MIST International Journal of Science and Technology

&
¥k anguaoest -~ T
Enon o rom o #E

A Neural Network Based Software Defect Prediction Approach
Using SMOTE and Noise Filtering-CLNI

Ahmmed Bin Ashfaque!, Abdus Sattar?, Hosney Jahan™, M. Akhtaruzzaman*, and Fernaz Narin Nur®

"Department of CSE, Bangladesh Army University of Science and Technology, Fultola Khulna-9204, Bangladesh
2Department of Computer Science and Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
3Department of Computer Science and Engineering, East West University, Dhaka-1212, Bangladesh

“Department of Computer Science and Engineering, Daffodil International University, Savar, Dhake-1216, Bangladesh
>Quantum Robotics and Automation Research Group (QRARG), Mirpur, Dhaka-1216, Bangladesh

*Corresponding Email: /osney.jahan@ewubd.edu

ARTICLE INFO

ABSTRACT

Article History:

Received: 19" May 2025
Revised: 29" September 2025
Accepted: 13" October 2025
Published: 30" December 2025

Keywords:

Software Defect Prediction
SMOTE

CLNI

Dense Neural Network
Data Balancing

Feature Selection

Software defects can cause significant loss and system failures in software
development life cycle. Software Defect Prediction (SDP) is a vital step for ensuring
the quality of software. Till now, a number of machine learning models have been
proposed to predict potential defects and make the software more reliable. However,
SDP models suffer from the problem of imbalanced dataset, resulting in poor
prediction accuracy. To mitigate this, issue several data balancing techniques, i.e.,
over sampling, under sampling etc. have been proposed to balance the dataset. In
some cases, the data balancing methods may further introduce noisy and mislabeled
samples in the dataset. To deal with these issues, in this paper, we propose a neural
network based approach that combines the oversampling technique Synthetic
Minority Oversampling Technique (SMOTE) with the noise filtering technique Class
Level Noise Identification (CLNI). Here, we applied three different CLNI methods
which are Edited Nearest Neighbor (ENN), Repeated ENN (RENN) and AIlI-KNN.
Our aim is to make the dataset clean, balanced and efficient by combining SMOTE
with CLNI. In addition, we applied a number of feature selection methods to identify
the most important features, further contributing towards achieving better prediction
accuracy. To evaluate the effectiveness of the proposed model, we conduct
experiments on several benchmark datasets (MC1, PC1, PC2, PC3 and PC4)
obtained from NASA MDP and (ML, LC and JDT) AEEEM repository. The
experimental results have been evaluated and compared in terms of accuracy,
precision, recall and AUC-ROC curve. The experimental results demonstrated that
our proposed approach has achieved up to 98% accuracy and outperformed state-of-
the-art approaches.

This work is licensed under a Creative Commons Attribution-Non-commercial 4.0 International License.

1. INTRODUCTION

organizations to predict defects in a way that saves time,
stays within budget, improves software quality, and

In the domain of software engineering, the identification and
classification of software defects is a critical activity during
the testing phase of software development. With the
increasing complexity of software systems and growing
demands for higher reliability, it is necessary to ensure the
quality of the software. In the modern era, where numerous
software systems compete in terms of functionality and
performance, predicting software defects has become a
challenging task. Figure 1 and Figure 2 demonstrate the
example of defective and non-defective code in the software.

The primary objective of predicting software defects is to
reduce the effort of software testing through proper
guideline. Proper software testing enables many software

facilitates better resource planning to meet project timelines
(Akintola et al., 2018).

public static int defectiveSum(int[] arr) {
int sum = O;
for (int num : arr) {
sum = num;
// Incorrectly overwrites the sum instead of accumulating
b

return sum;

Figure 1: Defective code example

MIJST, V. 13, December 2025 | https://doi.org/10.47981/j.mijst.13(02)2025.557(111-120) 111

https://creativecommons.org/licenses/by-nc/4.0/

MIJST

Jahan et al.: A Neural Network Based Software

Defect Prediction Approach Using SMOTE and Noise Filtering-CLNI

public static int cleanSum(int[] arr) {
int sum = @&;

for (int num :

sum += num;

// Accumulate the sum correctly

arr) {

1

return sum;

¥
Figure 2: Non-defective code example

Till now a number of machine learning approaches have
been applied in software defect prediction. However, the
performance of these methods are often hindered by
imbalanced datasets. Class imbalance is the major problem
related to software defect dataset, where the unequal
distribution between the number of defective instances (i.e.
the minority class) is significantly smaller than the non-
defective instances (i.e. the majority class) (Feng et al.,
2021). This imbalance limits the classifiers ability to
classify the minority class, often leading to
misclassification error.

To address this problem, various data balancing techniques
are available, i.e., oversampling, undersampling etc.
Among them, SMOTE (khleel et al., 2024) and Random
oversampling (Khleel et al., 2024) has been widely
adopted to balance datasets by generating synthetic
samples for the minority class. However, SMOTE has a
notable drawback - it can introduce noise by generating
synthetic instances from or near mislabeled or noisy data
points (Alkhawaldeh et al, 2023), result in over-fit
prediction model (Rathore et al., 2024). Because, SMOTE
lacks a mechanism to distinguish between clean and noisy
samples, it may inadvertently amplify existing errors in the
data.

To mitigate these drawbacks, in this paper, we propose a
neural network based approach that combines the
oversampling technique SMOTE with the noise removing
technique CLNI. Here, we applied three noise filtering
techniques which are Edited Nearest Neighbor (ENN),
Repeated ENN (RENN) and AII-KNN (Gupta et al., 2023).
These techniques act as a preprocessing step, enhancing
data quality and improving the performance of classifiers.
Our aim is to reduce the misclassification rate and
overfitting problem by Integrating SMOTE with CLNI. In
addition to this, we further applied a number of feature
selection methods to achieve more accurate prediction. The
feature selection methods used in our research are
Correlation Coefficient, Mutual Information, Variance
Threshold and Chi-Square. The objective of this research is
to develop accurate software defect prediction model by
addressing the challenges of class imbalance, data noise
and irrelevant features through an integrated approach.

This research paper is divided into sections as follows:
Literature review is presented in Section II. Methodology
is illustrated in Section III. Result analysis is presented in
Section IV. Conclusions are drawn in section V.

2. LITERATURE REVIEW

In this section, we review previous research on Software
Defect Prediction (SDP), highlighting significant
contributions in the areas of handling class imbalance,
feature selection techniques and neural network approaches

MIJST, V. 13, December, 2025

for early defect prediction in the Software Development
Cycle (SDLC).

Software defect datasets are challenging to use due to their

imbalanced class distributions. (A/i et al, 2024) used the
SMOTE preprocessing approach with NASA MDP
datasets (CM1, IM1, PC1, PC4, MC2, PC3, and MW1).
Using the voting ensemble approach combined with
machine learning algorithms such as RF, SVM, NB, and
ANN to improve prediction performance. Their method
achieved a training accuracy of 87.2% and a testing
accuracy of 86.87%. SMOTE may introduce unnecessary
noise. To overcome with this problem,
(Vuttipittayamongkol et al., 2022) proposed neighborhood-
based undersampling algorithm. This algorithm reduced
the majority class and balance the ratio between majority
and minority class. Experimental results observed on
NASA datasets, having an AUC of 95.9% and an accuracy
of 96.9% with 95% confidence level. Undersampling
technique may possess loss of important data.

A real-time deep ladder network proposed to tackle the
problem of SMOTE and undersampling by (J. et al., 2023).
This method integrated with migration learning, a deep
belief network combined with transfer component analysis
superior that others.

Software defect datasets consist of large number of metrics
such as line of code (LOC), complexity measures,
cyclomatic complexity and so on. Many of them are
irrelevant in software defect prediction. To reduce model’s
overfitting, (Cetiner et al, 2020) applied Principal
Component Analysis (PCA) as a feature reduction
technique, while comparing ten machine learning
algorithms. They used Decision Tree, Naive Bayes, K-
nearest neighbor, Support vector machine, random forest,
extra tress, adaboost, gradient boosting, bagging and multi-
layer perceptron. The evaluation performance showed that
Random forest achieved higher accuracy on PC1 dataset.

A five-stage framework for software defect prediction
using NASA datasets proposed by (Ali et al., 2024). They
combined genetic algorithm-based feature selection with
heterogeneous classifiers (Random Forest, SVM and Naive
Bayes). Their iterative optimization process, utilizing an
ensemble voting technique, achieved a maximum
classification accuracy of 95.1%, while reducing execution
time by over 50%.

Enhanced exploratory whale optimizer-based feature
selection method along with random forest ensemble
learning proposed (Mafarja et al., 2023) to software defect
prediction while Siamese Dense Neural Network (SDNN)
introduced by (Zhao et al., 2018), which combines similarity
feature learning and distance metric learning using a contrast
loss function with cosine proximity. Their experimental
results demonstrated that SDNN outperforms traditional
methods, particularly in scenarios with limited data and
imbalanced class distributions.

The literature study highlights several challenges in software
defect prediction, including noise introduction during
resampling methods like SMOTE, the complexity of feature
selection, and the high computational costs associated with

112

MIJST

Jahan et al.: A Neural Network Based Software

Defect Prediction Approach Using SMOTE and Noise Filtering-CLNI

ensemble models and deep learning methods. The purpose
of the research is to improve accuracy and efficiency in
software defect prediction, addressing the limitations
identified in previous studies.

3. METHODOLOGY

ENN

SMOTE RENN

N AILENN

Trainng dataset

Oversampling CLMI

Data Preprocessing

Testing dataset

This research presents a software defect prediction approach
that combines SMOTE and CLNI for data balancing, feature
selection for selecting important features, and a Dense
Neural Network for classification. Figure 3 depicts an
overview of the approach consisting four phases: 1) Dataset
collection, 2) Data preprocessing, 3) Feature selection, and
4) Prediction.

—>

Correlation Coefficient
Mutual Information
Variance Threshold

Chi-Square

—»| Dense Neurzl Network —» Model Evaluation - |——3Classification

Feature
Selection

Figure 3: Overview of the Software Defect Prediction Model

3.1 Dataset Collection

To measure the effectiveness of our proposed approach, we
considered a number of well-known and widely used
datasets from NASA MDP (Metrics Data Program)
repository and AEEEM dataset repository. They contain
various software metrics which were organized and
collected from various projects and widely used in software

defect prediction related tasks. We selected MC1, PC1, PC2,
PC3 and PC4 datasets from NASA MDP and JDT, ML and
LC from AEEEM repository for our approach. Each of them
consists of multiple attributes like Halstead metrics, code
complexity metrics and many others. Table 1 and Table 2
describe the details of the NASA MDP and AEEEM dataset
respectively.

Table 1
NASA MDP Dataset
Dataset | Attributes | Modules | Defective | Non-defective
MCl1 39 9466 68 9398
PC1 40 1107 76 1031
PC2 40 1563 160 1403
PC3 40 1270 176 1094
PC4 36 1694 458 1236
Table 2
AEEEM Dataset
Project | Number of files | Percentage of Buggy Files | Number of metrics
LC 399 9.26 71
ML 1862 13.16 71
IDT 997 20.66 71

3.2 Data Preprocessing SMOTE creates new minority class by linear interpolation
between existing samples and their neighbors (Elreedy et al.,
2019). For each minority samples X, one of its K nearest
neighbors X is chosen at random, and a synthetic dataset is

created as follows:

To preprocess the defect datasets, we applied two methods:
data balancing with SMOTE and noise removing with
CLNI. Though there are many noise filtering methods, but in
our research we used only three of them. The details of these

methods are discussed in the following subsections.

3.2.1 Dataset Balancing with SMOTE

MIJST, V. 13, December, 2025

Algorithm: SyntheticSampleGen(X_minority, N, k)

Input: Minority class samples x_minority, number of synthetic
samples N, number of nearest neighbors k

113

MIJST

Jahan et al.: A Neural Network Based Software

Defect Prediction Approach Using SMOTE and Noise Filtering-CLNI

Output: Augmented dataset with synthetic samples

Repeat N times:
Select a random sample x from x_minority
Find its k nearest neighbors in x_minority
Choose one neighbor x at random
Generate a random value w between 0 and 1
Create a new sample z between x, and x using
Z=xp+wX (x—xq)
Add z to the set of synthetic samples
Return x_minority U {zy,2,,Z,} as the augmented dataset

Return cleaned dataset D

3.2.2 Noise Removal using CLNI

CLNI is a method to reduce the noise generated from the
oversampling technique SMOTE. Many types of CLNI
methods are available, among them, we performed ENN,
RENN and AllI-KNN in our research.

Edited Nearest Neighbors: Edited Nearest Neighbors is an
enhanced version of k-nearest Neighbors to eliminate noisy
and mislabeled instances from the dataset.

Algorithm ENN (D, k)

Input: Dataset D, number of neighbors k

For each instance x in D:
Find k nearest neighbors of x
Determine majority class among neighbors
If class(x) # majority class:
Remove x from D
Return cleaned dataset D

Repeated ENN: RENN removes noisy instances that differ
from their neighbors. It repeats the process until no more
instances are removed in an iteration.

Algorithm: RENN (D, k)

Input: Dataset D, number of neighbors k

Repeat:
Initialize change flag = False
For each instance x in D:
Find k nearest neighbors of x
Determine majority class among neighbors
If class(x) # majority class:
Remove x from D
Set change_flag = True
Until change _flag is False
Return cleaned dataset D

All-KNN: All-KNN reduces the borderline and mislabeled
instances, in noisy or mislabeled datasets.

Algorithm: AIIKNN (D, k_max)

Input: Dataset D, maximum neighbors k_max

For k from 1 to k_max:
For each instance x in D:
Find k nearest neighbors of x
Determine majority class
If class(x) # majority class:
Mark x for removal
Remove all marked instances

MIJST, V. 13, December, 2025

3.3 Feature Selection

To reduce the dimension of data to reduce the memory
wastage, this paper applied Correlation Coefficient, Mutual
Information, Variance Threshold and Chi-Square feature
selection methods. The most significant features identified
are included:

LOC BLANK,

PERCENT COMMENTS,
LOC_COMMENTS,

LOC CODE AND COMMENT,
NUMBER OF LINES,

CALL PAIRS,
NUM_UNIQUE_OPERANDS,
NUM_UNIQUE_OPERATORS,
HALSTEAD CONTENT,

LOC TOTAL,

e DECISION DENSITY, and

e LOC EXECUTABLE

3.3.1 Correlation Coefficient

Correlation coefficient is a statistical technique used to
measure and evaluate the strength and direction of the linear
relationship between two variables (Schober et al., 2018). It
is commonly quantified using metrics like Pearson’s
correlation coefficient for continuous data. Mathematically,
it can be written as (Venkatesh et al., 2019),
p(ry) = Xi(xi if)(yl yz o)
\/Zi(xi -2y —y)?

The correlation coefficient ranges from -1 to 1, where values
close to 1 indicate a strong positive relationship, values near
-1 represent a strong negative relationship and values close
to 0 suggest no linear relationship.

3.3.2 Mutual Information

Mutual information is the measurement of how two
variables mutually correlated with each other (Venkatesh et
al., 2019). Mathematically,

I(m,n) = Z Z p(m,n)log <pz(jr(nr;lpr(lr)1)> 2

bEB a€A

Where, p(m, n) is the joint probability distribution of m and
n, and p(m) and p(n) are the marginal probability
distribution of m and n.

3.3.3 Variance Threshold

Variance Threshold is a simple and commonly used feature
selection technique that removes low variance features from
a dataset. The assumption behind this method is that features
with very little variance across the samples are unlikely to
contain useful information for distinguishing between
classes or predicting the target variable. By specifying a
threshold, features with variance below this threshold are
eliminated (McHugh et al., 2008).

3.3.4 Chi-Square

114

MIJST

Jahan et al.: A Neural Network Based Software

Defect Prediction Approach Using SMOTE and Noise Filtering-CLNI

Chi-Square (McHugh et al., 2008) is a statistical test used to
measure the association between categorical variables.
Mathematically, it can be written as,

(Observed — Expected)?

2 _
X Expected

3)

It calculates the discrepancy between the observed and
expected outcome for each category of data.

3.4 Prediction Model

In this stage, this paper used Dense Neural Network to train
the dataset and classify them into Defective and Non-
defective. We Applied grid search to identify the best
parameters for our Dense Neural Network. The list of
parameters used in our work is shown in Table 3.

Table 3
Parameter List for Dense Neural Network

Parameters Value
Neurons 64
Dropout_rate 0.3
Batch_size 32
Epoch 30

Optimizer adam

4. Result analysis

This section shows the performance of software defect
prediction using Dense Neural Network in brief manner.
This experiment was conducted on an 8GB RAM PC on
Google Colaboratory using Python Programming Language.
Experimental dataset was collected and processed for neural
network analysis.

4.1 Evaluation Metrics

In order to evaluate the performance of our proposed
approach, we used a number of evaluation metrics, i.e.,
accuracy, precision, recall and ROC-AUC. ROC-AUC plots
the True Positive Rate or Recall against the False Positive
Rate (FPR). AUC indicates the model’s performance to
distinguish between the classes.

4.2 Classification Result

For the classification purpose, we have used five datasets
named MC1, PC1, PC2, PC3 and PC4 from NASA MDP
and three datasets named LC, JDT and ML from AEEEM
dataset repository. Performance evaluation metrics for both
of them are shown from Table 4 to Table 7. Table 4 and
Table 5 presents a comparative analysis of different CLNI
techniques, ENN, RENN and AII-KNN evaluated with
feature selection and without feature selection respectively
across three performance metrics: Accuracy, precision and
Recall for MC1, PC1, PC2, PC3 and PC4 dataset.

Table 4
Performance comparison between different CLNI methods using NASA MDP dataset without feature selection
Accuracy Precision Recall
ENN | RENN | AII-KKNN | ENN | RENN | AlI-KKNN | ENN | RENN | All-KNN

MC1 | 094 | 094 0.93 0.94

0.93 0.93 094 | 093 0.92

PC1 | 090 | 0.90 0.91 0.90

0.92 0.92 090 | 0.92 0.91

PC2 | 0.93 0.92 0.91 0.91

0.92 0.93 0.91 0.94 0.92

PC3 | 0.83 0.84 0.83 0.85

0.83 0.82 0.83 0.83 0.84

PC4 | 0.89 0.90 0.90 0.89

0.90 0.90 0.90 0.90 0.90

Table 5
Performance comparison between different CLNI methods using NASA MDP dataset with feature selection
Accuracy Precision Recall
ENN | RENN | AIIKKNN | ENN | RENN | AII-KKNN | ENN | RENN | All-KNN

MC1 | 0.98 0.99 0.98 0.98

0.98 0.98 0.98 0.99 0.98

PC1 | 0.95 0.95 0.96 0.94

0.95 0.96 0.95 0.95 0.97

PC2 | 0.98 0.98 0.97 0.97

0.97 0.97 0.98 0.98 0.98

PC3 | 0.87 | 0.87 0.88 0.87

0.86 0.88 0.87 | 0.87 0.88

PC4 | 0.93 0.93 0.95 0.93

0.93 0.95 0.95 0.94 0.95

Across all five datasets, RENN consistently achieves either
the highest or comparable performance in all three metrics,
accuracy, precision, and recall that indicating its
effectiveness as an efficient noise-handling technique. All-
KNN also performs competitively, surpassing RENN in
datasets like PC1 and PC4, particularly in precision and
accuracy. In contrast, ENN, generally ranks slightly below

MIJST, V. 13, December, 2025

RENN and AIll-KNN across most datasets, especially in
datasets like PC3, where its Precision drops. Overall, RENN
appears to be the most balanced and reliable technique
across diverse datasets, while All KNN shows strengths in
select cases, and ENN maintains moderate but consistent
performance. Dataset specific variation, especially in PC3,

115

MIJST

Jahan et al.: A Neural Network Based Software

Defect Prediction Approach Using SMOTE and Noise Filtering-CLNI

highlights the importance of utilizing the noise identification
method to dataset characteristics.

Table 6 and Table 7 presents a comparative analysis of
different CLNI techniques, ENN, RENN and All-KNN
evaluated with feature selection and without feature

selection respectively across three performance metrics:
accuracy, precision and recall for ML, JDT and LC dataset.
By analyzing the performance of all datasets, it is observed
that PC3 dataset underperforms due to is limited number of,
highlighting the importance of having a sufficient amount of
training data.

Table 6
Performance comparison between different CLNI methods using AEEEM dataset without feature selection
Accuracy Precision Recall
ENN | RENN | AlI-KKNN | ENN | RENN | AlI-KKNN | ENN | RENN | All-KNN
LC | 093 0.90 0.90 0.89 | 091 091 090 | 0.89 0.90
ML | 090 | 0.90 0.89 090 | 0.89 0.88 090 | 0.87 0.88
JDT | 0.89 | 0.90 0.88 090 | 0.88 0.88 0.93 0.88 0.88
Table 7
Performance comparison between different CLNI methods using AEEEM dataset with feature selection
Accuracy Precision Recall
ENN | RENN | AlI-KKNN | ENN | RENN | AlI-KKNN | ENN | RENN | All-KNN
LC | 098 | 0.95 0.94 098 | 0.95 0.94 097 | 094 0.95
ML | 092 | 093 0.90 092 | 092 0.90 092 | 0.90 0.90
JDT | 091 0.94 0.90 091 0.95 0.90 090 | 0.92 0.90

Among the evaluated CLNI techniques, ENN consistently
demonstrates balanced and high performing results. This
trend is observed across all datasets. It maintains a strong
performance in terms of accuracy, precision, and recall.
ENN proves to be the most efficient. RENN performs
competitively, particularly excelling in precision, but shows
slight tradeoffs in accuracy and recall. All-KNN, while
perform yielding acceptable results, generally
underperforms relative to ENN and RENN, indicating less

1.0p 1.0
0.8F 0.8}
E‘O‘G -§ 0.6
E 0.4 g 0.41
0.2F 0.2}
0.0 0.0

MC1

PCl PC2 PC3 PC4

MC1

PC1

PC2

efficient in handling noisy data. On the other hand, the LC
dataset shows higher conflict and superior results across all
methods, suggesting it is less affected by noise, whereas
JDT and ML appear more sensitive to the choice of noise-
filtering techniques.

Figure 4 and Figure 5 represents the comparative bar chart
representation of the performance of various CLNI
techniques on the dataset.

Recall

PC3 PC4

MC1

PC1 PC2 PC3 PC4

Figure 4: bar graph representation of the performance of the CLNI techniques for NASA MDP dataset

MIJST, V. 13, December, 2025

116

M I]ST Jahan et al.: A Neural Network Based Software
Defect Prediction Approach Using SMOTE and Noise Filtering-CLNI

1.0 4
N ENN
s RENN
- All-KNN
0.8 1
0.6 4
> [
g 2 F
=2 v
g
2 £
0.44
0.2
0.0~
PT ML Lc PT ML Lc PT ML

Figure 5: bar graph representation of the performance of the CLNI techniques for AEEEM dataset

ENN RENN AIIKNN
10 v 10 = 10 —
I” ”l I"
d i ~
(X3 .~ 08 P oe L
. .
-"’ 4"’ 4”’

® ~ = P 2 s
206 ’/’ & 06 // 206 ’/’
% - 2] -
H £ H

0.4 o 04 . 04 -
? : H

. . -
vl s 3%
‘4' ’f’ '4’
’ - -
02 e 02 o? 02 o
% /" l"
t" "’ I"
Vo e s
00 = ENN (AUC = 1.00) 00 —— RENN (AUC = 1.00) 00 = AIIKNN (AUC = 1.00)
00 0z 04 06 o8 10 00 02 04 06 08 10 00 02 04 o6 08 10
False Positive Rate False Positive Rate False Positive Rate

Figure 6: ROC-AUC curve for MC1 dataset

ENN RENN AIIKNN
0+ 1
10 ~ 10 o] 7,
A s P
I” 'l’ J”
- / -
081 2 08 5 o8 7
t" f" t"
I” t" r"
H oA g rd g 4
206 s Zoe 75 306 #
v 7 53 3 P € 4
' 3 ”t 5 "I 2 "’
% 04+ S E 04 3 € 04 P L
£ P H >
t" l"
"’ t”
024 g 02 02 e
1” I"
I" I”
” 7
0of ¥ = ENN (AUC = 0.99) 0.0 = RENN (AUC = 0.99) o0 = AIKNN [AUC = 0.99}
00 02 04 06 08 10 20 02 04 06 08 10 00 02 04 06 o8 10
False Postive Rate Falso Fosiove Rate Falsa Rositive Rate
.
Figure 7: ROC-AUC curve for PCI1 dataset
ENN RENN ANKNN
10 = 10 = 10 =
7 b2 -
I" I" l’l
08 o 08 e 08 i
-~ e 27
f” l" l”
P ~ K3 P g P
3006 v Fos Vs 3oe s
v 4 e P v 4
2 S 2 5 4 2 7
H H i
. . /
044 g 04 S 04 >
: : !
Vs L Y.
-~ i -~
02 '/’ 02 ’,/ 02 ’/'
l”’ t"’ 4”’
f” f” ﬂ”
001 7 === ENN [AUC = 1.00) 00 % = RENN (AUC = 1.00) 0.0 4 = AIKNN [AUC = 1,00} |
o0 02 o4 o6 08 10 oo 02 o4 0.6 o8 e oo o2 o4 0.6 os 10
Falso Postve Rate False Posiove Rate Falsa Positive Rate

Figure 8: ROC-AUC curve for PC2 dataset

MIJST, V. 13, December, 2025 117

M I]ST Jahan et al.: A Neural Network Based Software
Defect Prediction Approach Using SMOTE and Noise Filtering-CLNI

ENN RENN

AIKNN

os

o
-
o
-

Thue Positive Rate
P o
> @

ey

~——

Thue Posttive Rate
° o
> @

\,
\,
\,
g
\,
\,

True Fositve Rate
°
>

o 02 o S
00 = ENN [AUC = 0.95) 0y ¥ = RENN (AUC = 0.95) 00 = AIIKNN (AUC = 0.95}
0.0 02 04 o 08 10 00 02 o4 0.6 os 10 0.0 02 o 0.6 os 10
False Postive Rate False Positve Rate False Positive Rate
.
Figure 9: ROC-AUC curve for PC3 dataset
ENN RENN AlIKNN
10~ < > 104 > =, 10 >
08+ (P ot 084 P ou (
2 2 7 g ‘
Soe Ros ERTY] =
& 2]
S 041 5 % os ¥ o4
i £ E 3
o 02 0.
00 ¥ —— ENN IAUC = 0.98) oo ¥ —— RENN (AUC = 0.97) 20 —— ARKNN [AUC = 0.96)
0.0 02 o4 06 0.3 10 0.0 02 04 06 08 0o 02 04 0.6 oe 10

Figure 10: ROC-AUC curve for PC4 dataset

We further analyzed our results in terms of ROC-AUC most of the correct cases early. For PC3, the AUC drops to
curve. Figure 6 to Figure 10, all three methods, ENN, (0.95) for all three. This is still strong, but not as perfect as
RENN, and All-KNN - show excellent performance on all ~ the others. It means the models are good but make a few
datasets. For MC1 and PC2, the models reach a perfect score ~ more mistakes. All methods perform about the same here.
(AUC = 1.00), meaning they correctly separate the two The PC4 dataset has slightly lower scores: ENN (0.98),
classes every time, with no mistakes. The curves stay very RENN (0.97), and All-KNN (0.96). ENN performs the best,
close to the top-left corner, showing high accuracy with ~ while AII-KNN is a bit lower, because it removes too much

almost no false alarms. On the PC1 dataset, all methods data when cleaning.

In summary, all methods work very

score slightly below perfect (AUC = 0.99), still showing well, especially on MC1 and PC2. ENN is slightly more
great results. ENN and RENN have smooth curves with very ~ consistent across all datasets, making it a reliable choice.

few errors, while All-KNN rises quickly, showing it catches

ROC Curve - ENN ROC Curve - RENN ROC Curve - AlIKNN
10 - 10 = 1.0 =
- -, -,
’ -’ ’
-, . -,
- - -
-, - -
oe 7 0.8 Pl 08 %
- - -,
- - -’
- - -

s ’I -1 ’/ = ’I
] = %
= - & - & ’

0.6 s 0.6 e 0.6 4 ’
¢ . = L g 32
& »7 Z Pz 2 Pig
& 2~ & € & 5
S o4 »” % 041 A é 0.4 27
- ”, = ’ ”

- -, -
- - s
’ s '
I’ ,' ,I
0.2 -, 02 s 0.2 -,
- 4 ’
-, -, -
- - -,
- - ’ -
g —— ENN [AUC = 0.97} 27 = RENN (AUC = 0.98) 27 —— ANKNN (AUC = 0.96)
oo ¥ - " - ' 00 ¥ . " . . 0.0 ¥ . - . -
0.0 0.2 0.4 0.6 08 10 0.0 0.2 04 0.6 08 1.0 0.0 0.2 0.4 06 0.8 10
False Positive Rate False Positive Rate False Positive Rate

Figure 11: ROC-AUC curve for ML dataset

MIJST, V. 13, December, 2025

118

MIJST

Jahan et al.: A Neural Network Based Software

Defect Prediction Approach Using SMOTE and Noise Filtering-CLNI

ROC Curve - ENN

ROC Curve - RENN

ROC Curve - AIIKNN

e
®

I3
o

True Positive Rate

14
-

True Positive Rate

4
©

True Positive Rate
o
o

o
P

0.2

o —— ENN (AUC = 0.97) o —— RENN (AUC = 0.96) 37 —— ANKNN (AUC = 0.96)
0.0 ¥ . 4 - ' 00 ¥ v 3 v 0.0 ¥ ' . v v
0.0 0.2 0.4 06 08 10 0.0 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10
False Positive Rate Faise Positive Rate Faise Positive Rate
Figure 12: ROC-AUC curve for JDT dataset
ROC Curve - ENN ROC Curve - RENN ROC Curve - AIIKNN
10 = 10 - 1.0 va
f/ s - P
e 4 7’
7’ ’ s
e s '
s ’ '
08 ¢ 0.8 7 08 7%
’ 0 7’
4 Cd d
- - .
= o 2 o z 54
2 - =
- I - z s & .
w 0.6 3% v 0.6 72 T 0.6 7
3 - =z ’ I v d
3 e ¥ 52 % 2%
& L & b & 7
S 04 P4 3 04 27 2 04 i
- ’ [’ = ’
” ’ 7’
. - .
7’ s
/' /’
02 , 0.2 0.2 .
’ s
s ' s
’ ’ ’
7’ e ’
L —— ENN (AUC = 1.00} s —— RENN (AUC = 0.98) 72 —— AlIKNN (AUC = 0.98)
0.0 ¥ r ; v 0o ¥ v v ' 0.0 ¥ ' v y .
0.0 [0.4 0.6 08 10 0.0 0.4 06 08 10 0.0 0.2 0.4 0.6 0.8 1.0

By analyzing the ROC-AUC curve for ML, JDT and LC
dataset, it is observed that ENN consistently demonstrates a
slight edge in performance, particularly on the LC and JDT
datasets. On the LC dataset, ENN stands out with a perfect
AUC of (1.00), clearly outperforming both RENN and All-
KNN, which still achieve excellent scores of (0.98). In
contrast, the ML dataset sees RENN take the lead with an
AUC of (0.98), narrowly outperforming ENN (0.97) and
All-KNN (0.96). For the JDT dataset, ENN once again leads
at (0.97), while RENN and All-KNN both follow closely at

False Positive Rate

False Positive Rate

Figure 13: ROC-AUC curve for LC dataset

across datasets.

classification techniques
focusing on the impact

False Positive Rate

relatively small, ENN shows more consistent top-tier results

4.3 Comparison with existing works

Table 8 presents a comparative analysis of various

applied to multiple datasets,
of balancing techniques, CLNI

methods, and feature selection strategies. The results
indicate that these preprocessing strategies contribute
significantly in improving classification accuracy across

(0.96). Through the performance gaps across methods are different datasets.
Table 8

Comparison of Different Techniques on Various Datasets

Balancin CLNI . Feature Selection Result
Ref techniqug technique Dataset | Repository Technique Model (Accuracy)
CM1 86.87%
IMI1 79.12%
Ali et al. MC2 NASA Voting 68.42%
(2024) i i MW1 MDP) Ensemble 99.33%
PC1 82.16%
PC3 87.17%
ENN MCI 99.02%
All-KNN PCl1 NASA Correlation 97.42%
All-KNN PC2 MDP Mutual 99.63%
Proposed SMOTE ENN PC3 Information Dense Neural 88.58%
work RENN PC4 Variance Network 95.34%
ENN ML Threshold 91.42%
All-KNN JDT AEEEM Chi-Square 94.53%
All-KNN LC 95.43%
MIJST, V. 13, December, 2025 119

MIJST

Jahan et al.: A Neural Network Based Software

Defect Prediction Approach Using SMOTE and Noise Filtering-CLNI

9. CONCLUSIONS

Software defect prediction focuses on identifying faulty
modules at the early stages of the software development life
cycle. Developing an efficient and effective defect
prediction model is crucial for reducing maintenance costs
and improving software quality. In this research, we
proposed a software defect prediction approach that
integrates SMOTE with CLNI to achieve a more balanced
dataset and improved prediction accuracy. The datasets are
collected from NASA MDP and AEEEM. The model was
evaluated using eight datasets with relevant features to
assess its effectiveness. The results demonstrate that the
proposed classification model yields promising performance
compared to traditional approaches. However, when applied
to different datasets, it is observed that the PC3 dataset
underperforms due to its limited number of samples,
highlighting the importance of having a sufficient amount of
training data. Relying on a predefined feature selection
method may limit the model's adaptability across diverse
datasets. In future work, we aim to overcome this limitation
by exploring uniform and adaptive feature selection
strategies and evaluating the approach on a broader range of
datasets.

ACKNOWLEDGMENTS

The authors express their heartfelt gratitude to Bangladesh
Army University of Science and Technology, Bangladesh;
Military Institute of Science and Technology, Bangladesh;
East West University, Bangladesh; Daffodil International
University, Bangladesh, and Quantum Robotics and
Automation Research Group (QRARG), Bangladesh.

DATA AVAILABILITY STATEMENT

Datasets generated during the current study are available
from the corresponding author upon reasonable request.

FUNDING DECLARATION
This research was self-funded.
ETHICS APPROVAL

This study is an engineering experimental investigation. The
MIJST Research Ethics Committee has confirmed that
formal ethical approval was not required.

ETHICS, CONSENT TO PARTICIPATE, AND
CONSENT TO PUBLISH

Not applicable.

COMPETING INTERESTS

The authors declare that they have no competing interests.
AUTHOR CONTRIBUTIONS

Author 1: Ahmmed Bin Ashfaque- Writing: Original draft,
Review and editing, Formal analysis, Software, Validation,
Visualization, Supervision

Author 2: Abdus Sattar2- Writing: Original draft, Review
and editing, Formal analysis, Software, Validation,
Visualization, Supervision

MIJST, V. 13, December, 2025

Author 3: Hosney Jahan- Writing: Original draft, Review
and editing, Formal analysis, Software, Validation,
Visualization, Supervision

Author 4: M. Akhtaruzzaman- Writing: Original draft,
Review and editing, Formal analysis, Software, Validation,
Visualization, Supervision

Author 5: Fernaz Narin Nur- Writing: Original draft,
Review and editing, Formal analysis, Software, Validation,
Visualization, Supervision

ARTIFICIAL INTELLIGENCE
STATEMENT

ASSISTANCE

Portions of this manuscript were assisted by an artificial
intelligence language model (ChatGPT, OpenAl). The tool
was used solely for language editing, text refinement, and
clarity improvement. All content, data interpretation,
analysis, conclusions, and final decisions were generated,
verified, and approved by the authors. The authors take full
responsibility for the accuracy and integrity of the
manuscript.

CONFLICT OF INTEREST DECLARATION
The authors declare that they have no conflicts of interest.
REFERENCES

Akintola, A. G., Balogun, A. O., Lafenwa-Balogun, F., &
Mojeed, H. A. (2018). Comparative analysis of
selected heterogeneous classifiers for software defects
prediction using filter-based feature selection methods.
FUOYE Journal of Engineering and Technology, 3,
134-137.

Ali, M., Mazhar, T., Al-Rasheed, A., Shahzad, T., Yazeed
Yasin Ghadi, & Muhammad Amir Khan. (2024).
Enhancing software defect prediction: A framework
with improved feature selection and ensemble
machine learning. PeerJ Computer Science, 10,
e1860—1860. https://doi.org/10.7717/peerj-cs.1860

Ali, M., Mazhar, T., Arif, Y., Shaha Al-Otaibi, Yazeed
Yasin Ghadi, Shahzad, T., Muhammad Amir Khan, &
Habib Hamam. (2024). Software defect prediction
using an intelligent ensemble-based model. /EEE
Access, 1-1.
https://doi.org/10.1109/access.2024.3358201

Alkhawaldeh, I. M., Albalkhi, 1., & Naswhan, A. J. (2023).
Challenges and limitations of synthetic minority
oversampling techniques in machine learning. World
Journal of Methodology, 13(5), 373-378.
https://doi.org/10.5662/wjm.v13.15.373

Cetiner, M., & Sahingoz, O. K. (2020, July 1). A
comparative analysis for machine learning based
software defect prediction systems. [EEE Xplore.
https://doi.org/10.1109/ICCCNT49239.2020.9225352

Elreedy, D., & Atiya, A. F. (2019). A comprehensive
analysis of synthetic minority oversampling technique
(SMOTE) for handling class imbalance. Information
Sciences, 505, 32-64.

Feng, S., Keung, J., Yu, X., Xiao, Y., Bennin, K. E., Kabir,
M. A., & Zhang, M. (2021). COSTE: Complexity-
based oversampling technique to alleviate the class
imbalance problem in software defect prediction.

120

https://doi.org/10.7717/peerj-cs.1860
https://doi.org/10.1109/access.2024.3358201
https://doi.org/10.5662/wjm.v13.i5.373
https://doi.org/10.1109/ICCCNT49239.2020.9225352

MIJST

Jahan et al.: A Neural Network Based Software

Defect Prediction Approach Using SMOTE and Noise Filtering-CLNI

Information and Software Technology, 129, 106432.
https://doi.org/10.1016/j.infsof.2020.106432

Gupta, M., Rajnish, K., & Bhattacharjee, V. (2023).
Software fault prediction with imbalanced datasets
using SMOTE-Tomek sampling technique and genetic
algorithm models. Multimedia Tools and Applications.
https://doi.org/10.1007/s11042-023-16788-7

J, A. A., & Judith, J. E. (2023). Enhanced deep learning
approach for software defect forecasting. 1-7.
https://doi.org/10.1109/aicera/icis59538.2023.1041999
8

Khleel, N. A. A., & Nehéz, K. (2024). Software defect
prediction using a bidirectional LSTM network
combined with oversampling techniques. Cluster
Computing, 27(3), 3615-3638.
https://doi.org/10.1007/s10586-023-04955-9

Mafarja, M., Thaher, T., Al-Betar, M. A., Too, J.,
Awadallah, M. A., Abu Doush, 1., & Turabieh, H.
(2023). Classification framework for faulty-software
using enhanced exploratory whale optimizer-based
feature selection scheme and random forest ensemble
learning. Applied Intelligence. Advance online
publication. https://doi.org/10.1007/s10489-022-
04427-x

McHugh, M. L. (2008). The Chi-square test: An
introduction. Biochemia Medica, 18(2), 112—118.
https://www.researchgate.net/publication/5856449 Th

MIJST, V. 13, December, 2025

e Chi-square_test _an_introduction

Rathore, S. S., Chouhan, S. S., Jain, D. K., & Vachhani, A.
G. (2022). Generative oversampling methods for
handling imbalanced data in software fault prediction.
IEEE Transactions on Reliability, 71(2), 747-762.
https://doi.org/10.1109/TR.2022.3158949

Schober, P., Boer, C., & Schwarte, L. A. (2018).
Correlation coefficients: Appropriate use and
interpretation. Anesthesia & Analgesia, 126(5), 1763—
1768.
https://doi.org/10.1213/ANE.0000000000002864

Venkatesh, B., & Anuradha, J. (2019). A review of feature

selection and its methods. Cybernetics and

Information Technologies, 19(1), 3-26.

https://doi.org/10.2478/cait-2019-0001
Vuttipittayamongkol, P., & Elyan, E. (2020).

Neighbourhood-based undersampling approach for
handling imbalanced and overlapped data. Information
Sciences, 509, 47-70.
https://doi.org/10.1016/j.ins.2019.08.062

Zhao, L., Shang, Z., Zhao, L., Qin, A., & Tang, Y. Y.
(2018). Siamese dense neural network for software
defect prediction with small data. JEEE Access, 7,
7663-7677.
https://doi.org/10.1109/access.2018.2889061

121

https://doi.org/10.1016/j.infsof.2020.106432
https://doi.org/10.1007/s11042-023-16788-7
https://doi.org/10.1109/aicera/icis59538.2023.10419998
https://doi.org/10.1109/aicera/icis59538.2023.10419998
https://doi.org/10.1007/s10586-023-04955-9
https://doi.org/10.1007/s10489-022-04427-x
https://doi.org/10.1007/s10489-022-04427-x
https://www.researchgate.net/publication/5856449_The_Chi-square_test_an_introduction
https://www.researchgate.net/publication/5856449_The_Chi-square_test_an_introduction
https://doi.org/10.1109/TR.2022.3158949
https://doi.org/10.1213/ANE.0000000000002864
https://doi.org/10.2478/cait-2019-0001
https://doi.org/10.1016/j.ins.2019.08.062
https://doi.org/10.1109/access.2018.2889061

