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Software defects can cause significant loss and system failures in software 

development life cycle. Software Defect Prediction (SDP) is a vital step for ensuring 

the quality of software. Till now, a number of machine learning models have been 

proposed to predict potential defects and make the software more reliable. However, 

SDP models suffer from the problem of imbalanced dataset, resulting in poor 

prediction accuracy. To mitigate this, issue several data balancing techniques, i.e., 

over sampling, under sampling etc. have been proposed to balance the dataset. In 

some cases, the data balancing methods may further introduce noisy and mislabeled 

samples in the dataset. To deal with these issues, in this paper, we propose a neural 

network based approach that combines the oversampling technique Synthetic 

Minority Oversampling Technique (SMOTE) with the noise filtering technique Class 

Level Noise Identification (CLNI).  Here, we applied three different CLNI methods 

which are Edited Nearest Neighbor (ENN), Repeated ENN (RENN) and All-KNN. 

Our aim is to make the dataset clean, balanced and efficient by combining SMOTE 

with CLNI. In addition, we applied a number of feature selection methods to identify 

the most important features, further contributing towards achieving better prediction 

accuracy. To evaluate the effectiveness of the proposed model, we conduct 

experiments on several benchmark datasets (MC1, PC1, PC2, PC3 and PC4) 

obtained from NASA MDP and (ML, LC and JDT) AEEEM repository. The 

experimental results have been evaluated and compared in terms of accuracy, 

precision, recall and AUC-ROC curve. The experimental results demonstrated that 

our proposed approach has achieved up to 98% accuracy and outperformed state-of-

the-art approaches.   
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1. INTRODUCTION 

In the domain of software engineering, the identification and 

classification of software defects is a critical activity during 

the testing phase of software development. With the 

increasing complexity of software systems and growing 

demands for higher reliability, it is necessary to ensure the 

quality of the software. In the modern era, where numerous 

software systems compete in terms of functionality and 

performance, predicting software defects has become a 

challenging task. Figure 1 and Figure 2 demonstrate the 

example of defective and non-defective code in the software. 

The primary objective of predicting software defects is to 

reduce the effort of software testing through proper 

guideline. Proper software testing enables many software 

organizations to predict defects in a way that saves time, 

stays within budget, improves software quality, and 

facilitates better resource planning to meet project timelines 

(Akintola et al., 2018). 

 
Figure 1: Defective code example 

https://creativecommons.org/licenses/by-nc/4.0/
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Figure 2: Non-defective code example 

Till now a number of machine learning approaches have 

been applied in software defect prediction. However, the 

performance of these methods are often hindered by 

imbalanced datasets. Class imbalance is the major problem 

related to software defect dataset, where the unequal 

distribution between the number of defective instances (i.e. 

the minority class) is significantly smaller than the non-

defective instances (i.e. the majority class) (Feng et al., 

2021). This imbalance limits the classifiers ability to 

classify the minority class, often leading to 

misclassification error.  

To address this problem, various data balancing techniques 

are available, i.e., oversampling, undersampling etc. 

Among them, SMOTE (khleel et al., 2024) and Random 

oversampling (Khleel et al., 2024) has been widely 

adopted to balance datasets by generating synthetic 

samples for the minority class. However, SMOTE has a 

notable drawback - it can introduce noise by generating 

synthetic instances from or near mislabeled or noisy data 

points (Alkhawaldeh et al., 2023), result in over-fit 

prediction model (Rathore et al., 2024). Because, SMOTE 

lacks a mechanism to distinguish between clean and noisy 

samples, it may inadvertently amplify existing errors in the 

data.  

To mitigate these drawbacks, in this paper, we propose a 

neural network based approach that combines the 

oversampling technique SMOTE with the noise removing 

technique CLNI. Here, we applied three noise filtering 

techniques which are Edited Nearest Neighbor (ENN), 

Repeated ENN (RENN) and All-KNN (Gupta et al., 2023). 

These techniques act as a preprocessing step, enhancing 

data quality and improving the performance of classifiers. 

Our aim is to reduce the misclassification rate and 

overfitting problem by Integrating SMOTE with CLNI. In 

addition to this, we further applied a number of feature 

selection methods to achieve more accurate prediction. The 

feature selection methods used in our research are 

Correlation Coefficient, Mutual Information, Variance 

Threshold and Chi-Square. The objective of this research is 

to develop accurate software defect prediction model by 

addressing the challenges of class imbalance, data noise 

and irrelevant features through an integrated approach. 

This research paper is divided into sections as follows: 

Literature review is presented in Section II. Methodology 

is illustrated in Section III. Result analysis is presented in 

Section IV. Conclusions are drawn in section V.  

2. LITERATURE REVIEW 

In this section, we review previous research on Software 

Defect Prediction (SDP), highlighting significant 

contributions in the areas of handling class imbalance, 

feature selection techniques and neural network approaches 

for early defect prediction in the Software Development 

Cycle (SDLC).  

 Software defect datasets are challenging to use due to their 

imbalanced class distributions. (Ali et al., 2024) used the 

SMOTE preprocessing approach with NASA MDP 

datasets (CM1, JM1, PC1, PC4, MC2, PC3, and MW1). 

Using the voting ensemble approach combined with 

machine learning algorithms such as RF, SVM, NB, and 

ANN to improve prediction performance. Their method 

achieved a training accuracy of 87.2% and a testing 

accuracy of 86.87%. SMOTE may introduce unnecessary 

noise. To overcome with this problem, 

(Vuttipittayamongkol et al., 2022) proposed neighborhood-

based undersampling algorithm. This algorithm reduced 

the majority class and balance the ratio between majority 

and minority class. Experimental results observed on 

NASA datasets, having an AUC of 95.9% and an accuracy 

of 96.9% with 95% confidence level. Undersampling 

technique may possess loss of important data.  

A real-time deep ladder network proposed to tackle the 

problem of SMOTE and undersampling by (J. et al., 2023). 

This method integrated with migration learning, a deep 

belief network combined with transfer component analysis 

superior that others.  

Software defect datasets consist of large number of metrics 

such as line of code (LOC), complexity measures, 

cyclomatic complexity and so on. Many of them are 

irrelevant in software defect prediction. To reduce model’s 

overfitting, (Cetiner et al., 2020) applied Principal 

Component Analysis (PCA) as a feature reduction 

technique, while comparing ten machine learning 

algorithms. They used Decision Tree, Naïve Bayes, K-

nearest neighbor, Support vector machine, random forest, 

extra tress, adaboost, gradient boosting, bagging and multi-

layer perceptron. The evaluation performance showed that 

Random forest achieved higher accuracy on PC1 dataset.  

A five-stage framework for software defect prediction 

using NASA datasets proposed by (Ali et al., 2024). They 

combined genetic algorithm-based feature selection with 

heterogeneous classifiers (Random Forest, SVM and Naïve 

Bayes). Their iterative optimization process, utilizing an 

ensemble voting technique, achieved a maximum 

classification accuracy of 95.1%, while reducing execution 

time by over 50%.   

Enhanced exploratory whale optimizer-based feature 

selection method along with random forest ensemble 

learning proposed (Mafarja et al., 2023) to software defect 

prediction while Siamese Dense Neural Network (SDNN) 

introduced by (Zhao et al., 2018), which combines similarity 

feature learning and distance metric learning using a contrast 

loss function with cosine proximity. Their experimental 

results demonstrated that SDNN outperforms traditional 

methods, particularly in scenarios with limited data and 

imbalanced class distributions.  

The literature study highlights several challenges in software 

defect prediction, including noise introduction during 

resampling methods like SMOTE, the complexity of feature 

selection, and the high computational costs associated with 
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ensemble models and deep learning methods. The purpose 

of the research is to improve accuracy and efficiency in 

software defect prediction, addressing the limitations 

identified in previous studies. 

3. METHODOLOGY 

This research presents a software defect prediction approach 

that combines SMOTE and CLNI for data balancing, feature 

selection for selecting important features, and a Dense 

Neural Network for classification. Figure 3 depicts an 

overview of the approach consisting four phases: 1) Dataset 

collection, 2) Data preprocessing, 3) Feature selection, and 

4) Prediction.  

 

Figure 3: Overview of the Software Defect Prediction Model 

3.1 Dataset Collection 

To measure the effectiveness of our proposed approach, we 

considered a number of well-known and widely used 

datasets from NASA MDP (Metrics Data Program) 

repository and AEEEM dataset repository. They contain 

various software metrics which were organized and 

collected from various projects and widely used in software 

defect prediction related tasks. We selected MC1, PC1, PC2, 

PC3 and PC4 datasets from NASA MDP and JDT, ML and 

LC from AEEEM repository for our approach. Each of them 

consists of multiple attributes like Halstead metrics, code 

complexity metrics and many others. Table 1 and Table 2 

describe the details of the NASA MDP and AEEEM dataset 

respectively. 

 

Table 1 

NASA MDP Dataset 

Dataset Attributes Modules Defective Non-defective 

MC1 39 9466 68 9398 

PC1 40 1107 76 1031 

PC2 40 1563 160 1403 

PC3 40 1270 176 1094 

PC4 36 1694 458 1236 

 

Table 2 

AEEEM Dataset 

Project Number of files Percentage of Buggy Files Number of metrics 

LC 399 9.26 71 

ML 1862 13.16 71 

JDT 997 20.66 71 

 

3.2 Data Preprocessing 

To preprocess the defect datasets, we applied two methods: 

data balancing with SMOTE and noise removing with 

CLNI. Though there are many noise filtering methods, but in 

our research we used only three of them. The details of these 

methods are discussed in the following subsections. 

3.2.1 Dataset Balancing with SMOTE 

SMOTE creates new minority class by linear interpolation 

between existing samples and their neighbors (Elreedy et al., 

2019). For each minority samples X0, one of its K nearest 

neighbors X is chosen at random, and a synthetic dataset is 

created as follows: 

Algorithm: SyntheticSampleGen(X_minority, N, k) 

Input: Minority class samples 𝑥_𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦, number of synthetic 

samples N, number of nearest neighbors k 
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Output: Augmented dataset with synthetic samples  

 

Repeat N times: 

   Select a random sample 𝑥0 from 𝑥_𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 

   Find its 𝑘 nearest neighbors in 𝑥_𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 

   Choose one neighbor 𝑥 at random 

   Generate a random value 𝑤 between 0 and 1 

   Create a new sample 𝑧 between 𝑥0 and 𝑥 using  

                   𝑧 = 𝑥0 + 𝑤 × (𝑥 − 𝑥0) 

   Add 𝑧 to the set of synthetic samples  

Return 𝑥_𝑚𝑖𝑛𝑜𝑟𝑖𝑡𝑦 ∪  {𝑧1 , 𝑧2, … . . 𝑧𝑛} as the augmented dataset 

3.2.2 Noise Removal using CLNI 

CLNI is a method to reduce the noise generated from the 

oversampling technique SMOTE. Many types of CLNI 

methods are available, among them, we performed ENN, 

RENN and All-KNN in our research.  

Edited Nearest Neighbors: Edited Nearest Neighbors is an 

enhanced version of k-nearest Neighbors to eliminate noisy 

and mislabeled instances from the dataset.  

Algorithm ENN (D, k) 

Input: Dataset D, number of neighbors k 

 

For each instance x in D: 

    Find k nearest neighbors of x 

    Determine majority class among neighbors 

    If class(x) ≠ majority class: 

        Remove x from D 

Return cleaned dataset D 

 

Repeated ENN: RENN removes noisy instances that differ 

from their neighbors. It repeats the process until no more 

instances are removed in an iteration.  

Algorithm: RENN (D, k) 

Input: Dataset D, number of neighbors k 

 

Repeat: 

    Initialize change_flag = False 

    For each instance x in D: 

        Find k nearest neighbors of x 

        Determine majority class among neighbors 

        If class(x) ≠ majority class: 

            Remove x from D 

            Set change_flag = True 

Until change_flag is False 

Return cleaned dataset D 

 

All-KNN: All-KNN reduces the borderline and mislabeled 

instances, in noisy or mislabeled datasets.  

Algorithm: AllKNN (D, k_max) 

Input: Dataset D, maximum neighbors k_max 

 

For k from 1 to k_max: 

    For each instance x in D: 

        Find k nearest neighbors of x 

        Determine majority class 

        If class(x) ≠ majority class: 

            Mark x for removal 

Remove all marked instances 

Return cleaned dataset D 

 

3.3 Feature Selection 

To reduce the dimension of data to reduce the memory 

wastage, this paper applied Correlation Coefficient, Mutual 

Information, Variance Threshold and Chi-Square feature 

selection methods. The most significant features identified 

are included:  

• LOC_BLANK,  

• PERCENT_COMMENTS,  

• LOC_COMMENTS,  

• LOC_CODE_AND_COMMENT,  

• NUMBER_OF_LINES,  

• CALL_PAIRS,  

• NUM_UNIQUE_OPERANDS,  

• NUM_UNIQUE_OPERATORS,  

• HALSTEAD_CONTENT,  

• LOC_TOTAL,  

• DECISION_DENSITY, and  

• LOC_EXECUTABLE 

3.3.1 Correlation Coefficient 

Correlation coefficient is a statistical technique used to 

measure and evaluate the strength and direction of the linear 

relationship between two variables (Schober et al., 2018). It 

is commonly quantified using metrics like Pearson’s 

correlation coefficient for continuous data. Mathematically, 

it can be written as (Venkatesh et al., 2019), 

                      𝜌(𝑥, 𝑦) =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑖

√∑ (𝑥𝑖 − 𝑥̅)2
𝑖 (𝑦𝑖 − 𝑦̅)2

             (1) 

The correlation coefficient ranges from -1 to 1, where values 

close to 1 indicate a strong positive relationship, values near 

-1 represent a strong negative relationship and values close 

to 0 suggest no linear relationship. 

3.3.2 Mutual Information  

Mutual information is the measurement of how two 

variables mutually correlated with each other (Venkatesh et 

al., 2019). Mathematically,  

       I(m, n) = ∑ ∑ 𝑝(𝑚, 𝑛) log (
𝑝(𝑚, 𝑛)

𝑝(𝑚)𝑝(𝑛)
)            (2)

𝑎∈𝐴𝑏∈𝐵

 

Where, 𝑝(𝑚, 𝑛) is the joint probability distribution of m and 

n, and 𝑝(𝑚) 𝑎𝑛𝑑 𝑝(𝑛)  are the marginal probability 

distribution of m and n.  

3.3.3 Variance Threshold  

Variance Threshold is a simple and commonly used feature 

selection technique that removes low variance features from 

a dataset. The assumption behind this method is that features 

with very little variance across the samples are unlikely to 

contain useful information for distinguishing between 

classes or predicting the target variable. By specifying a 

threshold, features with variance below this threshold are 

eliminated (McHugh et al., 2008).  

3.3.4 Chi-Square  
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Chi-Square (McHugh et al., 2008) is a statistical test used to 

measure the association between categorical variables. 

Mathematically, it can be written as,  

                      χ2 = ∑
(Observed − Expected)2

Expected
             (3) 

It calculates the discrepancy between the observed and 

expected outcome for each category of data.  

 

3.4 Prediction Model 

In this stage, this paper used Dense Neural Network to train 

the dataset and classify them into Defective and Non-

defective. We Applied grid search to identify the best 

parameters for our Dense Neural Network. The list of 

parameters used in our work is shown in Table 3. 

Table 3 

Parameter List for Dense Neural Network 

Parameters Value 

Neurons 64 

Dropout_rate 0.3 

Batch_size 32 

Epoch 30 

Optimizer adam 

 

4. Result analysis  

This section shows the performance of software defect 

prediction using Dense Neural Network in brief manner. 

This experiment was conducted on an 8GB RAM PC on 

Google Colaboratory using Python Programming Language. 

Experimental dataset was collected and processed for neural 

network analysis.  

4.1 Evaluation Metrics  

In order to evaluate the performance of our proposed 

approach, we used a number of evaluation metrics, i.e., 

accuracy, precision, recall and ROC-AUC. ROC-AUC plots 

the True Positive Rate or Recall against the False Positive 

Rate (FPR). AUC indicates the model’s performance to 

distinguish between the classes. 

4.2 Classification Result 

For the classification purpose, we have used five datasets 

named MC1, PC1, PC2, PC3 and PC4 from NASA MDP 

and three datasets named LC, JDT and ML from AEEEM 

dataset repository. Performance evaluation metrics for both 

of them are shown from Table 4 to Table 7. Table 4 and 

Table 5 presents a comparative analysis of different CLNI 

techniques, ENN, RENN and All-KNN evaluated with 

feature selection and without feature selection respectively 

across three performance metrics: Accuracy, precision and 

Recall for MC1, PC1, PC2, PC3 and PC4 dataset.  

 

Table 4 

Performance comparison between different CLNI methods using NASA MDP dataset without feature selection 

 Accuracy Precision Recall 

 ENN RENN All-KNN ENN RENN All-KNN ENN RENN All-KNN 

MC1 0.94 0.94 0.93 0.94 0.93 0.93 0.94 0.93 0.92 

PC1 0.90 0.90 0.91 0.90 0.92 0.92 0.90 0.92 0.91 

PC2 0.93 0.92 0.91 0.91 0.92 0.93 0.91 0.94 0.92 

PC3 0.83 0.84 0.83 0.85 0.83 0.82 0.83 0.83 0.84 

PC4 0.89 0.90 0.90 0.89 0.90 0.90 0.90 0.90 0.90 

 

Table 5 

Performance comparison between different CLNI methods using NASA MDP dataset with feature selection 

 Accuracy  Precision  Recall 

 ENN RENN All-KNN ENN RENN All-KNN ENN RENN All-KNN 

MC1 0.98 0.99 0.98 0.98 0.98 0.98 0.98 0.99 0.98 

PC1 0.95 0.95 0.96 0.94 0.95 0.96 0.95 0.95 0.97 

PC2 0.98 0.98 0.97 0.97 0.97 0.97 0.98 0.98 0.98 

PC3 0.87 0.87 0.88 0.87 0.86 0.88 0.87 0.87 0.88 

PC4 0.93 0.93 0.95 0.93 0.93 0.95 0.95 0.94 0.95 

 

Across all five datasets, RENN consistently achieves either 

the highest or comparable performance in all three metrics, 

accuracy, precision, and recall that indicating its 

effectiveness as an efficient noise-handling technique. All-

KNN also performs competitively, surpassing RENN in 

datasets like PC1 and PC4, particularly in precision and 

accuracy. In contrast, ENN, generally ranks slightly below 

RENN and All-KNN across most datasets, especially in 

datasets like PC3, where its Precision drops. Overall, RENN 

appears to be the most balanced and reliable technique 

across diverse datasets, while All KNN shows strengths in 

select cases, and ENN maintains moderate but consistent 

performance. Dataset specific variation, especially in PC3, 
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highlights the importance of utilizing the noise identification 

method to dataset characteristics.  

Table 6 and Table 7 presents a comparative analysis of 

different CLNI techniques, ENN, RENN and All-KNN 

evaluated with feature selection and without feature 

selection respectively across three performance metrics: 

accuracy, precision and recall for ML, JDT and LC dataset. 

By analyzing the performance of all datasets, it is observed 

that PC3 dataset underperforms due to is limited number of, 

highlighting the importance of having a sufficient amount of 

training data.                              

 

Table 6 

Performance comparison between different CLNI methods using AEEEM dataset without feature selection 

 Accuracy Precision Recall 

 ENN RENN All-KNN ENN RENN All-KNN ENN RENN All-KNN 

LC 0.93 0.90 0.90 0.89 0.91 0.91 0.90 0.89 0.90 

ML 0.90 0.90 0.89 0.90 0.89 0.88 0.90 0.87 0.88 

JDT 0.89 0.90 0.88 0.90 0.88 0.88 0.93 0.88 0.88 

 

Table 7 

Performance comparison between different CLNI methods using AEEEM dataset with feature selection 

 Accuracy Precision Recall 

 ENN RENN All-KNN ENN RENN All-KNN ENN RENN All-KNN 

LC 0.98 0.95 0.94 0.98 0.95 0.94 0.97 0.94 0.95 

ML 0.92 0.93 0.90 0.92 0.92 0.90 0.92 0.90 0.90 

JDT 0.91 0.94 0.90 0.91 0.95 0.90 0.90 0.92 0.90 

 

Among the evaluated CLNI techniques, ENN consistently 

demonstrates balanced and high performing results. This 

trend is observed across all datasets. It maintains a strong 

performance in terms of accuracy, precision, and recall. 

ENN proves to be the most efficient. RENN performs 

competitively, particularly excelling in precision, but shows 

slight tradeoffs in accuracy and recall. All-KNN, while 

perform yielding acceptable results, generally 

underperforms relative to ENN and RENN, indicating less 

efficient in handling noisy data. On the other hand, the LC 

dataset shows higher conflict and superior results across all 

methods, suggesting it is less affected by noise, whereas 

JDT and ML appear more sensitive to the choice of noise-

filtering techniques. 

Figure 4 and Figure 5 represents the comparative bar chart 

representation of the performance of various CLNI 

techniques on the dataset. 

 

 

Figure 4: bar graph representation of the performance of the CLNI techniques for NASA MDP dataset 
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Figure 5: bar graph representation of the performance of the CLNI techniques for AEEEM dataset

 
Figure 6: ROC-AUC curve for MC1 dataset 

 
Figure 7: ROC-AUC curve for PC1 dataset 

 
Figure 8: ROC-AUC curve for PC2 dataset 
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Figure 9: ROC-AUC curve for PC3 dataset 

 
Figure 10: ROC-AUC curve for PC4 dataset 

 

We further analyzed our results in terms of ROC-AUC 

curve. Figure 6 to Figure 10, all three methods, ENN, 

RENN, and All-KNN - show excellent performance on all 

datasets. For MC1 and PC2, the models reach a perfect score 

(AUC = 1.00), meaning they correctly separate the two 

classes every time, with no mistakes. The curves stay very 

close to the top-left corner, showing high accuracy with 

almost no false alarms. On the PC1 dataset, all methods 

score slightly below perfect (AUC = 0.99), still showing 

great results. ENN and RENN have smooth curves with very 

few errors, while All-KNN rises quickly, showing it catches 

most of the correct cases early. For PC3, the AUC drops to 

(0.95) for all three. This is still strong, but not as perfect as 

the others. It means the models are good but make a few 

more mistakes. All methods perform about the same here. 

The PC4 dataset has slightly lower scores: ENN (0.98), 

RENN (0.97), and All-KNN (0.96). ENN performs the best, 

while All-KNN is a bit lower, because it removes too much 

data when cleaning. In summary, all methods work very 

well, especially on MC1 and PC2. ENN is slightly more 

consistent across all datasets, making it a reliable choice.

 

 

Figure 11: ROC-AUC curve for ML dataset 
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Figure 12: ROC-AUC curve for JDT dataset 

 

Figure 13: ROC-AUC curve for LC dataset 

 

By analyzing the ROC-AUC curve for ML, JDT and LC 

dataset, it is observed that ENN consistently demonstrates a 

slight edge in performance, particularly on the LC and JDT 

datasets. On the LC dataset, ENN stands out with a perfect 

AUC of (1.00), clearly outperforming both RENN and All-

KNN, which still achieve excellent scores of (0.98). In 

contrast, the ML dataset sees RENN take the lead with an 

AUC of (0.98), narrowly outperforming ENN (0.97) and 

All-KNN (0.96). For the JDT dataset, ENN once again leads 

at (0.97), while RENN and All-KNN both follow closely at 

(0.96). Through the performance gaps across methods are 

relatively small, ENN shows more consistent top-tier results 

across datasets. 

4.3 Comparison with existing works  

Table 8 presents a comparative analysis of various 

classification techniques applied to multiple datasets, 

focusing on the impact of balancing techniques, CLNI 

methods, and feature selection strategies. The results 

indicate that these preprocessing strategies contribute 

significantly in improving classification accuracy across 

different datasets. 

 

Table 8 

Comparison of Different Techniques on Various Datasets 

Ref 
Balancing 

technique 

CLNI 

technique 
Dataset Repository 

Feature Selection 

Technique 
Model 

Result 

(Accuracy) 

Ali et al. 

(2024) 
- - 

CM1 

NASA 

MDP 
- 

Voting 

Ensemble 

86.87% 

JM1 79.12% 

MC2 68.42% 

MW1 99.33% 

PC1 82.16% 

PC3 87.17% 

Proposed 

work 
SMOTE 

ENN MC1 

NASA 

MDP 

Correlation 

Mutual 

Information 

Variance 

Threshold 

Chi-Square 

Dense Neural 

Network 

99.02% 

All-KNN PC1 97.42% 

All-KNN PC2 99.63% 

ENN PC3 88.58% 

RENN PC4 95.34% 

ENN ML 

AEEEM 

91.42% 

All-KNN JDT 94.53% 

All-KNN LC 95.43% 
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9. CONCLUSIONS  

Software defect prediction focuses on identifying faulty 

modules at the early stages of the software development life 

cycle. Developing an efficient and effective defect 

prediction model is crucial for reducing maintenance costs 

and improving software quality. In this research, we 

proposed a software defect prediction approach that 

integrates SMOTE with CLNI to achieve a more balanced 

dataset and improved prediction accuracy. The datasets are 

collected from NASA MDP and AEEEM. The model was 

evaluated using eight datasets with relevant features to 

assess its effectiveness. The results demonstrate that the 

proposed classification model yields promising performance 

compared to traditional approaches. However, when applied 

to different datasets, it is observed that the PC3 dataset 

underperforms due to its limited number of samples, 

highlighting the importance of having a sufficient amount of 

training data. Relying on a predefined feature selection 

method may limit the model's adaptability across diverse 

datasets. In future work, we aim to overcome this limitation 

by exploring uniform and adaptive feature selection 

strategies and evaluating the approach on a broader range of 

datasets.  
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