

Progressive Agriculture Journal homepage:http://www.banglajol.info/index.php/PA

Effect of variety and water management on the growth and yield of Boro rice

S Murshida¹, MR Uddin^{1*}, MP Anwar¹, UK Sarker¹, MM Islam², MMI Haque³

¹Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; ²Agriculture Training Institute, Rangamati, Bangladesh: ³ACI Limited, Dhaka, Bangladesh

Abstract

An experiment was conducted at the Agronomy Field Laboratory, Bangladesh Agricultural University, Mymensingh during December 2014 to May 2015 to examine the effect of variety and water management system on the growth and yield performance of boro rice. The experiment consisted of three varieties (cv. BRRI dhan28, BRRI dhan29 and Binadhan-14) and four water management systems (viz. Traditional flooding, non-flooded rice straw mulching, non-flooded water hyacinth mulching and non-flooded no mulching). The experiment was laid out in a split plot design with three replications. Different growth characters, yield and yield contributing characters of boro rice were found to the significantly influenced by variety, water management system and their interactions. At 100 DAT, the highest plant height, maximum number of tillers hill⁻¹, dry matter of shoot hill⁻¹ and dry matter of root hill⁻¹were obtained from BRRI dhan29 and the lowest values were found in Binadhan-14. At 100 DAT, the highest plant height, maximum number of tillers hill⁻¹, dry matter of shoot hill⁻¹ and dry matter of root hill⁻¹ were obtained in nonflooded rice straw mulching treatment and the lowest ones were obtained from non-flooded no mulching treatment. Variety had significant effect on all the crop characters under study except 1000-grain weight. The highest grain yield was obtained from BRRI dhan29 and the lowest value was recorded from Binadhan-14. Water management system was also significantly influenced all crop characters. The highest grain yield was recorded from non-flooded rice straw mulching treatment and the lowest grain yield was found from non-flooded no mulching treatment. The interaction of variety and water management system showed that BRRI dhan29 with non-flooded rice straw mulching resulted in the highest grain yield whereas the lowest yield was observed from the interaction of Binadhan-14 with non-flooded no mulching treatment. The result of the experiment suggests that BRRI dhan29 can be grown economically with non-flooded rice straw mulching treatment.

Key words: Rice, water management, traditional flooding, mulching

Progressive Agriculturists. All rights reserve

*Corresponding Author: romijagron@yahoo.com

Introduction

The population of Bangladesh is still growing by two million every year and may increase by another 30 million over the next 20 years. Thus, Bangladesh will require about 57.26 million tons of rice for the year 2020 (BRRI, 2011). To reach the goal, it is necessary either to increase the crop area or to increase yield per unit area. But due to high population pressure, horizontal expansion of land is not possible. Therefore, increasing yield per unit area is the only means. In Bangladesh, there are three diverse growing seasons of rice namely, *aus*, *aman* and *boro*. Among different rice groups of Bangladesh *boro* is the most important that covers an area of 4.72 million hectares with a production of 13.73 million tons of grains (BBS,

2011). Variety is one of the most important factors to be considered for getting increased rice production. Use of high yielding varieties and hybrid varieties in Bangladesh has been increased remarkably in recent years and the country has almost reached a level of self sufficiency in rice production. Selection of potential variety, planting in appropriate method and application of optimum amount of plant nutrients and optimum insistence can play important role in increasing yield and national income. In Bangladesh about 4.065 m ha land is under boro rice cultivation of which modern high yielding varieties (MV) cover about 96%, most of them are with irrigation. Irrigation is one of the costly inputs of boro rice cultivation in Bangladesh. The MVs that are recommended for boro season have high yield potential and they require huge amount of irrigation water and without much irrigation they cannot produce desired yield. It is an established fact that for producing 1 kg of paddy rice, it requires even up to 2500 liters of water (De Silva, 2007). Thus irrigation is imparting alarming rise of cost of production along with other inputs. Recently management practice like AWD (Alternate wetting and drying) is suggested to reduce irrigation water requirement. Insufficient water affects the uptake of nutrients from soil. Nutrients from soil reach the root surface by mass flow and diffusion process which are related to moisture content of the soil. Movement of nutrients through the plant body by physiological activities is also associated with soil water (Tisdale et al., 1985). But as a matter of fact, irrigation water in Bangladesh is limited resource and hence irrigation practices must be rationalized for high water use efficiency. Application of irrigation water without proper planning based on actual requirement of the crops results not only its wastages but also hampers crop growth and yield (Sekhon et al., 1986). Knowledge on the role of irrigation in growth and development of plant and the optimum time of application of water may help to economize the use of limited amount of water in obtaining the maximum yield of rice. Irrigation frequency has a significant influence on the growth and yield of rice. With the

increasing of irrigation frequencies the grain yield of rice can be increased. Therefore the present study was undertaken to evaluate the performance of three *boro* rice varieties, to find out suitable water management system for *boro* rice cultivation and to verify the effect of interaction (if any) in between variety and water management system on the performance of *boro* rice.

Materials and Methods

A field experiment was carried out at the Agronomy Field laboratory, Bangladesh Agricultural University (BAU), Mymensingh during the period from December 2014 to May 2015 in order to study the growth and yield of boro rice as affected by water management system. The experimental consisted of the following treatments. i) Rice Cultivars viz. BRRI dhan28 (V₁), BRRI dhan29 (V₂) and Binadhan-14 (V₃) ii) Water management systems viz. Traditional flooding (M₁), Non-flooded rice straw mulching (M2), Non-flooded water hyacinth mulching (M₃) and Non-flooded no mulching (M₄). The experiment field was Noncalcareous Dark Grey Floodplain under the Agro-Ecological Region of the Old Brahmaputra Floodplain-AEZ9 (UNDP and FAO, 1988). The experiment was laid out in a split-plot design with three replications. Water management treatments were assigned to the main plot and variety to the sub plot, respectively, at random. The size of a unit plot was $10m^2$ (4m×2.5 m). The number of plot is 36. During final land preparation each unit plot was fertilized with Triple Super Phosphate (TSP), Muriate of Potash (MOP), Gypsum and ZnSO₄ @ 90, 60, 20 and 5 kg ha⁻¹ respectively. Urea was applied @ 300 kg ha⁻¹ in three installments at 15, 30 and 45 days after transplanting (DAT). All management practices were done as and when necessary. Harvesting was done when 90% of the grains became golden (Binadhan-14), golden yellow (BRRI dhan29), fading golden (BRRI dhan28) in color. Five hills (excluding border hills) were selected randomly from each harvested plot to record the crop characters and yield components. After recording data, the grains and straws of each the sampling were added

to the total grain and straw yields of respective plots. The harvested crops of each plot were separately bundled, tagged and then brought to threshing floor. Threshing was done by pedal thresher. After threshing the grains were cleaned and sun dried to maintain moisture content of 14%. Straws were also dried properly. Finally the grain and straw yields were recorded and converted to t ha⁻¹.Data collected on different parameters were statistically analyzed using a software, named MSTAT. Mean comparisons of the effect of treatment and interactions from the analysis of variance (ANOVA) were made by Duncan's Multiple Range Test (Gomez and Gomez, 1984).

Results and Discussion

Growth performance of boro rice

Effect of variety: Plant height, number of tillers hill⁻¹, dry matter of shoot hill⁻¹ and dry matter of root hill⁻¹ were significantly influenced by variety. The highest plant height (90.27 cm), number of total tillers hill⁻¹ (7.24), dry matter of shoot hill⁻¹ (26.38 g) and dry matter of root hill⁻¹ (11.00 g) were found in BRRI dhan29 at 100 DAT and the lowest plant height, number of tillers hill⁻¹, dry matter of shoot hill⁻¹ and dry matter of root hill⁻¹ was found in Binadhan-14 at all

sampling dates (Table 1 & 4). Variable effect of variety on plant height was also reported by Om *et al.* (1998) and Krisna (2002) who also recorded variable plant height among varieties. Variable effect of variety on number of total tillers hill⁻¹ was also reported by BINA (1998) and Nuruzzaman *et al.* (2000) who noticed that number of total tillers hill⁻¹ differed among varieties. These might be due to genetic make-up of the varieties.

Effect of water management system: Water management system significantly influenced plant height, number of tillers hill⁻¹, dry matter of shoot hill⁻¹ and dry matter of root hill⁻¹ at all sampling dates. The highest plant height (82.15 cm), number of tillers hill⁻¹ (7.07), dry matter of shoot hill⁻¹ (27.71 g) and dry matter of root hill⁻¹ (11.47 g) were produced by non-flooded rice straw mulching (M₂) treatment and the lowest plant height, number of total tillers hill⁻¹, dry matter of shoot hill⁻¹ and dry matter of root hill⁻¹ and dry matter of root hill⁻¹ was produced by non-flooded no mulching (M₄) treatment (Table 2 & 5).

Interaction effect of variety and water management system: The data showed that the plant height and number of tillers hill⁻¹ was non-significant for all sampling dates except for 100 DAT (Table 3).

		Plant he	eight (cm)		No of tillers hill ⁻¹					
Variety	25	50	75	100	25	50	75	100		
	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT		
V_1	28.76b	54.42b	72.60b	80.07b	6.56ab	6.44ab	6.56ab	6.40ab		
V_2	38.12a	62.61a	79.26a	90.27a	6.95a	6.84a	6.95a	7.24a		
V_3	23.52c	50.10c	69.40c	68.52c	5.84b	5.80b	5.84b	6.06b		
CV (%)	6.05	8.94	2.17	2.75	7.14	12.74	7.25	11.42		
Level of										
significance	**	**	**	**	**	*	**	**		

Table 1. Effect of variety on growth of *boro* rice at different dates after transplanting (DAT)

Here, in a column figures with same letters or without letter do not differ significantly whereas figures with dissimilar letter differ significantly as per DMRT.V₁ = BRRI dhan28,V₂ =BRRI dhan29,V₃ =Binadhan-14,** = Significant at 1% level of probability,*= Significant at 5% level of probability, DAT= Days after transplanting

Water		Plant h	eight (cm))	No of tillers hill ⁻¹					
management	25	50	75	100	25	50	75	100		
system	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT		
M ₁	29.75c	54.04c	72.58c	78.63c	6.35b	6.36	6.35c	6.62b		
M_2	32.33a	60.67a	76.74a	82.15a	6.84a	6.67	6.84a	7.07a		
M_3	31.17b	57.84b	74.46b	80.91b	6.58ab	6.58	6.58b	6.76b		
M_4	27.27d	50.28d	71.24d	76.79d	6.03c	5.83	6.03d	5.83c		
CV (%)	6.05	8.94	2.17	2.75	7.14	12.74	7.25	11.42		
Level of										
significance	**	**	**	**	**	NS	**	**		

Table 2. Effect of water management system on growth of *boro* rice at different dates after transplanting (DAT)

Here, in a column, figures with same letters or without letter do not differ significantly whereas figures with dissimilar letter differ significantly as per DMRT. M_1 = Traditional flooding, M_2 =Non-flooded rice straw mulching, M_3 = Non-flooded water hyacinth mulching, M_4 = Non-flooded no mulching,** = Significant at 1% level of probability, NS=Non significant, DAT= Days after transplanting

 Table 3. Interaction effect of variety and water management system on growth of *boro* rice at different dates after transplanting (DAT)

Interaction		Plant he	eight (cm)			No of tille	rs hill ⁻¹	
combination	25	50	75	100	25	50	75	100
	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT
V_1M_1	28.60	52.67	71.04	77.94f	6.49	6.45	6.49	6.40
V_1M_2	30.64	59.45	76.10	82.45d	6.78	6.67	6.78	6.80
V_1M_3	29.62	55.45	72.74	80.63de	6.71	6.71	6.71	6.47
V_1M_4	26.19	50.12	70.53	79.26ef	6.26	5.93	6.26	5.93
V_2M_1	37.37	60.67	78.63	89.29b	6.70	6.67	6.70	7.33
V_2M_2	40.81	68.00	81.56	94.00a	7.45	7.33	7.45	7.87
V_2M_3	38.59	66.60	80.11	92.67a	7.08	7.08	7.08	7.50
V_2M_4	35.69	55.18	76.74	85.12c	6.58	6.27	6.58	6.27
V_3M_1	23.28	48.78	68.08	68.67g	5.85	5.97	5.85	6.13
V_3M_2	25.53	54.57	72.55	70.01g	6.30	6.00	6.30	6.53
V_3M_3	25.31	51.49	70.53	69.42g	5.97	5.97	5.97	6.30
V_3M_4	19.94	45.55	66.45	66.00h	5.25	5.29	5.25	5.29
CV (%)	6.05	8.94	2.17	2.75	7.14	12.74	7.25	11.42
Level of								
significance	NS	NS	NS	**	NS	NS	NS	NS

Here, in a column, figures with same letters or without letter do not differ significantly whereas figures with dissimilar letter differ significantly as per DMRT.V₁ = BRRI dhan28, V₂ =BRRI dhan29,V₃ =Binadhan-14, M₁ = Traditional flooding,M₂ =Non-flooded rice straw mulching, M₃ = Non-flooded water hyacinth mulching,M₄ = Non-flooded no mulching, **= Significant at 1% level of probability, *= 5% level of significance, NS= = Non significant, DAT=Days after transplanting

		Shoot	weight (g)		Root weight (g)				
Variety	25	50	75	100	25	50	75	100	
	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	
V1	0.59b	5.50b	18.54b	22.58b	0.45b	2.80b	6.73b	9.22ab	
V2	0.70a	6.44a	21.52a	26.38a	0.57a	3.57a	8.28a	11.00a	
V3	0.49c	4.64c	13.42c	16.06c	0.38c	2.11c	5.55c	7.58b	
CV (%)	3.63	2.80	1.85	1.95	3.46	3.67	2.98	18.60	
Level of									
significance	**	**	**	**	**	**	**	*	

Table 4. Effect of variety on shoot and root dry weight of boro rice at different days after transplanting (DAT)

Here, in a column, figures with same letters or without letter do not differ significantly whereas figures with dissimilar letter differ significantly as per DMRT, V_1 = BRRI dhan28, V_2 =BRRI dhan29, V_3 =Binadhan-14,** = Significant at 1% level of probability,*= Significant at 5% level of probability, DAT=Days after transplanting

Table 5. Effect of water management system on shoot and root dry weight of *boro* rice at different days after transplanting (DAT)

		Shoot w	veight (g)		Root weight (g)					
Variety	25	50	75	100	25	50	75	100		
	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT		
M_1	0.55c	5.11c	16.38c	19.68c	0.42c	2.49c	6.23c	8.45bc		
M_2	0.70a	6.50a	22.44a	27.71a	0.60a	3.80a	8.50a	11.47a		
M ₃	0.63b	5.89b	19.18b	23.49b	0.50b	3.02b	7.13b	9.97ab		
M_4	0.49d	4.59d	13.30d	15.81d	0.34d	2.00d	5.56d	7.18c		
CV (%)	3.63	2.80	1.85	1.95	3.46	3.67	2.98	18.60		
Level of										
significance	**	**	**	**	**	**	**	**		

Here, in a column, figures with same letters or without letter do not differ significantly whereas figures with dissimilar letter differ significantly as per DMRT, M_1 = Traditional flooding, M_2 =Non-flooded rice straw mulching, M_3 = Non-flooded water hyacinth mulching, M_4 = Non-flooded no mulching,** = Significant at 1% level of probability, DAT=Days after transplanting

At this date, highest plant height (94.00 cm) was obtained from the combination of BRRI dhan29 and non-flooded rice straw mulching (V_2M_2) Dry matter of shoot hill⁻¹ and dry matter of root hill⁻¹were significantly influenced by interaction of variety and water management system at all sampling dates except 25 DAT for shoot dry weight and 100 DAT for root dry weight (Table 6). The highest dry matter of shoot hill⁻¹ (32.30 g) and dry matter of root hill⁻¹ (14.11 g) at 100 DAT was obtained from the combination of BRRI dhan29 and non-flooded rice straw mulching (V_2M_2) and the lowest dry matter of shoot hill⁻¹ and dry matter of root hill⁻¹was obtained from the combination of Binadhan-14 and non-flooded no mulching (V_3M_4) treatment at all sampling dates.

Yield and yield contributing characters of boro rice

Effect of variety: Plant height was significantly influenced by variety at harvest. The highest plant height was observed from BRRI dhan29 and that of lowest was recorded from Binadhan-14 (Figure 1). The number of total tillers hill⁻¹, number of effective tillers hill⁻¹, panicle length, number of grains panicle⁻¹, 1000 grain weight, biological yield and harvest index of *boro* rice at maturity was significantly influenced by variety (Table 7). BRRI dhan29 produced the highest number of total tillers hill⁻¹ (7.24), number of effective tillers hill⁻¹ (5.62), panicle length (20.16), number of grains panicle⁻¹ (95.03), 1000 grain weight (20.74 g),

biological yield (11.77 t ha⁻¹) and harvest index (43.79) among the varieties. Binadhan-14produced the lowest plant height number of total tillers hill⁻¹, number of effective tillers hill⁻¹, panicle length, number of grains panicle⁻¹, 1000 grain weight, biological yield and harvest index among the varieties. These differences are mostly due to the genetic variation between these three rice varieties. Variable effect of variety on number of total tillers hill⁻¹ was also reported by BINA (1998). Nuruzzaman *et al.* (2000) noticed that number of total tillers hill⁻¹ differed among the varieties. This finding corroborates with those reported by BINA (1998), Om *et al.* (1998) who stated that effective tillers hill⁻¹ was varied with variety.

 Table 6. Interaction effect of variety and water management system on shoot and root dry weight of *boro* rice at different days after transplanting (DAT)

Treatment		Shoot v	veight (g)			Roo	t weight (g)	
combination	25	50	75	100	25	50	75	100
	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT
V_1M_1	0.54	5.03f	17.51g	20.76f	0.40g	2.40f	6.13f	8.40
V_1M_2	0.70	6.53c	22.11c	28.70b	0.60c	3.83b	8.20c	11.30
V_1M_3	0.62	5.90d	19.63e	24.23d	0.48e	2.97cd	7.20d	9.88
V_1M_4	0.48	4.52g	14.90i	16.63h	0.31i	2.00h	5.40gh	7.30
V_2M_1	0.67	6.00d	20.00d	24.08d	0.52d	3.07c	7.33d	9.77
V_2M_2	0.81	7.55a	27.10a	32.30a	0.71a	4.73a	10.63a	14.11
V_2M_3	0.74	6.83b	22.86b	28.17c	0.62b	3.90b	8.60b	12.03
V_2M_4	0.59	5.37e	16.10h	20.97f	0.43f	2.60e	6.57e	8.10
V_3M_1	0.45	4.30h	11.62j	14.20i	0.35h	2.00h	5.23h	7.19
V_3M_2	0.59	5.41e	18.10f	22.13e	0.50de	2.83d	6.67e	9.00
V_3M_3	0.52	4.93f	15.04i	18.07g	0.40g	2.20g	5.60g	8.00
V_3M_4	0.38	3.90i	8.90k	9.83j	0.27j	1.40i	4.70i	6.13
CV (%)	3.63	2.80	1.85	1.95	3.46	3.67	2.98	18.60
Level of								
significance	NS	**	**	**	**	**	**	NS

Here, in a column, figures with same letters or without letter do not differ significantly whereas figures with dissimilar letter differ significantly as per DMRT. V_1 = BRRI dhan28, V_2 =BRRI dhan29, V_3 =Binadhan-14, M_1 = Traditional flooding, M_2 =Non-flooded rice straw mulching, M_3 = Non-flooded water hyacinth mulching, M_4 = Non-flooded no mulching, ** = Significant at 1% level of probability, NS= Non significant and DAT=Days after transplanting

Variety	Total tillers hill ⁻¹	No. of effective tillers hill ⁻¹	No. of non- effective tillers hill ⁻¹	Panicle length (cm)	No. of grains panicle ⁻¹	Wt. of 1000 grain (g)	Biological yield (t ha ⁻¹)	Harvest index (%)
V_1	6.47b	5.12b	1.35	19.26b	90.34b	20.17b	10.77b	42.04b
V ₂	7.24a	5.62a	1.63	20.16a	95.03a	20.74a	11.77a	43.79a
V ₃	6.06c	4.69c	1.37	18.28c	74.77c	19.27c	9.30c	40.18c
CV (%)	11.40	8.98	44.00	2.32	2.24	3.54	3.80	5.54
Level of significance	*	**	NS	**	**	**	**	**

Table 7. Effect of variety on yield and yield contributing characters of boro rice

Here, in a column, figures with same letters or without letter do not differ significantly whereas figures with dissimilar letter differ significantly as per DMRT.V₁ = BRRI dhan28, V₂ =BRRI dhan29, V₃ =Binadhan-14, ** = Significant at 1% level of probability,* =Significant at 5% level of probability, NS= = Non significant

Water management system	Total tillers hill ⁻¹	No. of effective tillers hill ⁻¹	No. of non effective tillers hill ⁻¹	Panicle Length (cm)	No. of grains panicle ⁻¹	Wt. of 1000 grain(g)	Biological yield (t ha ⁻¹)	Harvest index (%)
M ₁	6.62b	5.09c	1.53	18.80c	86.89c	19.94c	9.85c	43.31a
M ₂	7.13a	5.50a	1.63	20.24a	89.27a	20.69a	12.49a	41.83c
M ₃	6.76b	5.24b	1.51	19.63b	88.30b	20.29b	11.70b	42.80b
M ₄	5.85	4.73d	1.12	18.27d	82.39d	19.32d	8.42d	40.07d
CV (%)	11.40	8.98	44.00	2.32	2.24	3.54	3.80	5.54
Level of significance	*	**	NS	**	**	**	**	*

Table 8. Effect of water management system on yield and yield contributing characters of boro rice

Similar results were reported by Srivastava and Thipathi, 1998. Varietal differences regarding the number of grains panicle⁻¹ might be due to their differences in genetic constitution. Accordingly, the highest grain yield (5.16 t ha⁻¹) and straw yield (6.60 t ha⁻¹) was obtained from BRRI dhan29 (Figure 2).

Effect of water management system: Water management system had significant influenced on plant height, number of total tillers hill⁻¹, number of effective tillers hill⁻¹, panicle length, number of grains panicle⁻¹, 1000 grain weight, grain yield, straw yield, biological

yield and harvest index of *boro* rice. Non-flooded rice straw mulching produced the highest plant height ((82.15 cm) at maturity where as non-flooded no mulching produced the lowest plant height (Figure 1). Highest number of total tillers hill⁻¹ (7.13), number of effective tillers hill⁻¹ (5.50), panicle length (20.24), number of grains panicle⁻¹ (89.27), biological yield (12.49) and harvest index (43.31%) was obtained from non-flooded rice straw mulching (Table 8). Nonflooded no mulching produced the lowest plant height, number of total tillers hill⁻¹, number of effective tillers hill⁻¹, panicle length, number of grains panicle⁻¹, biological yield and harvest index among the water management systems. Similarly highest grain yield (5.24 t ha⁻¹) and straw yield (7.24 t ha⁻¹) was recorded from non-flooded rice straw mulching (Figure 2).

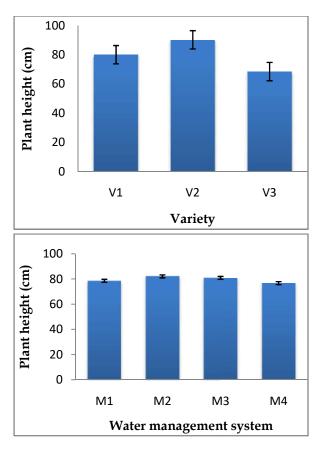
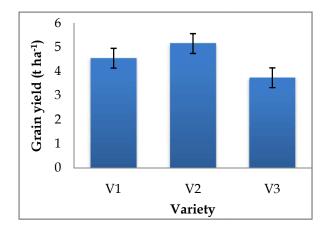



Figure 1. Effect of variety and water management system on plant height of *boro* rice

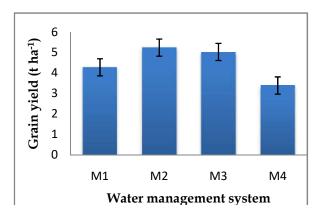
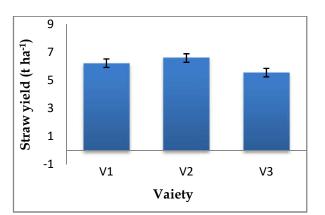



Figure 2. Effect of variety and water management system on grain yield of *boro* rice

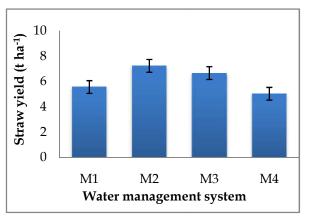


Figure 3. Effect of variety and water management system on straw yield of *boro* rice

Here, V_1 = BRRI dhan28, V_2 = BRRI dhan29, V_3 = Binadhan-14, M_1 = Traditional flooding, M_2 = Nonflooded rice straw mulching, M_3 = Non-flooded water hyacinth mulching and M_4 = Non-flooded no mulching

Treatment	Plant	Total	No. of	No. of	Panicle	No of	Wt. of	Grain	Straw	Biologi	Harve
combination height	height	tiller	effective	non-	Length	grains	1000	yield	yield	cal	st
	(cm)	hill ⁻¹	tillers	effective	(cm)	panicle ⁻¹	grain	(tha ⁻¹)	(tha ⁻¹)	yield	index (%)
			hill ⁻¹	tillers			(g)			(t ha ⁻¹)	
				hill ⁻¹							
V_1M_1	77.94f	6.40	5.00	1.40	18.80c	91.66cd	20.03	4.34cd	5.63d	9.97e	43.19
V_1M_2	82.45d	7.00	5.40	1.60	20.78a	93.73bcd	20.80	5.35b	7.31a	12.66b	42.25
V_1M_3	80.63de	6.47	5.20	1.27	19.40b	92.67cd	20.40	5.04b	6.82b	11.87c	42.50
V_1M_4	79.26ef	6.00	4.87	1.13	18.06d	83.28e	19.45	3.46f	5.13e	8.59f	40.21
V_2M_1	89.29b	7.33	5.73	1.60	19.60b	94.83abc	20.70	4.86bc	6.25c	11.11d	43.72
V_2M_2	94.00a	7.87	6.00	1.87	21.12a	98.08a	21.27	6.06a	7.73a	13.79a	43.97
V_2M_3	92.67a	7.50	5.73	1.77	20.73a	96.67ab	21.00	5.93a	7.35a	13.28ab	44.64
V_2M_4	85.12c	6.27	5.00	1.27	19.18bc	90.53d	20.00	3.81def	5.08e	8.89f	42.83
V_3M_1	68.67g	6.13	4.53	1.60	18.01d	74.17f	19.10	3.64ef	4.83e	8.48fg	43.03
V_3M_2	70.01g	6.53	5.10	1.43	18.81c	76.00f	20.00	4.31cd	6.69b	11.00d	39.25
V_3M_3	69.42g	6.30	4.80	1.50	18.75c	75.55f	19.48	4.10de	5.83cd	9.94e	41.25
V_3M_4	66.00h	5.29	4.33	0.95	17.57e	73.37f	18.52	2.90g	4.90e	7.80g	37.18
CV (%)	3.36	11.40	8.98	44.00	2.32	2.24	3.54	7.36	4.18	3.80	5.54
Level of											
significance	**	NS	NS	NS	**	*	NS	*	**	**	NS

 Table 9. Interaction effect of variety and water management system on yield and yield contributing characters of *boro* rice

Here, in a column, figures with same letters or without letter do not differ significantly whereas figures with dissimilar letter differ significantly as per DMRT. $V_1 = BRRI$ dhan28, $V_2 = BRRI$ dhan29, $V_3 = Binadhan-14$, $M_1 = Traditional$ flooding, $M_2 = Non-flooded$ rice straw mulching, $M_3 = Non-flooded$ water hyacinth mulching, $M_4 = Non-flooded$ no mulching, **= Significant at 1% level of probability, *= 5% level of significance and NS= Non significant

Interaction effect of variety and water management system: The effect of interaction between variety and water management system was significant for plant height, panicle length, number of grains panicle⁻¹, grain yield, straw yield and biological yield (Table 9). The highest plant height (94.00 cm), panicle length (21.12 cm), number of grains panicle⁻¹ (98.08) grain yield (6.06 t ha⁻¹), straw yield (7.73 t ha-), biological yield (13.79 t ha⁻¹) and harvest index (43.97%) was obtained from V₂M₂ (BRRI dhan29 × non-flooded rice straw mulching) treatment and the lowest plant height, panicle length, number of grains panicle⁻¹, grain yield, straw yield, biological yield and harvest index was found in V₃M₄ (Binadhan-14 × non-flooded no mulching) treatment (Table 9).

Conclusion

It was found that variety and water management system had significant effect on grain yield. BRRI dhan29 performed the best in respect of grain yield at non-flooded rice straw mulching treatment. BRRI dhan29, BRRI dhan28, and Binadhan-14produced the grain yields of 6.06, 5.35 and 4.31 t ha⁻¹ respectively at non-flooded rice straw mulching treatment. It can be concluded that BRRI dhan29 with non-flooded rice straw mulching treatment was found to be the best possible combination for achieving higher grain yield.

References

BBS (Bangladesh Bureau of Statistics) 2011. Statistical Year book of Bangladesh. Bangladesh. Stat. Div., Minis. Plan., Govt. People's Repubic of Bangladesh, Dhaka. p.136-140.

- BINA (Bangladesh Institute of Nuclear Agriculture). 1988. Annual Report for 1985-86. Bangladesh Inst. Nucl.Agr., P.O. Box No. 4, Mymensingh. p. 140-141.
- BRRI. (Bangladesh Rice Research Institute) 2011.Annual Report for 1999. Bangladesh Rice Res. Inst., Joydebpur, Gazipur. p. 3-38.
- De Silva CS, Weatherhead EK, Knox JW, Rodriguez-Diaz JA (2007). Predicting the impacts of climate change-A case study of paddy irrigation water requirement in Sri Lanka. Agril. Water. Mgt,93:19-29.
- Gomez KA, Gomez AA (1984). Statistical Procedure nd for Agricultural Research.2 Edn. A Wiley Interscience Publication, John Wiley and Sons, New York. p. 207-215.
- Krisna K (2002). An Evaluating of Madagascar System of Rice production in *aman*Season with Three High Potential Rice Varieties. MS Thesis, Dept. Agron., Bangladesh Agril. Univ., Mymensingh. p.98.
- Nuruzzaman M, Yamamoto Y, Nitta Y, Yoshida Y, Miyazaki A (2000). Varietal differences in

tillering ability of fourteen Japonica and Indica rice varieties. Soil Sci. Plant Nutri. 46(2): 381-391.

- Om H, Dhiman SD, Nandal DP, Verma SL (1998). Effect of method of nursery raising and nitrogen on growth and yield of hybrid rice (Oryza sativa).Indian J. Agron. 43(1): 68-70.
- Sekhon GS, Abrol IP, Bhumbla DK (1986) Wheat growth and yield as affected by irrigation in a Hissar sandy loam soil sandy loam soil in: Proc. Symp. Water Mgt. Udaipur: 127-138.
- Strivastava OK, Tripathi RS (1998). Response of hybrid and composite rice to number of seedling and planting genometry. Ann. Agril. Res. Newsl. 235-236.
- Tisdale SL, Nelson W, Beaton, JD (1985). Soil fertilizer and fertilizers Macmillan Publishers, New York. p. 107-510.
- UNDP, FAO (1998). Land Resources Appraisal of Bangladesh for Agricultural Development. Report 2. Agro-ecological Regions of Bangladesh.United Nation Develt.Prog. Food and Agric. Org. p. 212-221.