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The zero-equation model (ZEM) has been generalized for aerodynamic 
applications by eliminating the thickness of boundary-layer (BL) dependency to 
construct the stress length parameter    . The SED (Structural Ensemble 
Dynamics) postulate evaluates the     using the order function based on 
universal multi-layer structures for wall turbulence. The SED concept is further 
employed to optimize the profiles of the turbulent kinetic energy and 
dissipation rate with turbulent BL flows. Results demonstrate that the multi-
layer ZEM receives a remarkable achievement in the prediction of wall-bounded 
turbulence and thus, prevails over the drawbacks encountered in most algebraic 
turbulence models. 
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NOMENCLATURE 

AOA angle of attack 

BL boundary layer 

  airfoil cord length 

DI dilation invariance 

DS dilation symmetry 

K kinetic energy of turbulence 

    stress length 

P pressure  

   factor of stress-intensity  

   Reynolds number 

   eddy-to-laminar viscosity ratio 

  mean strain-rate tensor  

SED structural ensemble dynamics  

SST shear stress transport 

   velocity vector 

   wall-friction velocity 

Y distance to wall  

   wall distance parameter;         

ZEM zero-equation model  

  BL thickness 

  rate of turbulence dissipation  

  von-Karman constant 

     laminar & eddy viscosities  

  laminar kinematic viscosity  

  density    

 

Subscript: 

    variable quantities 

  free-stream condition  

 

1. INTRODUCTION 

To develop a zero-equation model (ZEM), the correlation-

based turbulence modelling with a dimensional argument 

may induce lots of functions and coefficients which lack 

physical interpretations (Wilcox, 2006). The devised 

turbulence model with this inconsistent aspect typically 

inherits unexpected complications to accurately predict the 

flow with practical features. However, the physical 

understanding of the universal structure related to wall 

turbulence can provide a compelling route to format a 

ZEM in conjunction with “Reynolds-averaged Navier-

Stokes (RANS)” equations. The current research applies a 

well-established physics of wall turbulence to formulate a 

plausible ZEM, which is unfortunately beyond the capacity 

of the mixing length hypothesis of Prandtl (1925), von 

Karman lag-law theory (Segalini, 2013) and Townsend 

similarity argument (1976). 

The “SED theory” of She et al. (2010, 2017, and 2009) 

aims at using the turbulence statistical symmetry to make a 

quantitative description of the wall-bounded turbulence 

feasible. The dilation symmetry (DS) deserves an 

outstanding significance due to a universal wall constraint 
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on turbulence eddies, since the DS determines the solutions 

to RANS equations through the relevant order 

parameter/function (whose role of symmetry remains 

prevalent to wall flows), describing ensemble properties 

emerged from turbulence fluctuations which restore a DS 

(layer by layer) and the order-function scaling can quantify 

the symmetry property (She et al., 2017). More precisely, 

the mean velocity is altered by inherent turbulence 

fluctuations in association with the Reynolds stress leading 

to symmetry breaking; however, a length order function 

can handle this interaction (effect) with its dilation-

invariance (DI) scaling, showing a perceptible nature from 

one layer to another. Under a “generalized Lie-group” DI, 

the SED concept employs a multi-layer formulation of the 

order function (key to quantifying turbulence) to speculate 

the stress length 12l  with a fully-developed turbulent BL 

flow. The analytic profile is ended up with “four-layer 

structures”, consisting of a viscous sublayer, buffer layer, 

bulk flow region (retaining log-layer) and core layer. 

Apparently, variances among different layers of a physical 

flow domain can be represented by the variations (layer-to-

layer transition sharpness and scaling) in multi-layer 

parameters. 

A ZEM has been recently developed using the SED 

concept (wall-turbulence with distinct multi-layer physics) 

(Rahman et al. 2021), where the kinematic eddy-viscosity 

is evaluated as
2

12T l S  with the strain-rate invariant S . 

The “Bradshaw stress-intensity parameter” bR  (Bradshaw, 

1967) which is a function of an eddy-to-laminar viscosity 

ratio TR has been used to model the turbulent kinetic 

energy k and dissipation-rate  . The resulting ZEM 

provides reasonable predictions for a fully-developed 

channel flow. However, the ZEM needs to evaluate 

boundary layer (BL) thickness parameter in forming the 

stress length 12l , which is difficult to be included in three-

dimensional numerical algorithms. More specifically, 

aerodynamic applications usually integrate the BL 

influence of the wall curvature, although the BL edge is 

not well-defined, reflecting numerical confusion to 

accurately determine  . This deficiency has been 

eliminated from the stress length 12l by replacing the bulk 

flow region and core layer with an additional transition 

layer (log-layer) and the celebrated matching layer.  

Improved k  analytic profiles are obtained as a 

combination of the Bradshaw parameter and another 

optimized k profile for a fully-developed BL flow using 

the SED hypothesis. A cursory examination approves that 

the multi-layer ZEM dominates over the past developed 

algebraic turbulence models (Prandtl, 1925; Segalini et al., 

2013; Townsend, 1976; and Wilcox, 2006). 

2. GOVERNING EQUATIONS  

In collaboration with the RANS turbulence modelling, the 

turbulent eddy-viscosity T has been evaluated by the 

stress length scale with regards to the “SED theory”. The 

RANS equations describe the physics of a continuum 

medium using the mean conservations of mass, momentum 

and energy. The differential formulations in tensor form 

read: 
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where  the fluid density, p the static pressure, iu the ith  

component of velocity and
ix the Cartesian coordinates, e

the specific internal energy, and h e p   represents 

the specific enthalpy. The working fluid is air; the laminar 

Prandtl number Pr 0.7 and turbulent Prandtl number 

PrT is set to 0.9. The laminar viscosity  is calculated 

from Sutherland’s formula. The “equation of state” is

p RT  for a calorically perfect fluid, where R the 

perfect gas constant and T  the absolute temperature. 

Additionally, e C T and ph C T , where C and pC

are the specific heat coefficients at constant volume and 

pressure, respectively.  

The “Boussinesq approximation” can be used to relate the 

total stresses ij with the “mean strain-rate tensor” ijS  as: 
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 (4) 

where ij implies Kronecker’s delta function with 1ij  for

i j and 0ij  for i j . The “SED theory” applies the 

stress length function 12l to define T as: 

2

12T T l S     (5) 

where 2 ij ijS S S  is the mean strain-rate invariant. 

The “SED theory” states that a proper set of order functions 

can represent the wall turbulence, retaining complex systems 

with multi-layer structures (She et al. 2010). A quantitative 

analysis of the “generalized Lie-group” DI can be applied to 

deduce the characteristic order function (in a framework of 



 Rahman et al.:  
 A Zero-Equation Model for External Aerodynamics  

 

MIJST, Vol. 11, June 2023 23 

multi-products) as the wall is present. The generic form of 

the order function 


with complex multi-layer structures 

can be given as (She et al., 2017): 

0 0

0

10

1

i i
i

c b
c b b

n

i i

y y
c

a a




    
     
     

  (6) 

where  is parameterized with a variable y ; adjustable 

constants are (a, b & c) with the number of products, n . In 

principle, multiple transitions from one layer to another 

occur due to the spatial variation of . Naturally, the stress 

length 12l associates multi-layer features in a fully-developed 

turbulent BL, as supported by the SED hypothesis, which 

provides the formulation of 12l for a fully-developed channel 

flow as (She et al., 2017): 
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 (7) 

where the non-dimensional wall-distance y yu 
  with 

the “wall-friction velocity”  
w

u S  and laminar 

kinematic viscosity   . Note that u can be regarded 

as a well-defined parameter as long as 0wS  . 

Additionally, 1 1 Rer y y      implies the 

distance from the channel center-line, where the channel 

half-width  and friction Reynolds number Re u  

. Equation (7) describes canonical four-layer structures (as 

mentioned earlier) of wall turbulence with a fully-developed 

BL channel flow. The extension of each layer is identified 

empirically by its layer thickness. They are the viscous 

sublayer at 9.7suby  , buffer layer at 41bufy  , core 

layer with a core layer thickness of 0.27corer   and bulk-

flow region. A detailed description of the various layers can 

be found in Reference (Rahman et al., 2021). Note that the 

geometry-dependent bulk-flow structure
41 r avoids the 

existence of the overlap region. 

It is worth mentioning that bufy y  , the celebrated 

linear law 12l y   (where von-Karman constant = 0.45 

from the “SED theory”), represents a “matching function” 

presumably between BL “inner and outer regions” with
2

0 9.7 41 1.0l   . The outer region can be described 

using the parameters r and  , defined as the position of

0.99U at the BL edge with the free-stream velocityU . 

However, the evaluation of creates a practical problem in 

the numerical solution to RANS equations. Specifically, two 

occurrences complicate any attempt in devising a proper 

algorithm to find the BL edge: firstly, the existence of non-

uniform inviscid flow regimes, where the flow changes in 

the direction normal to the boundary; secondly, the 

appearance of spurious numerical oscillations in the flow 

domain. To avoid these issues, Equation (7) has been 

generalized for external aerodynamic applications in the 

current study as: 
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where bf signifies a near-wall damping function, defined 

later. The modified Equation (8) identifies three layers 

separated at respective distances 9.7y  , 41 and 130, 

accompanied by the celebrated mixing layer. Apparently, the 

“SED theory” involves a set of base functions that can 

describe a series of successive transitions, modeling the 

entire profile for the whole flow domain. A multi-layer 

model to describe the k profile in a fully-developed BL flow 

can be constructed using the “SED theory” as: 
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 (9) 

Equation 9 is slightly modified from Reference (Fang & Xu, 

2022) to approximate the viscous, buffer and log layers with 

reasonable accuracy; however, the wake-deficit layer is 

over-estimated, as will be seen afterward. On the other hand, 

“Bradshaw’s parameter” bR uv k C    

(Bradshaw, 1967) (with the main shear-stress uv and

0.09C  ) can be used to predict the k profile for wall-

bounded flows. Using the SED interpolation scheme [Eq. 

(6)], the “stress intensity variable” bR  (parameterized with 

T TR   ) can be obtained for a fully-developed 

turbulent BL flow as (Rahman, 2022; and 2023) : 

   
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0.120.16 2 2
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T
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where
0.9

1C C , 1 5.0C C . As TR  ,

0.24

1 2bR C C C  . Note that bR is extended for 
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wall-bounded flows from free shear flows, resolving the 

“near-wall turbulence”. The structure parameter bR  can be 

employed to calculate k profile in a BL flow as: 

T
b

b k

S
k

R C





 (11) 

where T T    the kinematic eddy-viscosity and the 

near-wall singularity can be avoided with 0.001kC  . 

Equations (9) and (11) can be interpolated to better replicate 

the k profile over the whole flow domain. Therefore, k and 

  (dissipation-rate) profiles are evaluated as: 

2
,                  

3 3

a b
b

k k
k R kS    (12) 

Equation (12) represents an empirical hybrid modeling of 

the k profile. The associated function bf in Equation (7) is 

modeled as: 

2

 tanh 
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The damping function bf is influential in the proximity of 

the wall (inside the BL) and promotes the formation of the 

wake-deficit layer (bulk-flow structure and core layer) 

outside the BL. 

3.  NUMERICAL SIMULATIONS 

The fully-developed turbulent channel flow, flat-plate BL 

flow and transonic flow past an RAE2822 airfoil are 

probably the suitable test cases to validate the performance 

of the ZEM. The flow equations are numerically solved 

using an in-house computational code, encompassing a 

pseudo-compressibility (PC) scheme with a “cell-centred 

finite-volume” formulation (Rahman and Siikonen, 2001, 

2002 & 2008; Rahman 2021 and Rahman et al. 1997). The 

cell-face convective flux is evaluated using a “fully 

second-order” upwinding together with Roe’s damping 

(Rahman, 2021 and Rahman et al. 1997). A DDADI 

(“diagonally dominant alternating direction implicit”) time 

integration scheme has been applied to the discretized 

equations for the iterative solution. A multi-grid method 

has been employed to stabilize the solver convergence. 

Refs. (Rahman and Siikonen, 2001, 2002 & 2008; Rahman 

2021 and Rahman et al. 1997) detail the salient features of 

coding a PC scheme. Results from the standard “shear-

stress-transport” (SST) k  turbulence model (Menter, 

1994) are convoked for comparisons.  

A. Fully-Developed Turbulent Channel Flow 
 

Fully-developed turbulent channel flows at 

 Re 395;640  are computed to substantiate the ZEM 

efficacy in replicating the near-wall turbulence. The DNS 

(direct numerical simulation) data are available from Refs. 

(Mansour et al., 1988 and Kawamura et al., 1999) for this 

test case. A one-dimensional (1-D) RANS solver with the 

pressure-velocity correction method (Rahman et al., 1996 

& 1997 and Rahman, 2020) has been used to conduct the 

simulations in a channel half-width. The chosen mesh 

resolutions 1×64 and 1×128 grids are respectively for

Re 395  and Re 640  . Both grid arrangements are 

presumed to be perfect enough to reproduce the 

characteristic flows. The first neighbouring cell centre is at

0.3y  to ensure the viscous sublayer resolution. 

Figure 1 and 2 show the computations in wall units from 

the ZEM and SST models. Results are plotted as: 

u u u
  ,

2uv uv u
  ,

2k k u
  and

4u  

against y
. The “Boussinesq approximation” has been 

used to calculate the Reynolds shear stress  uv . 

Remarkably, reasonable predictions of mean velocity 

profiles in Figs. 1(a) and 2(a) are obtained when compared 

with DNS data, although the ZEM neglects the transport 

and diffusion effects of k  and   . In contrast, the SST 

model under-predicts the mean velocity profiles in the 

wake-deficit region of BL at Re 640  . This deficiency 

perhaps arises owing to its improper choice of closure 

coefficients. Figures 1(b) and 2(b) represent the Reynolds 

shear stress profiles; both the ZEM and SST turbulence 

model fairly match DNS data, as can be observed. 

Figure 1(c) and 2(c) execute a further assessment of the 

model performance with the k
profiles. Indicative plots of 

ak
and bk

from Equations (9) and (11) are also displayed, 

which have good correspondence with DNS data in the 

viscous sublayer and log-layer regions. As can be noticed, 

the ZEM fairly agrees with DNS data, whereas the SST 

model badly underestimates the k
profile in the near-wall 

region. Figure 1(d) and 2(d) compare the 
- profiles from 

both turbulence models with DNS data. Note-worthily, 

both models are incapable of capturing the maximum 

magnitudes of  
at the wall, approved by DNS and 

experimental data. However, they predict the  
profiles 

qualitatively well after the wall region. In fact, such a 

behaviour of the 
-profile is admitted by the SST in near-

wall regimes to enhance the convergence-acceleration of 

the numerical solver. 

B. Zero pressure-gradient flat-plate BL flow  
The ZEM performance is further contrasted with the 

measured data of the flat-plate BL flow with a free-stream 

turbulence intensity 6.0%Tu   (referred to as the T3B 

BL case) and a reference velocity of 9.4U m s  . The 

free-stream turbulence intensity can be given by 

2

3
Tu k U   Experimental data are extracted from 

“ERCOFTAC (European Research Community on Flow 

Turbulence and Combustion)” Fluid Dynamics Database 
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(Savill, 1993). The free-stream eddy viscosity ratio

1.0TR   is used in the current simulation. A typical non-

uniform computation mesh 96 × 64 with a length of 1.6 m 

and a height of 0.3 m is shown in Figure 3. The wall-

adjacent cell height is at 1.0y  , whereas at the leading-

edge point 2.1y  . The near-wall regions retain a 

heavily clustered grid. The selected grid resolution is found 

to be convenient in assuring a grid-independent solution 

(Rahman, 2022). Simulations have been prosecuted with 

16 cm prior to the leading edge of the flat plate, wherein a 

symmetric boundary condition has been endorsed. 

 

 

Figure 1: Mean profiles of turbulent channel flow at Re 395  : (a) velocity; (b) Reynolds shear stress; (c) k ; and (d)   

 
Figure 2: Mean profiles of turbulent channel flow        : (a) velocity; (b) Reynolds shear stress; (c)   ; and (d)   
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Figure 3: Representative mesh for flat-plate BL flow 

Figure 4 shows the skin friction profiles  2 22fC u U 

for the ZEM and SST turbulence models. As is evident, 

both models provide fully turbulence solutions to the T3B 

BL case. The “dive” at the measured fC distribution 

remains unpredicted since the selected turbulence models 

are insensitive to transition physics. The ZEM outperforms 

the SST in reproducing the experimental fC profile along 

the fully turbulent regime. 

 

 

 

Figure 4: Skin-friction profiles for flat-plate BL case 

 

Figure 5 represents a comparison of model predictions 

against measured velocity profiles of the fully-turbulent 

regimes at three representative positions: x = (0.395, 0.895, 

1.495) m. The mean velocity profiles at both BL and weak 

regions are well-reproduced by the ZEM when compared 

with experimental data.  Apparently, the differences among 

velocity profiles in the outer layer can be explained by the 

predictive nature of both the ZEM and SST turbulence 

model in replicating fC  in Figure 4. The Reynolds shear 

stress and turbulent kinetic energy are plotted together with 

experimental data in respective Figure 6 and 7 at the same 

locations. The measured total kinetic energy of turbulence 

is calculated using the “usual approximation

 3 4k uu vv  ” as the ww component is unavailable 

in the experiment. Conspicuously, the Reynolds shear 

stress profiles from both models reasonably agree with the 

measured data. Compared to the ZEM, the SST model 

underestimates the k profile in the near-wall region. The 

overall achievement in evaluating the friction-coefficient 

mean velocity and turbulence profiles is the best for the 

ZEM, showing an interesting feature that the ZEM 

agreeably mimics the measured k profile. 

 

 

Figure 5: Mean velocity profiles for flat-plate at various downstream locations 
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Figure 6: Reynolds shear stress profiles for flat-plate at various downstream locations 

 

 

Figure 7: Kinetic energy of turbulence profiles for flat-plate at various downstream stations 

 

C. Transonic Flow Past an RAE2822 Airfoil 
The transonic flow passed an RAE2822 airfoil with strong 

shock-wave BL interactions is computed to justify the 

ZEM performance. This is a well-documented test-case for 

validating a new turbulence model (Cook et al., 1997; Lien 

et al., 1998 and Singh, 2001) with the free-steam Mach 

number 0.73Ma  , Reynolds number

6Re 6.5 10   and angle of attack AOA = 2.8 deg. 

Transition on both upper and lower surfaces of the airfoil 

in the experiment has been tripped near the leading edge at 

x/c = 0.03, where c is the airfoil cord length. The 

numerical methods and turbulence models influence the 

shock position and amount of separation (Singh, 2001). To 

simulate the RAE2822 airfoil, a nonuniform C-type 

structured grid 384 × 128 has been generated; 256 grid 

cells are allocated on the airfoil surface, which provide the 

wall-adjacent cell-centre at 1.0y  . To better reproduce 

the leading-edge curvature, grid points are carefully 

arranged therein. Figure 8 shows the computational mesh 

with zoomed and full views. Far-field boundary conditions 

are prescribed at 40c away from the airfoil surface where 

viscous wall-boundary conditions are applied. At free-

stream boundaries, 0.1%Tu  and 1.0TR   are set. 

Computations are performed such as to match the 

experimental lift LC  and drag DC coefficients, a criterion 

to judge the convergence. 

A grid dependency study is conducted with two different 

grid resolutions, as shown in Figure 9. Except along the 

shock position indicated by the vertical lines on pC and

fC  curves, results appear to be almost grid-convergent on 

two-mesh levels. Therefore, a grid-independent numerical 

solution has been presumably ensured by the fine 384×128 

non-uniform grid resolution. Figure 10 demonstrates pC

and fC  coefficients together with measured data (Lien et 

al., 1998; and Singh, 2001). It is clear from Figure 10(a) 

that the “roof-top pressure” is fairly reproduced, the shock 

location is predicted slightly upstream of the experimental 

location by the SST model and the “post-shock pressure 

recovery” is agreeably captured. The pC profiles on the 

pressure side (lower surface of the airfoil) give similar 

impressions to the measured data. Figure 10(b) indicates 
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that fC profiles from both models have decent match with 

measured data and capture the sudden change in fC at the 

shock location. The ZEM detects a tiny shock-induced 

separation zone; however, the SST model has missed this 

aspect. Perhaps, the shock is too weak for the SST model 

with this test case to induce separation, although it is 

expected that the shock-induced separation may occur due to 

the existence of the adverse pressure gradient. Apparently, 

the SST turbulence model inaccurately predicts the eddy-

viscosity at the shock location, causing to miss the 

separation. However, the ZEM captures the “essence of wall 

turbulence”, signifying that the stress length (with the 

universal multi-layer formulation) defines the invariant wall 

normal distribution of the eddy-viscosity, facilitating to 

replicate the shock-induced separation. Due to the 

availability of only one measured data point on the 

pressure side (bottom surface) of the airfoil, no detailed 

comment can be made regarding the fC coefficients. Table 

1 reports the predicted LC and DC values from both models 

with measured data [26]. Qualitatively, the computed 

values of lift and drag coefficients from both models match 

the measurements. 

 
 

 

Figure 8: Computational grid for RAE2822 airfoil: (a) near-field view; (b) full view 

 

 

Figure 9: Effect of grid density on RAE2822 airfoil: (a) pressure coefficient profiles; (b) skin friction profiles. 
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Figure 10: RAE2822 airfoil: (a) pressure coefficient profiles; (b) skin-friction profiles 

 

Table 1 

RAE2822 airfoil: lift LC and drag DC coefficients 

AOA Parameters EXPT SST ZEM 

2.8 deg 
LC  0.803 0.788 0.819 

  
DC  0.0168 0.0157 0.0165 

 

4.  CONCLUSIONS 

Turbulent channel and flat-plate BL flows are computed to 

substantiate the ZEM efficacy in reproducing the near-wall 

turbulence. The RAE2822 airfoil is simulated to justify the 

model ability in capturing anisotropic flows with shock-

wave BL interactions. Results advocate that the ZEM is 

competitive with the widely-used SST model. A general 

multi-layer representation of the stress length 12l , adhering 

to the physics of wall turbulence defines the wall-normal 

invariant of T ; this aspect facilitates the success of the 

ZEM. The multi-layer ZEM provides an optimistic view of 

the RANS turbulence modelling to enhance prediction 

accuracies by the essence of wall turbulence. Specifically, 

the ZEM may induce plausible constraints on unsteady 

RANS, large-eddy and detached-eddy simulations. 

Remarkably, the multi-layer parameters such as 0l


and bufy

identify the relevant flow physics of turbulent BL and the 

ZEM can be used to modify them for turbulence and 

transition modelling with the availability of experimental 

data. 
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