
 MIJST
 MIST International Journal of Science and Technology

MIJST, V. 13, December 2025 | https://doi.org/10.47981/j.mijst.13(02)2025.557(111-120) 111

A Neural Network Based Software Defect Prediction Approach

Using SMOTE and Noise Filtering-CLNI

Ahmmed Bin Ashfaque1, Abdus Sattar2, Hosney Jahan*3, M. Akhtaruzzaman4, and Fernaz Narin Nur5

1Department of CSE, Bangladesh Army University of Science and Technology, Fultola Khulna-9204, Bangladesh
2Department of Computer Science and Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
3Department of Computer Science and Engineering, East West University, Dhaka-1212, Bangladesh
4Department of Computer Science and Engineering, Daffodil International University, Savar, Dhake-1216, Bangladesh
5Quantum Robotics and Automation Research Group (QRARG), Mirpur, Dhaka-1216, Bangladesh

*Corresponding Email: hosney.jahan@ewubd.edu

A R T I C L E I N F O

A B S T R A C T

Article History:

Received: 19th May 2025

Revised: 29th September 2025

Accepted: 13th October 2025

Published: 30th December 2025

Software defects can cause significant loss and system failures in software

development life cycle. Software Defect Prediction (SDP) is a vital step for ensuring

the quality of software. Till now, a number of machine learning models have been

proposed to predict potential defects and make the software more reliable. However,

SDP models suffer from the problem of imbalanced dataset, resulting in poor

prediction accuracy. To mitigate this, issue several data balancing techniques, i.e.,

over sampling, under sampling etc. have been proposed to balance the dataset. In

some cases, the data balancing methods may further introduce noisy and mislabeled

samples in the dataset. To deal with these issues, in this paper, we propose a neural

network based approach that combines the oversampling technique Synthetic

Minority Oversampling Technique (SMOTE) with the noise filtering technique Class

Level Noise Identification (CLNI). Here, we applied three different CLNI methods

which are Edited Nearest Neighbor (ENN), Repeated ENN (RENN) and All-KNN.

Our aim is to make the dataset clean, balanced and efficient by combining SMOTE

with CLNI. In addition, we applied a number of feature selection methods to identify

the most important features, further contributing towards achieving better prediction

accuracy. To evaluate the effectiveness of the proposed model, we conduct

experiments on several benchmark datasets (MC1, PC1, PC2, PC3 and PC4)

obtained from NASA MDP and (ML, LC and JDT) AEEEM repository. The

experimental results have been evaluated and compared in terms of accuracy,

precision, recall and AUC-ROC curve. The experimental results demonstrated that

our proposed approach has achieved up to 98% accuracy and outperformed state-of-

the-art approaches.

Keywords:

Software Defect Prediction

SMOTE

CLNI

Dense Neural Network

Data Balancing

Feature Selection

 This work is licensed under a Creative Commons Attribution-Non-commercial 4.0 International License.

1. INTRODUCTION

In the domain of software engineering, the identification and

classification of software defects is a critical activity during

the testing phase of software development. With the

increasing complexity of software systems and growing

demands for higher reliability, it is necessary to ensure the

quality of the software. In the modern era, where numerous

software systems compete in terms of functionality and

performance, predicting software defects has become a

challenging task. Figure 1 and Figure 2 demonstrate the

example of defective and non-defective code in the software.

The primary objective of predicting software defects is to

reduce the effort of software testing through proper

guideline. Proper software testing enables many software

organizations to predict defects in a way that saves time,

stays within budget, improves software quality, and

facilitates better resource planning to meet project timelines

(Akintola et al., 2018).

Figure 1: Defective code example

https://creativecommons.org/licenses/by-nc/4.0/

 Jahan et al.: A Neural Network Based Software

Defect Prediction Approach Using SMOTE and Noise Filtering-CLNI

MIJST, V. 13, December, 2025 112

Figure 2: Non-defective code example

Till now a number of machine learning approaches have

been applied in software defect prediction. However, the

performance of these methods are often hindered by

imbalanced datasets. Class imbalance is the major problem

related to software defect dataset, where the unequal

distribution between the number of defective instances (i.e.

the minority class) is significantly smaller than the non-

defective instances (i.e. the majority class) (Feng et al.,

2021). This imbalance limits the classifiers ability to

classify the minority class, often leading to

misclassification error.

To address this problem, various data balancing techniques

are available, i.e., oversampling, undersampling etc.

Among them, SMOTE (khleel et al., 2024) and Random

oversampling (Khleel et al., 2024) has been widely

adopted to balance datasets by generating synthetic

samples for the minority class. However, SMOTE has a

notable drawback - it can introduce noise by generating

synthetic instances from or near mislabeled or noisy data

points (Alkhawaldeh et al., 2023), result in over-fit

prediction model (Rathore et al., 2024). Because, SMOTE

lacks a mechanism to distinguish between clean and noisy

samples, it may inadvertently amplify existing errors in the

data.

To mitigate these drawbacks, in this paper, we propose a

neural network based approach that combines the

oversampling technique SMOTE with the noise removing

technique CLNI. Here, we applied three noise filtering

techniques which are Edited Nearest Neighbor (ENN),

Repeated ENN (RENN) and All-KNN (Gupta et al., 2023).

These techniques act as a preprocessing step, enhancing

data quality and improving the performance of classifiers.

Our aim is to reduce the misclassification rate and

overfitting problem by Integrating SMOTE with CLNI. In

addition to this, we further applied a number of feature

selection methods to achieve more accurate prediction. The

feature selection methods used in our research are

Correlation Coefficient, Mutual Information, Variance

Threshold and Chi-Square. The objective of this research is

to develop accurate software defect prediction model by

addressing the challenges of class imbalance, data noise

and irrelevant features through an integrated approach.

This research paper is divided into sections as follows:

Literature review is presented in Section II. Methodology

is illustrated in Section III. Result analysis is presented in

Section IV. Conclusions are drawn in section V.

2. LITERATURE REVIEW

In this section, we review previous research on Software

Defect Prediction (SDP), highlighting significant

contributions in the areas of handling class imbalance,

feature selection techniques and neural network approaches

for early defect prediction in the Software Development

Cycle (SDLC).

 Software defect datasets are challenging to use due to their

imbalanced class distributions. (Ali et al., 2024) used the

SMOTE preprocessing approach with NASA MDP

datasets (CM1, JM1, PC1, PC4, MC2, PC3, and MW1).

Using the voting ensemble approach combined with

machine learning algorithms such as RF, SVM, NB, and

ANN to improve prediction performance. Their method

achieved a training accuracy of 87.2% and a testing

accuracy of 86.87%. SMOTE may introduce unnecessary

noise. To overcome with this problem,

(Vuttipittayamongkol et al., 2022) proposed neighborhood-

based undersampling algorithm. This algorithm reduced

the majority class and balance the ratio between majority

and minority class. Experimental results observed on

NASA datasets, having an AUC of 95.9% and an accuracy

of 96.9% with 95% confidence level. Undersampling

technique may possess loss of important data.

A real-time deep ladder network proposed to tackle the

problem of SMOTE and undersampling by (J. et al., 2023).

This method integrated with migration learning, a deep

belief network combined with transfer component analysis

superior that others.

Software defect datasets consist of large number of metrics

such as line of code (LOC), complexity measures,

cyclomatic complexity and so on. Many of them are

irrelevant in software defect prediction. To reduce model’s

overfitting, (Cetiner et al., 2020) applied Principal

Component Analysis (PCA) as a feature reduction

technique, while comparing ten machine learning

algorithms. They used Decision Tree, Naïve Bayes, K-

nearest neighbor, Support vector machine, random forest,

extra tress, adaboost, gradient boosting, bagging and multi-

layer perceptron. The evaluation performance showed that

Random forest achieved higher accuracy on PC1 dataset.

A five-stage framework for software defect prediction

using NASA datasets proposed by (Ali et al., 2024). They

combined genetic algorithm-based feature selection with

heterogeneous classifiers (Random Forest, SVM and Naïve

Bayes). Their iterative optimization process, utilizing an

ensemble voting technique, achieved a maximum

classification accuracy of 95.1%, while reducing execution

time by over 50%.

Enhanced exploratory whale optimizer-based feature

selection method along with random forest ensemble

learning proposed (Mafarja et al., 2023) to software defect

prediction while Siamese Dense Neural Network (SDNN)

introduced by (Zhao et al., 2018), which combines similarity

feature learning and distance metric learning using a contrast

loss function with cosine proximity. Their experimental

results demonstrated that SDNN outperforms traditional

methods, particularly in scenarios with limited data and

imbalanced class distributions.

The literature study highlights several challenges in software

defect prediction, including noise introduction during

resampling methods like SMOTE, the complexity of feature

selection, and the high computational costs associated with

 Jahan et al.: A Neural Network Based Software

Defect Prediction Approach Using SMOTE and Noise Filtering-CLNI

MIJST, V. 13, December, 2025 113

ensemble models and deep learning methods. The purpose

of the research is to improve accuracy and efficiency in

software defect prediction, addressing the limitations

identified in previous studies.

3. METHODOLOGY

This research presents a software defect prediction approach

that combines SMOTE and CLNI for data balancing, feature

selection for selecting important features, and a Dense

Neural Network for classification. Figure 3 depicts an

overview of the approach consisting four phases: 1) Dataset

collection, 2) Data preprocessing, 3) Feature selection, and

4) Prediction.

Figure 3: Overview of the Software Defect Prediction Model

3.1 Dataset Collection

To measure the effectiveness of our proposed approach, we

considered a number of well-known and widely used

datasets from NASA MDP (Metrics Data Program)

repository and AEEEM dataset repository. They contain

various software metrics which were organized and

collected from various projects and widely used in software

defect prediction related tasks. We selected MC1, PC1, PC2,

PC3 and PC4 datasets from NASA MDP and JDT, ML and

LC from AEEEM repository for our approach. Each of them

consists of multiple attributes like Halstead metrics, code

complexity metrics and many others. Table 1 and Table 2

describe the details of the NASA MDP and AEEEM dataset

respectively.

Table 1

NASA MDP Dataset

Dataset Attributes Modules Defective Non-defective

MC1 39 9466 68 9398

PC1 40 1107 76 1031

PC2 40 1563 160 1403

PC3 40 1270 176 1094

PC4 36 1694 458 1236

Table 2

AEEEM Dataset

Project Number of files Percentage of Buggy Files Number of metrics

LC 399 9.26 71

ML 1862 13.16 71

JDT 997 20.66 71

3.2 Data Preprocessing

To preprocess the defect datasets, we applied two methods:

data balancing with SMOTE and noise removing with

CLNI. Though there are many noise filtering methods, but in

our research we used only three of them. The details of these

methods are discussed in the following subsections.

3.2.1 Dataset Balancing with SMOTE

SMOTE creates new minority class by linear interpolation

between existing samples and their neighbors (Elreedy et al.,

2019). For each minority samples X0, one of its K nearest

neighbors X is chosen at random, and a synthetic dataset is

created as follows:

Algorithm: SyntheticSampleGen(X_minority, N, k)

Input: Minority class samples 𝑥_𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦, number of synthetic

samples N, number of nearest neighbors k

 Jahan et al.: A Neural Network Based Software

Defect Prediction Approach Using SMOTE and Noise Filtering-CLNI

MIJST, V. 13, December, 2025 114

Output: Augmented dataset with synthetic samples

Repeat N times:

 Select a random sample 𝑥0 from 𝑥_𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦

 Find its 𝑘 nearest neighbors in 𝑥_𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦

 Choose one neighbor 𝑥 at random

 Generate a random value 𝑤 between 0 and 1

 Create a new sample 𝑧 between 𝑥0 and 𝑥 using

 𝑧 = 𝑥0 + 𝑤 × (𝑥 − 𝑥0)

 Add 𝑧 to the set of synthetic samples

Return 𝑥_𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 ∪ {𝑧1 , 𝑧2, … . . 𝑧𝑛} as the augmented dataset

3.2.2 Noise Removal using CLNI

CLNI is a method to reduce the noise generated from the

oversampling technique SMOTE. Many types of CLNI

methods are available, among them, we performed ENN,

RENN and All-KNN in our research.

Edited Nearest Neighbors: Edited Nearest Neighbors is an

enhanced version of k-nearest Neighbors to eliminate noisy

and mislabeled instances from the dataset.

Algorithm ENN (D, k)

Input: Dataset D, number of neighbors k

For each instance x in D:

 Find k nearest neighbors of x

 Determine majority class among neighbors

 If class(x) ≠ majority class:

 Remove x from D

Return cleaned dataset D

Repeated ENN: RENN removes noisy instances that differ

from their neighbors. It repeats the process until no more

instances are removed in an iteration.

Algorithm: RENN (D, k)

Input: Dataset D, number of neighbors k

Repeat:

 Initialize change_flag = False

 For each instance x in D:

 Find k nearest neighbors of x

 Determine majority class among neighbors

 If class(x) ≠ majority class:

 Remove x from D

 Set change_flag = True

Until change_flag is False

Return cleaned dataset D

All-KNN: All-KNN reduces the borderline and mislabeled

instances, in noisy or mislabeled datasets.

Algorithm: AllKNN (D, k_max)

Input: Dataset D, maximum neighbors k_max

For k from 1 to k_max:

 For each instance x in D:

 Find k nearest neighbors of x

 Determine majority class

 If class(x) ≠ majority class:

 Mark x for removal

Remove all marked instances

Return cleaned dataset D

3.3 Feature Selection

To reduce the dimension of data to reduce the memory

wastage, this paper applied Correlation Coefficient, Mutual

Information, Variance Threshold and Chi-Square feature

selection methods. The most significant features identified

are included:

• LOC_BLANK,

• PERCENT_COMMENTS,

• LOC_COMMENTS,

• LOC_CODE_AND_COMMENT,

• NUMBER_OF_LINES,

• CALL_PAIRS,

• NUM_UNIQUE_OPERANDS,

• NUM_UNIQUE_OPERATORS,

• HALSTEAD_CONTENT,

• LOC_TOTAL,

• DECISION_DENSITY, and

• LOC_EXECUTABLE

3.3.1 Correlation Coefficient

Correlation coefficient is a statistical technique used to

measure and evaluate the strength and direction of the linear

relationship between two variables (Schober et al., 2018). It

is commonly quantified using metrics like Pearson’s

correlation coefficient for continuous data. Mathematically,

it can be written as (Venkatesh et al., 2019),

 𝜌(𝑥, 𝑦) =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑖

√∑ (𝑥𝑖 − 𝑥̅)2
𝑖 (𝑦𝑖 − 𝑦̅)2

 (1)

The correlation coefficient ranges from -1 to 1, where values

close to 1 indicate a strong positive relationship, values near

-1 represent a strong negative relationship and values close

to 0 suggest no linear relationship.

3.3.2 Mutual Information

Mutual information is the measurement of how two

variables mutually correlated with each other (Venkatesh et

al., 2019). Mathematically,

 I(m, n) = ∑ ∑ 𝑝(𝑚, 𝑛) log (
𝑝(𝑚, 𝑛)

𝑝(𝑚)𝑝(𝑛)
) (2)

𝑎∈𝐴𝑏∈𝐵

Where, 𝑝(𝑚, 𝑛) is the joint probability distribution of m and

n, and 𝑝(𝑚) 𝑎𝑛𝑑 𝑝(𝑛) are the marginal probability

distribution of m and n.

3.3.3 Variance Threshold

Variance Threshold is a simple and commonly used feature

selection technique that removes low variance features from

a dataset. The assumption behind this method is that features

with very little variance across the samples are unlikely to

contain useful information for distinguishing between

classes or predicting the target variable. By specifying a

threshold, features with variance below this threshold are

eliminated (McHugh et al., 2008).

3.3.4 Chi-Square

 Jahan et al.: A Neural Network Based Software

Defect Prediction Approach Using SMOTE and Noise Filtering-CLNI

MIJST, V. 13, December, 2025 115

Chi-Square (McHugh et al., 2008) is a statistical test used to

measure the association between categorical variables.

Mathematically, it can be written as,

 χ2 = ∑
(Observed − Expected)2

Expected
 (3)

It calculates the discrepancy between the observed and

expected outcome for each category of data.

3.4 Prediction Model

In this stage, this paper used Dense Neural Network to train

the dataset and classify them into Defective and Non-

defective. We Applied grid search to identify the best

parameters for our Dense Neural Network. The list of

parameters used in our work is shown in Table 3.

Table 3

Parameter List for Dense Neural Network

Parameters Value

Neurons 64

Dropout_rate 0.3

Batch_size 32

Epoch 30

Optimizer adam

4. Result analysis

This section shows the performance of software defect

prediction using Dense Neural Network in brief manner.

This experiment was conducted on an 8GB RAM PC on

Google Colaboratory using Python Programming Language.

Experimental dataset was collected and processed for neural

network analysis.

4.1 Evaluation Metrics

In order to evaluate the performance of our proposed

approach, we used a number of evaluation metrics, i.e.,

accuracy, precision, recall and ROC-AUC. ROC-AUC plots

the True Positive Rate or Recall against the False Positive

Rate (FPR). AUC indicates the model’s performance to

distinguish between the classes.

4.2 Classification Result

For the classification purpose, we have used five datasets

named MC1, PC1, PC2, PC3 and PC4 from NASA MDP

and three datasets named LC, JDT and ML from AEEEM

dataset repository. Performance evaluation metrics for both

of them are shown from Table 4 to Table 7. Table 4 and

Table 5 presents a comparative analysis of different CLNI

techniques, ENN, RENN and All-KNN evaluated with

feature selection and without feature selection respectively

across three performance metrics: Accuracy, precision and

Recall for MC1, PC1, PC2, PC3 and PC4 dataset.

Table 4

Performance comparison between different CLNI methods using NASA MDP dataset without feature selection

 Accuracy Precision Recall

 ENN RENN All-KNN ENN RENN All-KNN ENN RENN All-KNN

MC1 0.94 0.94 0.93 0.94 0.93 0.93 0.94 0.93 0.92

PC1 0.90 0.90 0.91 0.90 0.92 0.92 0.90 0.92 0.91

PC2 0.93 0.92 0.91 0.91 0.92 0.93 0.91 0.94 0.92

PC3 0.83 0.84 0.83 0.85 0.83 0.82 0.83 0.83 0.84

PC4 0.89 0.90 0.90 0.89 0.90 0.90 0.90 0.90 0.90

Table 5

Performance comparison between different CLNI methods using NASA MDP dataset with feature selection

 Accuracy Precision Recall

 ENN RENN All-KNN ENN RENN All-KNN ENN RENN All-KNN

MC1 0.98 0.99 0.98 0.98 0.98 0.98 0.98 0.99 0.98

PC1 0.95 0.95 0.96 0.94 0.95 0.96 0.95 0.95 0.97

PC2 0.98 0.98 0.97 0.97 0.97 0.97 0.98 0.98 0.98

PC3 0.87 0.87 0.88 0.87 0.86 0.88 0.87 0.87 0.88

PC4 0.93 0.93 0.95 0.93 0.93 0.95 0.95 0.94 0.95

Across all five datasets, RENN consistently achieves either

the highest or comparable performance in all three metrics,

accuracy, precision, and recall that indicating its

effectiveness as an efficient noise-handling technique. All-

KNN also performs competitively, surpassing RENN in

datasets like PC1 and PC4, particularly in precision and

accuracy. In contrast, ENN, generally ranks slightly below

RENN and All-KNN across most datasets, especially in

datasets like PC3, where its Precision drops. Overall, RENN

appears to be the most balanced and reliable technique

across diverse datasets, while All KNN shows strengths in

select cases, and ENN maintains moderate but consistent

performance. Dataset specific variation, especially in PC3,

 Jahan et al.: A Neural Network Based Software

Defect Prediction Approach Using SMOTE and Noise Filtering-CLNI

MIJST, V. 13, December, 2025 116

highlights the importance of utilizing the noise identification

method to dataset characteristics.

Table 6 and Table 7 presents a comparative analysis of

different CLNI techniques, ENN, RENN and All-KNN

evaluated with feature selection and without feature

selection respectively across three performance metrics:

accuracy, precision and recall for ML, JDT and LC dataset.

By analyzing the performance of all datasets, it is observed

that PC3 dataset underperforms due to is limited number of,

highlighting the importance of having a sufficient amount of

training data.

Table 6

Performance comparison between different CLNI methods using AEEEM dataset without feature selection

 Accuracy Precision Recall

 ENN RENN All-KNN ENN RENN All-KNN ENN RENN All-KNN

LC 0.93 0.90 0.90 0.89 0.91 0.91 0.90 0.89 0.90

ML 0.90 0.90 0.89 0.90 0.89 0.88 0.90 0.87 0.88

JDT 0.89 0.90 0.88 0.90 0.88 0.88 0.93 0.88 0.88

Table 7

Performance comparison between different CLNI methods using AEEEM dataset with feature selection

 Accuracy Precision Recall

 ENN RENN All-KNN ENN RENN All-KNN ENN RENN All-KNN

LC 0.98 0.95 0.94 0.98 0.95 0.94 0.97 0.94 0.95

ML 0.92 0.93 0.90 0.92 0.92 0.90 0.92 0.90 0.90

JDT 0.91 0.94 0.90 0.91 0.95 0.90 0.90 0.92 0.90

Among the evaluated CLNI techniques, ENN consistently

demonstrates balanced and high performing results. This

trend is observed across all datasets. It maintains a strong

performance in terms of accuracy, precision, and recall.

ENN proves to be the most efficient. RENN performs

competitively, particularly excelling in precision, but shows

slight tradeoffs in accuracy and recall. All-KNN, while

perform yielding acceptable results, generally

underperforms relative to ENN and RENN, indicating less

efficient in handling noisy data. On the other hand, the LC

dataset shows higher conflict and superior results across all

methods, suggesting it is less affected by noise, whereas

JDT and ML appear more sensitive to the choice of noise-

filtering techniques.

Figure 4 and Figure 5 represents the comparative bar chart

representation of the performance of various CLNI

techniques on the dataset.

Figure 4: bar graph representation of the performance of the CLNI techniques for NASA MDP dataset

 Jahan et al.: A Neural Network Based Software

Defect Prediction Approach Using SMOTE and Noise Filtering-CLNI

MIJST, V. 13, December, 2025 117

Figure 5: bar graph representation of the performance of the CLNI techniques for AEEEM dataset

Figure 6: ROC-AUC curve for MC1 dataset

Figure 7: ROC-AUC curve for PC1 dataset

Figure 8: ROC-AUC curve for PC2 dataset

 Jahan et al.: A Neural Network Based Software

Defect Prediction Approach Using SMOTE and Noise Filtering-CLNI

MIJST, V. 13, December, 2025 118

Figure 9: ROC-AUC curve for PC3 dataset

Figure 10: ROC-AUC curve for PC4 dataset

We further analyzed our results in terms of ROC-AUC

curve. Figure 6 to Figure 10, all three methods, ENN,

RENN, and All-KNN - show excellent performance on all

datasets. For MC1 and PC2, the models reach a perfect score

(AUC = 1.00), meaning they correctly separate the two

classes every time, with no mistakes. The curves stay very

close to the top-left corner, showing high accuracy with

almost no false alarms. On the PC1 dataset, all methods

score slightly below perfect (AUC = 0.99), still showing

great results. ENN and RENN have smooth curves with very

few errors, while All-KNN rises quickly, showing it catches

most of the correct cases early. For PC3, the AUC drops to

(0.95) for all three. This is still strong, but not as perfect as

the others. It means the models are good but make a few

more mistakes. All methods perform about the same here.

The PC4 dataset has slightly lower scores: ENN (0.98),

RENN (0.97), and All-KNN (0.96). ENN performs the best,

while All-KNN is a bit lower, because it removes too much

data when cleaning. In summary, all methods work very

well, especially on MC1 and PC2. ENN is slightly more

consistent across all datasets, making it a reliable choice.

Figure 11: ROC-AUC curve for ML dataset

 Jahan et al.: A Neural Network Based Software

Defect Prediction Approach Using SMOTE and Noise Filtering-CLNI

MIJST, V. 13, December, 2025 119

Figure 12: ROC-AUC curve for JDT dataset

Figure 13: ROC-AUC curve for LC dataset

By analyzing the ROC-AUC curve for ML, JDT and LC

dataset, it is observed that ENN consistently demonstrates a

slight edge in performance, particularly on the LC and JDT

datasets. On the LC dataset, ENN stands out with a perfect

AUC of (1.00), clearly outperforming both RENN and All-

KNN, which still achieve excellent scores of (0.98). In

contrast, the ML dataset sees RENN take the lead with an

AUC of (0.98), narrowly outperforming ENN (0.97) and

All-KNN (0.96). For the JDT dataset, ENN once again leads

at (0.97), while RENN and All-KNN both follow closely at

(0.96). Through the performance gaps across methods are

relatively small, ENN shows more consistent top-tier results

across datasets.

4.3 Comparison with existing works

Table 8 presents a comparative analysis of various

classification techniques applied to multiple datasets,

focusing on the impact of balancing techniques, CLNI

methods, and feature selection strategies. The results

indicate that these preprocessing strategies contribute

significantly in improving classification accuracy across

different datasets.

Table 8

Comparison of Different Techniques on Various Datasets

Ref
Balancing

technique

CLNI

technique
Dataset Repository

Feature Selection

Technique
Model

Result

(Accuracy)

Ali et al.

(2024)
- -

CM1

NASA

MDP
-

Voting

Ensemble

86.87%

JM1 79.12%

MC2 68.42%

MW1 99.33%

PC1 82.16%

PC3 87.17%

Proposed

work
SMOTE

ENN MC1

NASA

MDP

Correlation

Mutual

Information

Variance

Threshold

Chi-Square

Dense Neural

Network

99.02%

All-KNN PC1 97.42%

All-KNN PC2 99.63%

ENN PC3 88.58%

RENN PC4 95.34%

ENN ML

AEEEM

91.42%

All-KNN JDT 94.53%

All-KNN LC 95.43%

 Jahan et al.: A Neural Network Based Software

Defect Prediction Approach Using SMOTE and Noise Filtering-CLNI

MIJST, V. 13, December, 2025 120

9. CONCLUSIONS

Software defect prediction focuses on identifying faulty

modules at the early stages of the software development life

cycle. Developing an efficient and effective defect

prediction model is crucial for reducing maintenance costs

and improving software quality. In this research, we

proposed a software defect prediction approach that

integrates SMOTE with CLNI to achieve a more balanced

dataset and improved prediction accuracy. The datasets are

collected from NASA MDP and AEEEM. The model was

evaluated using eight datasets with relevant features to

assess its effectiveness. The results demonstrate that the

proposed classification model yields promising performance

compared to traditional approaches. However, when applied

to different datasets, it is observed that the PC3 dataset

underperforms due to its limited number of samples,

highlighting the importance of having a sufficient amount of

training data. Relying on a predefined feature selection

method may limit the model's adaptability across diverse

datasets. In future work, we aim to overcome this limitation

by exploring uniform and adaptive feature selection

strategies and evaluating the approach on a broader range of

datasets.

ACKNOWLEDGMENTS

The authors express their heartfelt gratitude to Bangladesh

Army University of Science and Technology, Bangladesh;

Military Institute of Science and Technology, Bangladesh;

East West University, Bangladesh; Daffodil International

University, Bangladesh, and Quantum Robotics and

Automation Research Group (QRARG), Bangladesh.

DATA AVAILABILITY STATEMENT

Datasets generated during the current study are available

from the corresponding author upon reasonable request.

FUNDING DECLARATION

This research was self-funded.

ETHICS APPROVAL

This study is an engineering experimental investigation. The

MIJST Research Ethics Committee has confirmed that

formal ethical approval was not required.

ETHICS, CONSENT TO PARTICIPATE, AND

CONSENT TO PUBLISH

Not applicable.

COMPETING INTERESTS

The authors declare that they have no competing interests.

AUTHOR CONTRIBUTIONS

Author 1: Ahmmed Bin Ashfaque- Writing: Original draft,

Review and editing, Formal analysis, Software, Validation,

Visualization, Supervision

Author 2: Abdus Sattar2- Writing: Original draft, Review

and editing, Formal analysis, Software, Validation,

Visualization, Supervision

Author 3: Hosney Jahan- Writing: Original draft, Review

and editing, Formal analysis, Software, Validation,

Visualization, Supervision

Author 4: M. Akhtaruzzaman- Writing: Original draft,

Review and editing, Formal analysis, Software, Validation,

Visualization, Supervision

Author 5: Fernaz Narin Nur- Writing: Original draft,

Review and editing, Formal analysis, Software, Validation,

Visualization, Supervision

ARTIFICIAL INTELLIGENCE ASSISTANCE

STATEMENT

Portions of this manuscript were assisted by an artificial

intelligence language model (ChatGPT, OpenAI). The tool

was used solely for language editing, text refinement, and

clarity improvement. All content, data interpretation,

analysis, conclusions, and final decisions were generated,

verified, and approved by the authors. The authors take full

responsibility for the accuracy and integrity of the

manuscript.

CONFLICT OF INTEREST DECLARATION

The authors declare that they have no conflicts of interest.

REFERENCES

Akintola, A. G., Balogun, A. O., Lafenwa-Balogun, F., &

Mojeed, H. A. (2018). Comparative analysis of

selected heterogeneous classifiers for software defects

prediction using filter-based feature selection methods.

FUOYE Journal of Engineering and Technology, 3,

134–137.

Ali, M., Mazhar, T., Al-Rasheed, A., Shahzad, T., Yazeed

Yasin Ghadi, & Muhammad Amir Khan. (2024).

Enhancing software defect prediction: A framework

with improved feature selection and ensemble

machine learning. PeerJ Computer Science, 10,

e1860–e1860. https://doi.org/10.7717/peerj-cs.1860

Ali, M., Mazhar, T., Arif, Y., Shaha Al-Otaibi, Yazeed

Yasin Ghadi, Shahzad, T., Muhammad Amir Khan, &

Habib Hamam. (2024). Software defect prediction

using an intelligent ensemble-based model. IEEE

Access, 1–1.

https://doi.org/10.1109/access.2024.3358201

Alkhawaldeh, I. M., Albalkhi, I., & Naswhan, A. J. (2023).

Challenges and limitations of synthetic minority

oversampling techniques in machine learning. World

Journal of Methodology, 13(5), 373–378.

https://doi.org/10.5662/wjm.v13.i5.373

Cetiner, M., & Sahingoz, O. K. (2020, July 1). A

comparative analysis for machine learning based

software defect prediction systems. IEEE Xplore.

https://doi.org/10.1109/ICCCNT49239.2020.9225352

Elreedy, D., & Atiya, A. F. (2019). A comprehensive

analysis of synthetic minority oversampling technique

(SMOTE) for handling class imbalance. Information

Sciences, 505, 32–64.

Feng, S., Keung, J., Yu, X., Xiao, Y., Bennin, K. E., Kabir,

M. A., & Zhang, M. (2021). COSTE: Complexity-

based oversampling technique to alleviate the class

imbalance problem in software defect prediction.

https://doi.org/10.7717/peerj-cs.1860
https://doi.org/10.1109/access.2024.3358201
https://doi.org/10.5662/wjm.v13.i5.373
https://doi.org/10.1109/ICCCNT49239.2020.9225352

 Jahan et al.: A Neural Network Based Software

Defect Prediction Approach Using SMOTE and Noise Filtering-CLNI

MIJST, V. 13, December, 2025 121

Information and Software Technology, 129, 106432.

https://doi.org/10.1016/j.infsof.2020.106432

Gupta, M., Rajnish, K., & Bhattacharjee, V. (2023).

Software fault prediction with imbalanced datasets

using SMOTE-Tomek sampling technique and genetic

algorithm models. Multimedia Tools and Applications.

https://doi.org/10.1007/s11042-023-16788-7

J, A. A., & Judith, J. E. (2023). Enhanced deep learning

approach for software defect forecasting. 1–7.

https://doi.org/10.1109/aicera/icis59538.2023.1041999

8

Khleel, N. A. A., & Nehéz, K. (2024). Software defect

prediction using a bidirectional LSTM network

combined with oversampling techniques. Cluster

Computing, 27(3), 3615–3638.

https://doi.org/10.1007/s10586-023-04955-9

Mafarja, M., Thaher, T., Al-Betar, M. A., Too, J.,

Awadallah, M. A., Abu Doush, I., & Turabieh, H.

(2023). Classification framework for faulty-software

using enhanced exploratory whale optimizer-based

feature selection scheme and random forest ensemble

learning. Applied Intelligence. Advance online

publication. https://doi.org/10.1007/s10489-022-

04427-x

McHugh, M. L. (2008). The Chi-square test: An

introduction. Biochemia Medica, 18(2), 112–118.

https://www.researchgate.net/publication/5856449_Th

e_Chi-square_test_an_introduction

Rathore, S. S., Chouhan, S. S., Jain, D. K., & Vachhani, A.

G. (2022). Generative oversampling methods for

handling imbalanced data in software fault prediction.

IEEE Transactions on Reliability, 71(2), 747–762.

https://doi.org/10.1109/TR.2022.3158949

Schober, P., Boer, C., & Schwarte, L. A. (2018).

Correlation coefficients: Appropriate use and

interpretation. Anesthesia & Analgesia, 126(5), 1763–

1768.

https://doi.org/10.1213/ANE.0000000000002864

Venkatesh, B., & Anuradha, J. (2019). A review of feature

selection and its methods. Cybernetics and

Information Technologies, 19(1), 3–26.

https://doi.org/10.2478/cait-2019-0001

Vuttipittayamongkol, P., & Elyan, E. (2020).

Neighbourhood-based undersampling approach for

handling imbalanced and overlapped data. Information

Sciences, 509, 47–70.

https://doi.org/10.1016/j.ins.2019.08.062

Zhao, L., Shang, Z., Zhao, L., Qin, A., & Tang, Y. Y.

(2018). Siamese dense neural network for software

defect prediction with small data. IEEE Access, 7,

7663–7677.

https://doi.org/10.1109/access.2018.2889061

https://doi.org/10.1016/j.infsof.2020.106432
https://doi.org/10.1007/s11042-023-16788-7
https://doi.org/10.1109/aicera/icis59538.2023.10419998
https://doi.org/10.1109/aicera/icis59538.2023.10419998
https://doi.org/10.1007/s10586-023-04955-9
https://doi.org/10.1007/s10489-022-04427-x
https://doi.org/10.1007/s10489-022-04427-x
https://www.researchgate.net/publication/5856449_The_Chi-square_test_an_introduction
https://www.researchgate.net/publication/5856449_The_Chi-square_test_an_introduction
https://doi.org/10.1109/TR.2022.3158949
https://doi.org/10.1213/ANE.0000000000002864
https://doi.org/10.2478/cait-2019-0001
https://doi.org/10.1016/j.ins.2019.08.062
https://doi.org/10.1109/access.2018.2889061

