Assortment of Dispatch Strategies with the Optimization of an Islanded Hybrid Microgrid
Keywords:
Microgrid, System stability, Dispatch strategies, Optimization, Renewable energyAbstract
In this work, the optimization of an off-grid micro-hybrid system is evaluated. This is conducted with the estimation of the proper sizing of each element and the steady-state voltage, frequency, and power responses of the microgrid. Kangaroo Island in South Australia is considered to be the test case location and the grid incorporates solar PV (photo-voltaic), diesel generator, battery storage, and wind turbine. Optimal sizing of the studied microgrid is carried out for four various power dispatch techniques: (i) cycle charging (CC), (ii) generator order (GO), (iii) load following (LF), and (iv) combined dispatch (CD). The proposed off-grid micro-hybrid is optimized for three performance indices; minimal Levelized Cost of Energy (LCOE), CO2 emission, and Net Present Cost (NPC). Using iHOGA (improved hybrid optimization by genetic algorithm), microgrid optimization software, all the above-mentioned dispatch strategies have been implemented and following this, MATLAB/Simulink platform has been used for the steady-state studies. The results show that the LF strategy is the utmost optimum dispatch technique in terms of the studied performance indices i.e. considering the optimal size and voltage and frequency responses. The results obtained from these studies provide a pathway for the estimation of the resource-generation-load combination for the islanded off-grid microgrid for its optimal operation with the various dispatch strategies.
MIJST, Vol. 10(1), June 2022: 15-22
26
22
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 MIST International Journal of Science and Technology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.