances security and strength in cryptography, as 

described. For example, if initial conditions are 

selected on a chaotic attractor, this gives rise to 

unique, non-repeating sequences that can be 

effectively used in secure communications.  

2.3 Dynamic Simulation and Parameter 

Exploration 

For each modified attractor, we simulate the system 

over a range of α value. Baseline values of the initial 

parameters for each attractor are selected from 

literature and a varying α value range eliciting 

changes in chaotic behavior is applied. The 

parameters each set of attractors has are: 
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Table 1.1: Description of parameters value 

No. Parameter Parameter 
values 

Source 

1 σ 10 Lorenz EN. 
1963 

 
2 β 8/3 

3 ρ 280 

4 a 0.2 Rössler et al., 
(1976) 

5 b 0.2 

6 c 5.7 

7 𝛼 3.5 Guckenheimer 
et al., (1983) 

8 β 1 

9 δ 0.3 

10 γ 0.37 

11 𝜁 35 Chen et al., 
(1999) 

12 𝜂 3 

13 𝜅 28 

14 𝜆 100 

15 𝜇 200 

2.4 Calculation of Permutation Entropy 

To assess the complexity of each system, we 

calculate the permutation entropy (PE) for the time 

series generated by each attractor across a range of α 

value. The process for determining PE includes the 

following steps: applying Shannon’s entropy 

formula to compute PE for each embedded 

sequence. 

2.5 Analysis and Comparison 

Permutation entropy value which corresponds to 

each attractor is calculated then plotted against. Such 

an analysis is both more representative of the 

parameter space spanned between two systems, and 

compares the relative complexity of each system 

with respect to how similar they are with their 

underlying behaviors from node to edge across a set 

of modified attractors. Thus they have lots and lots 

of entropy, which means that the corresponding PE 

should be high (the sequences of random bits 

generated are complex, not to mention unreadable). 

Such ubiquitous mechanism helps to investigate 

chaotic attractors and bifurcations, thus paving roads 

to superior random number generators potential for 

applications in cryptography and secure 

communications. 

3. Results and Discussion of Chaotic Attractors 

Chaotic attractor is one of the most important parts 

in random number generator based on chaotic map, 

and it also affects the quality of randomness and 

unpredictability. Different types of attractors 

including Lorenz, Rössler and Duffing have 

different properties characterized by their 

complexity level as well as initial condition 

sensitivity. We however make modifications to these 

attractors in order to improve the performance of 

chaotic maps when generating random sequences. 

Some approaches include parameter modulation to 

induce variation, attractor coupling for hybrid chaos, 

and initial condition perturbations for enhanced 

entropy. Such transformations add to the complexity 

and uncertainty, bolstering security and rendering 

the sequences more resilient in cryptographic 

contexts where maximum randomness is essential. 
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3.1 Lorenz Attractor 

The Lorenz attractor consists of a set of chaotic 

solutions to the system that was originally derived 

from a simplified model of atmospheric convection, 

containing three nonlinear differential equations. 

The Lorenz attractor was first described by Lorenz 

EN, 1963 who derived it from the simplified 

equations of convection rolls arising in the quasi-

geotropic approximation to dynamic meteorology.  

The atmosphere is a great test bed for those types of 

order-in-complex-system models, because nothing 

is ever simple and repeating. 
 

The Lorentz attractor is defined by, 
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Where x, y, and z represent the state variables of the 

system’s represents timeσ, ρ and β are parameters 

representing the system's physical properties. 

 
Fig. 1: Dynamics of Lorenz Attractor for parameter 

values (𝜎, 𝛽, 𝜌) = (10, 8/3, 280) and initial 

values(x, y, z) = (1, 1, 1) using the equation (1). 

The modified Lorentz attractor is expressed by  
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Where, is the parameter representing the system's physical properties. 

 

 

Fig.2: Dynamics of modified Lorentz attractor for parameters (σ,β, ρ, ) = (10, 8/3, 280, 3.5) and (x,y,z) = 

(1, 1, 1)using the equation (2). 
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The Fig.2 illustrates the complex dynamics of a 

three-variable system (x, y, z) through time-series 

and phase-space plots. Over a 50-second interval, the 

left side’s time-series plots reveal distinct oscillatory 

behaviors: x (red) displays periodic peaks and 

valleys with amplitude variations, y (green) exhibits 

additional variability and intermittent spikes, likely 

due to coupling with x, and z (blue) oscillates at a 

higher frequency, with peaks densely packed over 

time, suggesting rapid dynamics. The 3D phase-

space plot on the right forms a twisted, butterfly-like 

structure indicative of a chaotic attractor, with 

trajectories looping and folding upon themselves, 

showing sensitive dependence on initial conditions. 

This visual complexity highlights the non-linear and 

unpredictable, yet bounded, nature of the system’s 

evolution, emphasizing the intricate interplay among 

the variables in generating chaotic dynamics. The 

time series analysis of x, y, and z over time reveals 

chaotic characteristics, with x displaying irregular 

oscillations, variable amplitude, and frequent spikes, 

indicative of the system’s unpredictable dynamics. 

Similarly, y shows non-periodic, irregular 

oscillations with amplitude bursts that mirror those 

in x, suggesting a coupling effect where both 

variables are influenced by the system's non-linear 

nature. In contrast, z exhibits a steady increase in 

amplitude after around t=25, which implies that 

zmay accumulate energy over time, a trait often 

associated with chaotic attractors.  

3.2 Rössler Attractor 

The Rössler attractor, like the Lorenz attractor, is a 

fundamental model for studying chaotic dynamics in 

nonlinear systems. Introduced by German 

biochemist Otto Rössler in 1976, it was initially 

inspired by his work on chemical reaction dynamics. 

This attractor is represented by a system of three 

coupled nonlinear ordinary differential equations: 
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Where x, y and z are variables representing the state 

of the system at any given time t and a,b and c are 

parameters that determine the behavior of the 

system. Unlike the Lorenz attractor, which has a 

more complex structure, the Rössler attractor 

presents a simpler topology, often forming a spiral 

shape in phase space. However, it still exhibits 

sensitive dependence on initial conditions, a 

hallmark of chaotic systems. This simplicity, 

coupled with its chaotic nature, makes the Rössler 

attractor an ideal system for investigating 

fundamental properties of chaos in both theoretical 

and practical applications (Rössler, 1976; Lorenz, 

1963).

 

Fig. 3: Dynamics of Rössler Attractor for parameter 

values (𝑎, 𝑏, 𝑐) = (0.2, 0.2, 5.7)and initial values (x, 

y, z) = (1, 1, 1)  using the equation (3). 

The modified Rössler attractor is expressed by  
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The modification of the Rössler attractor by 

introducing a dependence on the parameter 
improves the analysis because it allows for a more 



114 Analytical Approaches to Chaotic Attractors with Permutation Entropy 

flexible exploration of the system's dynamics, 

including its sensitivity to parameter changes. Here's 

why the modified version may show better results in 

terms of understanding the system's complexity and 

its chaotic behavior. 

 

Fig.4: Dynamics of modified Rossler attractor for 

parameter (a, b, c, α) = (0.2, 0.2, 5.7, 3.5) and (x, y, 

z) = (1, 1, 1) using the equation (4). 

The Fig. 4 illustrates a three-variable system's 

dynamics with time-series plots for x, y, and z and 

3D phase space plot. The time series for x and y 

shows damped oscillations, with gradually 

decreasing amplitude, indicating energy loss in these 

dimensions. In contrast, z displays irregular, sharp 

spikes, suggesting occasional bursts of activity. The 

3D phase space plot reveals a spiraling trajectory 

that converges towards a point, resembling an 

attractor, which suggests the system is stabilizing 

towards a steady state or equilibrium, characteristic 

of damped non-linear systems. 

3.3 Duffing Attractor 

 The Duffing oscillator, a nonlinear second-order 

differential equation, serves as a model for complex 

dynamical systems, including mechanical oscillators 

with nonlinear stiffness. This system exhibits chaotic 

behavior, which can be effectively represented by 

the Duffing attractor (Duffing, 1918; Moon et 

al.1979). Initially studied by German engineer 

Georg Duffing in the early 20th century, it serves as 

a fundamental example of nonlinear dynamics, 

demonstrating a range of behaviors from periodic 

oscillations to chaos depending on the system 

parameters. The governing equation for the Duffing 

oscillator is 
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(5) 

Where x represents the displacement of the oscillator 

from its equilibrium position at time t, δ is the 

damping coefficient, α and 𝜈are parameters 

controlling the nonlinear restoring force, γ is the 

amplitude of an external driving force, and ω is the 

frequency of the driving force. 

 

Fig. 5: Dynamics ofDuffing attractor for parameter 

values (𝛼, 𝜈, 𝛿, 𝛾) = (3.5, 1, 0.3, 0.37)and initial 

values (𝑥,
𝑑𝑥

𝑑𝑡
) = (1, 0.01)using the equation (5). 

The modified Duffing attractor is expressed by  
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In this context, 
2x  represents a quadratic 

nonlinearity, introduced to further alter the restoring 

force, thereby enhancing the system's deviation from 

linear behavior. The term ( )t  denotes a time-

dependent phase, which may act as a minor 

perturbation or a chaotic signal, introducing 

variability into the driving force. 

 

 

 

Fig. 6: Duffing attractor for parameter values (𝛼, 𝜈, 𝛿, 𝛾) = (3.5, 1, 0.3, 0.37)and initial values (𝑥,
𝑑𝑥

𝑑𝑡
) =

(1, 0.01)using the equation (6). 

From the Fig.6, phase space plot of the Duffing 

attractor showing related trajectories for a driven, 

damped nonlinear oscillator in the x, 
dt

dx
 plane. A 

closed loop pattern is called an attractor, and 

depending on parameter settings, periodic or chaotic 

motions can be seen in this attractor. There are 

overlapping, but not identical paths, which is a 

signature of the initial condition-dependent nature 

(or for our chaos game: this means it's really chaotic) 

of the Duffing system. The plot is mainly focused on 

non-linear responses of the system that could be 

implemented in practical mechanical or electrical 

systems as well as in climate models, where similar 

behavior normally appears. The time series of the 

Duffing attractor shown here indicates a stable, 

periodic oscillation of the system, with displacement 

x (t)oscillating consistently between -1.5 and 1.5 

over time. The amplitude and frequency remain 

steady, suggesting that the Duffing oscillator is in a 

non-chaotic regime, likely due to parameter settings 

that balance damping and external driving forces. 

The symmetry of the oscillations around zero further 

indicates that the system is oscillating around its 

equilibrium in a balanced double-well potential. 

Overall, this result reflects a stable periodic state for 

the Duffing system rather than chaotic dynamics. 

3.4 Permutation entropy 

Permutation entropy (Islam MA, et al. 2025) is a 

statistical measure of time series complexity or 

randomness. This measures the relative number of 

unique ordinal patterns that occur when the series is 

broken down into segments of a particular length. 

Permutation entropy is based on the ordering of 

values within these segments, so it provides 

information about the temporal dynamical properties 

of the system capable of capturing non-linear and 

chaotic behavior. Due to its performance-dependent 

nature, this metric performs well in distinguishing 

repeated patterns from randomly shuffled data and 

can be utilized for some types of irregular time series 

prevalent in fields such as physics, neuroscience, and 

finance. Chaos, in terms of complexity and 

permutation entropy is a feature of dynamical 
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systems, which are governed by determinism that the 

present state depends almost on initial conditions 

sensitively so that after some time unexpected and or 

non-deterministic events happen. Permutation 

entropy provides a method of quantifying the 

amount of complexity or disorder in the time series 

generated by such a system. The distribution is 

obtained by calculating the relative frequencies of all 

permutations.If there are 𝑑! possible permutations, 

the probability of the 𝑖𝑡ℎ permutation πi is 

 

The symbol 𝜏represents the permutation entropy, the 

embedding delay, is essential for creating the time-

delay embedding vector. It defines the temporal 

spacing between embedding vector elements, which 

affects system complexity and information content 

analysis. Selecting the appropriate 𝜏 value ensures 

accurate and relevant permutation entropy 

computation. 

Finally, permutation entropy H is defined as the 

Shannon entropy of the probability distribution of 

the permutations:  

 

This value quantifies the complexity of the time 

series, with higher values indicating more 

complexity and randomness. Chaos from a 

complexity standpoint is characterized by high 

permutation entropy, reflecting the intricate and 

unpredictable nature of the system's evolution. For a 

time series of length d, the permutation entropy,  

𝐻𝑝𝑒𝑟𝑚 =  𝐿𝑜𝑔(𝑚!) 

(i) 𝐻𝑝𝑒𝑟𝑚 = 0 Indicates a completely predictable 

and regular system. 

(ii) 𝐻𝑝𝑒𝑟𝑚 =Log (d!) indicates maximum 

complexity or disorder, which is often associated 

with chaotic behavior. 
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(b) 

 

(c) 

Fig.7: Permutation entropy vs.αfor (a) modified Lorentz attractor PE, (b) modifiedRossler attractor PE, 

(c) modified Duffling attractor PE using the equations (2), (4), and (6).  
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Fig.7 shows the comparison of Permutation Entropy 

(PE) as a function of the control parameter α for 

three different modified attractors, highlighting the 

complexity of each system’s dynamics.In Fig.7(a), 

the PE for the Modified Lorenz Attractor is plotted 

against α. The entropy values vary between a 

minimum of 0.8146 and a maximum of 0.8366, 

indicating considerable fluctuations in the system's 

complexity as αincrease. The Lorenz attractor shows 

more pronounced variations, suggesting dynamic 

shifts between different levels of chaotic behavior 

across the parameter space.Fig.7 (b) presents the PE 

for the Modified Rössler Attractor. The PE remains 

medium intensity throughout the range of α, with 

values fluctuating only slightly between 0.6597 and 

0.7337. This indicates that the Rössler system 

exhibits chaotic behavior with minimal changes in 

complexity as the control parameter is varied, 

suggesting a relatively uniform dynamical state. 

Finally, Fig.7(c) shows the PE for the Modified 

Duffing Attractor, where the entropy values range 

between 0.7077 and 0.7328. Unlike the Rössler 

attractor, the Duffing system exhibits more 

noticeable variations in complexity, with periodic 

rises and falls in PE, reflecting shifts in the system's 

behavior between different chaotic and possibly 

periodic states as  α changes.This comparison 

illustrates how the Lorenz, Rössler, and Duffing 

systems differ in terms of complexity and dynamical 

behavior under changes in the control parameter α. 

3.5 Chen attractor 

The Chen attractor, named after mathematician 

Guanrong Chen, is a well-known attractor in chaotic 

dynamical systems. As a three-dimensional chaotic 

system, it demonstrates extreme sensitivity to initial 

conditions, a hallmark of chaos, meaning that even 

slight variations in initial conditions can lead to 

vastly different future states (Chen et al, 1999). The 

Chen attractor is governed by a system of nonlinear 

differential equations: 
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Where  ,, parameters that govern the system’s 

behavior are, while 𝑥, 𝑦, and 𝑧 are the three state 

variables. Three-dimensional visualization of the 

chaotic trajectory in phase space is a defining feature 

of the Chen attractor. 

 

Fig.8: Dynamics of Chen attractor for parameter 

value ( ) ,, = (35, 3, 28) and initial (x, y, z) = 

(1, 1, 1) using the equation (8). 

 

The Chen attractor is characterized by its chaotic 

trajectory in phase space, which can be visualized in 

three dimensions. 

The modified Chen attractor is expressed by  
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In this system, x, y, and z represent the state 

variables, which evolve over time according to their 

respective differential equations. The parameters

 ,,,, are adjustable constants that influence 

the behavior of the system, allowing for the 

exploration of various dynamic regimes of the 

attractor. Each equation provides a rule for how x, y, 

and zchange over time t, capturing the interactions 

and dependencies between these variables and 

leading to potentially complex, chaotic, or stable 

trajectories based on the chosen parameter values. 

 

Fig.9: Dynamics of modified Chen attractor for 

parameter value

( ) ( )200,100,28,3,35,,,, =  and initial 

value (x, y, z) = (1, 1, 1) using the equation (9). 

The figure shows the dynamics of the Chen attractor, 

a well-known chaotic system in nonlinear dynamics. 

This 3D plot displays the state variables x, y, and z 

over time, forming the attractor’s characteristic 

spiral structure. Governed by a set of differential 

equations, the system’s behavior is influenced by 

parameters ,, and ,  which impact its stability 

and chaotic nature. With typical values such as

3,35 ==  , and ,28=  the system exhibits 

chaotic, non-repetitive motion. The trajectory starts 

from an initial point and spirals outward, illustrating 

how small initial variations lead to unpredictable, yet 

bounded, complex outcomes. This bounded, non-

repetitive pattern is a hallmark of chaotic attractors, 

reflecting the Chen attractor's sensitive but confined 

behavior. 

3.5.1 Permutation entropy of Chen attractor 

Permutation entropy is a reasonable approach for 

quantifying the chaotic index of systems, 

particularly the Chen attractor. Permutation entropy 

reveals regularity and irreproducibility of patterns in 

a time series by considering the order of the values, 

providing a numerical value that reflects chaos and 

dynamics of systems. The entropy becomes higher 

as the lack of regularity increases when we apply it 

to study the Chen attractor, one more time showing 

us how complex and chaotic behaviors lead to such 

results. Such a method exposes the non-linear 

interactions contained within the attractor, thereby 

shedding light on its unpredictable and complex 

behavior. Permutation entropy thus gives a useful 

and the precise order of magnitude of chancily, in 

respect to these kinds of systems. The permutation 

entropy values, fluctuating between 3.6 and 3.8, 

indicate a high level of complexity and irregularity 

in the time series generated by the modified Chen 

attractor. This elevated entropy suggests increased 

chaotic behavior, characteristic of complex 
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systems.Generally, for a system with an embedding 

dimension of 4, permutation entropy values above 3 

reflect intricate and less predictable dynamics, 

reinforcing the presence of significant non-linearity 

and complexity in the system's behavior.

 

Fig 10: Permutation entropy of Chen attractor with parameter ( ) ( )200,100,28,3,35,,,, =  

using the equation (9). 

From Fig. 10, the plot of Permutation Entropy (PE) 

for the Modified Chen attractor over time shows that 

the system initially transitions from an ordered state 

to a chaotic regime, with PE rapidly rising and 

stabilizing around 3.5 to 3.8. This stable range, with 

minor fluctuations, indicates that the system 

maintains a consistent level of complexity, 

characteristic of chaotic dynamics. The sustained PE 

values suggest that, despite the chaotic nature, the 

system exhibits a stable level of unpredictability, 

highlighting the robustness of the modified Chen 

attractor's chaotic behavior over time.
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Table 1: Characteristics of permutation entropy in attractors range, behavior, fluctuation intensity, and key 

features. 

Name of 

attractor 

Permutation 

entropy 

range 

Min PE Max PE Behavior Fluctuation 

intensity 

Key 

features 

Modified 

Lorenzattractor 

0.8146 to 

0.8366 

0.8146 0.8366 Significant 

vibration in 

complexity 

High Complex 

dynamics 

with chaotic 

shifts as   

increases 

Modified 

Rossler 

0.7337 to 

0.6597 

0.6597 0.7337 Chaotic 

behavior 

with 

minimal 

changes 

High Complex 

dynamics 

with chaotic 

shifts as   

increases 

Modified 

Duffing 

attractor 

0.7077 to 

0.7328 

0.7077 0.7328 Chaotic 

variations in 

complexity 

Medium Fluctuations 

between 

chaotic and 

possibly 

periodic 

states 

Modified Chen 

attractor 

3.1 to 3.8 3.1 3.8 Significant 

vibration in 

complexity 

High Complex 

dynamics 

with chaotic 

shifts as time 

increase 

3.5.2 Pseudo-random Bit Generator  

A pseudo-random bit generator is a method for 

producing sequences of bits that, while 

deterministically generated, appear random and 

unpredictable. The process starts with an initial seed 

that sets the generator’s internal state. Using a 

deterministic procedure, the generator produces a 

stream of bits one after the other, where each bit is 

determined based on the current state. The procedure 

can range from a simple linear generator to more 

complex cryptographic methods designed for secure 

applications. Pseudo-random bit generators are 

essential in fields like algorithm testing, simulations 

for stochastic systems, and cryptography, where 

secure, random-like data is crucial. Since pseudo-

random bit generators are deterministic, high-quality 

generators require long intervals before repeating 

sequences to maintain security and reliability across 

computing applications. 

Keys
.
→  chaotic system

.
→  hash 

function
𝒑𝒔𝒖𝒅𝒐𝒓𝒂𝒏𝒅𝒐𝒎𝒃𝒊𝒕𝒔
→              

 

Various attractor maps were employed to generate 

random bits, with SHA-256 applied to hash these 

bits. The parameter values and initial values served 

as keys in this process. 
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Lorrentz Attractor 

Generated Hash (SHA-256): 

0AFCD5E0539089328FCB25ECA185E0414D257B6087CECF9811C2C0EE9B148916 

Generated Binary Hash: 

000010101111110011010101111000000101001110010000100010010011001010001111110010110010

0101111011001010000110000101111000000100000101001101001001010111101101 

100000100001111100111011001111100110000001000111000010110000001110111010011011000101

001000100100010110 

Rossler Attractor 

Generated Hash (SHA-256): 

A7BFF4AB212E6A19FF402DE3BA2952BDBA2CBB7BCFDB2BCB150F740FD74B7A8D 

Generated Binary Hash: 

101001111011111111110100101010110010000100101110011010100001100111111111010000000010

110111100011101110100010100101010010101111011011101000101100101110110111101111001111

110110110010101111001011000101010000111101110100000011111101011101001011011110101000

1101 

Duffing Attractor 

Generated Hash (SHA-256): 

53EBF05FFD020C2B73021453169897819ECC2FB6853989D1A8F3BC9DDF6D6B22 

Generated Binary Hash: 

010100111110101111110000010111111111110100000010000011000010101101110011000000100001

010001010011000101101001100010010111100000011001111011001100001011111011011010000101

001110011000100111010001101010001111001110111100100111011101111101101101011010110010

0010 

Chen Attractor 

Generated Hash (SHA-256): 

255374996101C58B8999E280F6980D615F7E9659E5D0B35868A70068969AD673 

Generated Binary Hash: 

001001010101001101110100100110010110000100000001110001011000101110001001100110011110

001010000000111101101001100000001101011000010101111101111110100101100101100111100101

110100001011001101011000011010001010011100000000011010001001011010011010110101100111

0011 

4. Conclusion 

The novelty of this research lies in combining 

permutation entropy with modified chaotic attractors 

to enhance complexity and randomness, optimizing 

chaotic systems for secure communication, 

pseudorandom generation, and quantifying system 

behavior under dynamic changes. In comparison to 

prior studies that employed traditional measures of 

chaos such as Lyapunov exponents and bifurcation 

analysis, the use of permutation entropy provided a 

more nuanced understanding of complexity, 

capturing subtle dynamic transitions and 
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irregularities. One that generates the most complex 

sequences of bits is the Lorenz attractor, although the 

Duffing one also presents a fair amount of 

variability. These results contribute new evidence 

dynamics of the optional escape. Overall, it is 

demonstrated that driving chaotic attractors is a 

natural method to deliver pseudorandom bit 

generation with better randomness and security 

properties: the hand, were relatively stable and 

stayed within the small interval from 0.6597 to 

0.7337, it gives an indication that this system is 

settled down into a uniform chaotic state but might 

be lower level of unpredictability than other systems 

for some specific applications. The large changes in 

the PE of the modified Duffing attractor (0.7077–

0.7328) could be representative of these phase 

transitions across complexity being α determined, 

supporting that α may be responsible for the 

emergence of a rich and varied sequence from the 

complex sensitivities on dynamic transitions of 

different chaotic regimes as well as control 

parameter variation. The values of PE for modified 

Rössler attractor, on the other generators. In 

addition, with the variation of control parameter α, 

the permutation entropy (PE) of the modified Lorenz 

attractor changed significantly between 0.8146 and 

0.8366, and insected extremely externally by hash 

functions like SHA-256 which leads to millions of 

random samples from a single point in the attractor, 

allowing for quick access and many unique solutions 

for cryptography, stochastic simulations, or any area 

where that requires strong entropy. It emphasizes 

two correlates because this was also shown about our 

work of attacking consistently both algorithms it 

makes huge difference towards ontological 

simplicity of attractors and influence on 

unpredictability of pseudorandom bit complexity 

and randomness, has indicated that the modification 

of parameters leads to an increase in their entropy. In 

pseudo-random bit generation, reproducibility of 

results is ensured highly sensitive bounded-chaos. 

Permutation entropy, a measure of Lorenz has 

shown to exhibit oscillatory complex chaos, Rössler 

is shown to exhibit stable chaos, Duffing is able to 

demonstrate periodic mapping and chaotic state 

switching behavior and Chen has achieved. Pseudo-

random bit generators (PRBGs) are essential for 

cryptography, simulations, testing, gaming, and 

secure communications because they offer efficient, 

consistent unpredictability required for safe 

protocols, data validation, fair gaming, and statistical 

modeling. 
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