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Abstract 
Gene regulatory network is the network of genes interacting with each other 
performing as functional circuitry inside a cell.  Many cellular processes are 
controlled by this network as they govern the expression levels of genes or gene 
product. High performance computational techniques are needed to analyze 
these data as it is heavily affected by noise. There are a number of algorithms 
available in the literature which use recurrent neural network for model building 
together with differential evolution, particle swarm optimization or genetic 
algorithm for searching the regulatory network. The problem with these methods 
is that they may trap in the local minimum. In this paper, we present an 
algorithm using recurrent neural network as model and an extended artificial 
bee colony algorithm for searching regulatory network that can avoid local 
minimum. A comprehensive analysis on both artificial and real data shows the 
effectiveness of the proposed approach. Furthermore we have also varied the 
network dimension and the noise level present in gene expression profiles. The 
reconstruction method has successfully predicted the underlying network 
topology while maintaining high accuracy. The proposed approach has also been 
applied to the real expression data of SOS DNA repair system in Escherichia coli 
and successfully predicted important regulations. 
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Introduction 
Gene expression levels are the outcome of regulatory interactions among genes. 
Therefore, gene regulatory network provides information about the functionality 
inside a cell. DNA microarray technology provides the way to measure the 
expression levels of thousands of genes simultaneously. These expression levels 
are the outcome of regulatory relations among genes. Therefore, inferring gene 
regulatory network from these microarray data is known as a reverse 
engineering problem. Though it seems like a traditional inverse problem, the 
solution is not trivial. It presents a large number of unknowns within a small 
sample size. Further, DNA microarray data are affected by noise. As a result, 
mathematical modeling techniques with reliable inference algorithm are needed 
to solve the problem. 
 Different techniques have been developed to solve the gene regulatory 
network inference problem. Two main components are involved with this 
problem; a "mathematical model" that describes the relations among genes and a 
"search strategy" to find related parameters of the mathematical model such that 
we can build a network. Boolean network (Maria and Stefan 2008) is computa-
tionally expensive to analyze larger networks (Guy and Shamir 2008), complexity 
of Bayesian network (Friedman et al. 2000, Perrin et al. 2003) is exponential 
(Savageau 1976, Noman and Iba 2007) and perform well only in small and 
medium sized network. A linear time varying model based approach has been 
proposed by Kabir et al. 2010. With this model a self-adaptive differential 
evolution approach is used as reverse engineering algorithm. A reverse 
engineering approach based on the recurrent neural network (RNN) formalism 
has been proposed by Xu et al. 2004, Noman et al. 2013, Xu et al. 2007, 
Akbarzadeh et al. 2011, Hu et al. 2006. Most RNNs have had scaling issues. In 
particular, RNNs cannot be easily trained for large number of neuron units nor 
for large number of inputs units. 
 Different algorithms have been used so far to address the problem of 
searching gene regulatory network. Most of them are evolutionary or swarm 
based approaches. Differential evolution (Storn and Price 1997, Noman and Iba 
2007, Xu et al. 2007, Noman and Iba 2006, Chowdhury and Chetty 2011) 
iteratively tried to improve a candidate solution based on a given measure of 
quality. Particle Swarm Optimization (PSO) first proposed by Kennedy and 
Eberhart 1995 and different approaches (Xu et al. 2004, Xu et al. 2007) of PSO 
have been used as the inference algorithm. PSO starts with random candidate 
solutions or particles. Then it iterates and changes the velocity of each particle to 
the better solution.  
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 The most commonly used fitness evaluation criterion is the difference 
between the gene expression levels calculated and the observed system 
dynamics. It is known as the mean squared error (MSE) based fitness function 
(Noman et al. 2013, Chowdhury and Chetty 2012). Another type of fitness 
function is based on information criteria. Information criteria provide a simple 
method to choose from a range of competing models. AIC (Akaike 1998) is the 
most commonly used information criterion. AIC based fitness function was 
proposed by Noman and Iba 2007. 
 In this paper an algorithm based on recurrent neural network framework 
with extended artificial bee colony algorithm is proposed. The inference 
algorithm incorporates mutation and crossover operators from genetic algorithm 
to avoid local minimum where some other algorithms may be stuck. 
 

Materials and Methods 
First a small 4 gene artificial network is used to test the proposed approach. This 
network is studied before by Noman et al. 2013. In this case, we have used 
noiseless, 5% noisy, 10% noisy and 20% noisy data. This noise adding approach 

is �( ) ( ) (1 ), ( )i ix t x t R R         where  represents the percentage of 

Gaussian noise.  
 Multiple time points and multiple data sets have also been used to test the 
algorithm. All the setup conditions and the parameters associated with the 
network are given in Table 1. 
 

Table 1. Parameter associated with 4 genes artificial network. 
 

wij βi 
i 

20.0 –20.0 0.0 0.0 0.0 10.0 

15.0 –10.0 0.0 0.0 –5.0 5.0 

0.0 –8.0 12.0 0.0 0.0 5.0 

0.0 0.0 8.0 –12.0 0.0 5.0 
 

 Ten data sets each containing 10 time points for each gene have been 
generated to test the algorithm. For the second case we have used 30 genes 
network and the same network used by Noman et al. 2013. We have used 
noiseless and 5% noisy data in this case.     
 For the real data, the proposed algorithm is tested to reconstruct the SOS 
DNA repair network in Escherichia coli. Gene expression data set collected by Uri 
Alon Lab was used in the experiment (Alon 2015). This data set contains 
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expression levels of 8 genes and expression levels were measured after 
irradiation of DNA with UV light. Four experiments were carried out with 
different light intensities. Each experiment collected 50 sample points at 6 min 
interval. Here we have used the first data set only. The sample point at first time 
stamp was ignored as it was zero. Also the sample point values were normalized 
in the range (0,1). 
 There are two performance metrics associated with this inference problem 
namely sensitivity and specificity and defined in equations (1) and (2), 
respectively. 

 NPTP
TPS p 

       (1) 

 FPTN
TNSn 

       (2) 

Here TP = number of true positive, FP = number of false positive, TN = number 
of true negative, FN = number of false negative.  
 A recurrent neural network (RNN) is a special type of neural network where 
connections between units form a directed cycle. Fig. 1 shows a simple recurrent 
neural network model. Equation (3) expresses the RNN model (Dhaeseleer et al. 
2000). 

      (3) 
 

 
Fig. 1. A simple recurrent neural network. 
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 where, ei is the expression level of ith gene, f is a nonlinear function (usually a 
sigmoid function is used f(z) = 1/(1+ e-z), wij is the effect of jth gene on ith gene, K is 
the number of external variables, uk is the kth (1 ≤ k ≤ K) external variable, vik is 
the effect of kth external variable on ith gene,  is the bias term, τ is the time 
constant, λ is the decay rate parameter. The above network is unfolded in time 
from t = 0 to T with an interval ∆t.  Here, the regulatory network is shown as 
fully connected; although in practice, the network is sparse. This model is 
described in a discrete form in equation (4). 
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 As it is difficult to obtain measurements of external variables, it is a common 
practice to ignore the vikuk term. Also for simplicity the decay rate parameter λ is 
assumed to be 1. So the simplified model equation (5) represents the final model 
where we have to find w, β and τ. 
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 Artificial Bee Colony (ABC) algorithms (Karaboga 2005), are very effective to 
optimization problems (Drias et al. 2005, Lucic and Teodorovic 2001, Quijano 
and Passino 2007). ABC algorithm can be used for optimizing functions with 
multiple variables and numerical optimization (Domnguez 2009, Karaboga and 
Basturk 2007, Karaboga 2009, Omkar et al. 2011). Also it can be used to train 
neural networks (Karaboga et al. 2007, Karaboga and Ozturk 2009). 
 In this paper, an extended ABC algorithm has been developed to infer gene 
regulatory network based on recurrent neural network model. The strategy is 
described in Algorithm 1. After each W interval the lowest K percent (based on 
fitness value) solutions are abandoned and reinitialized with new random 
solutions. 
 The MSE based fitness function for N genes using single set of time series 
data containing T time points is given by equation (6). 
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 here, e(t) is the generated time series from solution xi and d(t) is the expected 
time series. Multiple set of time series data has been used in this approach. So for 
Q number of data sets the fitness function is given in equation 7. 
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Algorithm 1. Extended artificial bee colony algorithm. 
 

1 Initialize P employed bees using RANDOM-INITIALIZATION procedure 
2 G = 1   
3 repeat   
4  for i ← 1 to P do 
5   Produce new solution yi from xi using MUTATION and CROSSOVER 

procedure 
6   Evaluate fitness of the new solution yi 

7   Replace xi with yi if yi has better fitness 
8  end 
9  for i ← 1 to P do 
10   Choose a solution xi whose fitness is in higher K percent among all 

solutions 
11   Produce new solution yi from xi using MUTATION and CROSSOVER 

procedure 
12   Evaluate fitness of the new solution 
13   Replace xi with yi if yi has better fitness 
14  end 
15  Choose solution with base fitness as xbest from all solutions xi in P 
16  Perform SCOUT-PHASE procedure after each W interval 
17  G = G+1 
18 Until G = Gmax  

 
 

Procedure RANDOM-INITIALIZATION 
1 Randomly select x% employed bees from population P 
2 Initialize regulatory parameters wij of those employed bees with 0 
3 Initialize bias terms β and time constants τ  of those employed bees randomly 
4 Randomly initialize all parameters wij, βi, τi  of the remaining employed bees 
   
Procedure MUTATION 
1 For each individual i

Gx  in current generation, a mutated individual yi is generated 

by the equation: 

)( l
G

k
G

j
G

i
G xxFxy 

 
where i # j # k = l. F is the scaling factor. 

   
Procedure CROSSOVER 
1 The mutated individual i

Gy   has a crossover with i
Gx  and generates 1

i
Gy  . . 

2 In this crossover parameters of the offspring are inherited from i
Gx  or i

Gy   
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depending on the value of crossover factor CF, i.e if r ≤ CF then it is inherited from 
i
Gx   otherwise from i

Gy .   

   
Procedure SCOUT-PHASE 
1 Find best solution fbest from onlooker bees 
2 Find worst solution fworst from onlooker bees 
3 if fworst- fbest < δ worst,best 
4  Select lowest M percent of employed bees based on fitness 
5  Randomly initialize those selected employed bees with new candidate solutions 
6 end 

 

Results and Discussion 
To confirm the effectiveness of the proposed algorithm first it is applied to 
artificial noiseless and noisy data and then to real data. The algorithm is also 
tested on smaller artificial network. Then a larger artificial network is used to test 
scalability of the solution. For artificial data both noiseless and noisy data is used. 
Noisy data was used because practically microarray data contain noise. 
 Initial population size is considered 100, range of regulatory parameter is              
–30.0 to +30.0 initialized to 0, range of bias term is –10.0 to +10.0 initialized 
randomly and time constant is from 1.0 to 20.0 initialized randomly.  First a small 
4 gene network is used to test the proposed approach using noiseless data first 
and then by adding noise (5, 10 and 20%).  
 Noise free data:  First we have tested the algorithm on noise free data. Inferred 
parameters from noise free data are given in Table 2. We can see all the 
parameters have been identified correctly. There are no false positives or false 
negatives. The values are very much precise and exact. Inferred network is as 
same as the original network. The algorithm successfully reverse engineered the 
input network. Values of sensitivity and specificity are given in Table 2. 
 5% noisy data: Result shows that for 5% noise the proposed approach 
performed well. All the regulations have been identified correctly. One non 
regulation is missed. Thus it generates a false positive. But no false negative is 
generated. In some cases inferred parameter values are degraded. But overall the 
network structure is identified with good efficiency. Values of sensitivity and 
specificity are given in Table 2. Sensitivity value is same as before. But as there is 
a false positive generated specificity is slightly reduced. Overall the algorithm 
performed well.  
 10% noisy data: Inferred parameters for 10% noisy data are shown in Table 2. 
This time also the algorithm identified all the regulations successfully. Among 
the non-regulations it missed two and assigned them as regulations. Therefore, 
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two false positives are generated. But there is no false negative. Therefore the 
network structure is identified with some false edges. Parameter values are 
degraded more. In some cases they have a large margin from the original values. 
Specially, the bias terms and time constants are not very precise. Values of 
sensitivity and specificity are given in Table 2. Sensitivity value is as same as 
before. Specificity value reduces further due to the increasing number of false 
positives.  
 20% noisy data: Inferred parameters for 20% noisy data are given in Table 2. 
This time six regulations have been identified correctly. One false negative is 
generated this time too. Two non-regulations have been missed. And one 
regulation has wrong sign. Therefore, total three false positives have been 
generated. Inferred parameter values are not very specific. Sensitivity and 
specificity values are given in Table 2. Sensitivity value is reduced for the first 
time due to the presence of the false negative and specificity value is further 
degraded due to the increasing number of false positive regulations. 
Reconstructed gene regulatory network for 4 genes artificial data is shown in  
Fig. 2. 
 

Table 2. Parameter, sensitivity and specificity of 4 gene artificial network 
 

 wij βi τi  Sn Sp 

20.01 –20.00 0.00 0.00 0.00 10.17 
15.07 –10.00 0.00 0.00 –4.98 5.10 
0.00 –8.07 12.06 0.00 0.00 5.00 

Noiseless 

0.00 0.00 8.86 –12.00 0.00 5.00 

 
1.00 

 
1.00 

22.72 –20.56 0.00 0.00 0.07 10.11 
15.87 –11.07 –2.20 0.00 –5.20 6.02 
0.00 –8.25 12.33 0.00 0.77 5.78 

5% noisy 

0.00 0.00 8.78 –12.78 0.05 5.36 

 
1.00 

 
0.86 

23.33 –21.29 0.00 0.00 0.12 11.11 
16.76 –11.93 0.00 0.00 –6.22 5.51 
5.04 –8.01 13.76 0.00 0.88 5.79 

10% noisy 

0.00 0.00 9.21 –12.91 3.21 6.79 

 
1.00 

 
0.86 

30.00 –26.66 0.00 0.00 5.21 11.54 
18.11 –15.51 8.86 0.00 6.32 10.42 
0.00 0.00 16.88 0.00 –7.77 8.81 

20% noisy 

-9.72 0.00 18.80 –15.12 8.20 11.10 

 

 
0.86 

 
0.75 

 30 gene artificial network: Next experiment is done with a larger network of 30 
genes. Network structure is sparse and it is the same network used by Noman         
et al. 2013. Among the possible 900 connections only 36 are regulations and rest 
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are non regulations. So the graph is very sparse. Experiments were done using 
both noiseless and noisy data. For noisy data 5%  noise was added to the data 
sets. Experimental setup and environment were same as 4 gene network. 
 

  
(a) (b) 

  
(c) (d) 

Fig. 2. Reconstructed 4 gene regulatory network with (a) noiseless, (b) 5% noisy, (c) 10% 
noisy and (d) 20% noisy data. 

 With the increase of dimensions the problem complexity increases rapidly. In 
noise free condition the algorithm identified almost 70% regulations correctly. 
Most of the non regulations also identified correctly. But at the same time the 
algorithm predicted some false positives and false negatives. For 5% noisy data 
the  identified almost 55% regulations correctly. Almost 85% non regulations 
have been identified correctly. But again the number of false positives and false 
negatives increased. Overall performance of the algorithm are given in Table 3. 
The table shows that performance of the algorithm degrades with the increment 
of noise level present. However it can be used for larger and sparse networks 
given sufficient amount of gene expression data. 
 
Table 3. Sensitivity and specificity of 30 gene artificial network. 
 

 Noisy free data 5% noisy data 

Sensitivity, Sn 0.78 0.67 

Specificity, Sp 0.92 0.86 
 

 Experiment with real data: The proposed algorithm was tested to reconstruct 
the SOS DNA repair network in Escherichia coli shown in Fig. 3. This network 
consists of 40 genes. The network is initiated when any damage is detected in 
DNA.  
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Fig. 3. SOS DNA repair network in Escherichia coli. 

 
 Protein RecA gets activated when DNA damage takes place. It mediates LexA 
by binding to single stranded DNA molecules. Protein LexA is a master repressor 
which represses all other genes when no damage takes place. Mediated level of 
LexA starts activation of other genes. After repairing the damage RecA expression 
level drops. Then LexA binds site in promoter region of SOS genes, repress their 
expression levels and restores original states. 
 Experimental setup is kept same as before. Experiment was repeated for 10 
individual trials. In each trial a very small fitness score was achieved which 
indicated that the proposed algorithm could predict a network that match the 
target time series data pretty well. Predicted regulations from the experiment are 
shown in Table 4. 
 From the result it is observed that the proposed algorithm has identified a 
number of regulations. Inhibition of lexA on all other genes, also the activation of 
recA on uvrY and polB has been identified correctly. The prediction contains some 
false positives which are either unknown regulations or the side effect of noise 
present in the data. Results are compared with other methods in terms of truly 
identified regulations. Comparison shows the competitiveness of the proposed 
approach. Comparative results are shown in Fig. 4. 
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Table 4. Estimated regulations for SOS DNA repair system. 
 

Gene Predicted regulation References 
uvrD uvrD ┤ uvrD, lexA ┤ uvrD (Kimura et al. 2008, Cho et al. 2006, 

Kimura et al. 2009) 
lexA uvrD → lexA (Kimura et al. 2008, Cho et al. 2006)  
umuD lexA ┤umuD, uvrY → umuD (Kimura et al. 2009, Gardner et al. 

2003) 
recA uvrD → recA, lexA ┤recA, ruvA ┤recA (Kimura et al. 2008) 
uvrA umuD → uvrA, uvrY → uvrA (Perrin et al. 2003, Kabir et al. 2010, 

Kimura et al. 2009)  
uvrY lexA → polB, uvrA ┤ polB (Kabir et al. 2010, Kimura et al. 

2009, Noman et al. 2013) 
ruvA lexA → polB, uvrA ┤ polB (Kabir et al. 2010, Kimura et al. 

2009, Noman et al. 2013) 
polB lexA ┤ polB, recA → polB (Kabir et al. 2010, Kimura et al. 

2009)  

 

 
Fig. 4. Comparison of results with other methods. 

 

Conclusions 
In this work a new approach is proposed to infer gene regulatory networks. The 
approach is tested on artificial and real networks. Two artificial networks of 4 
genes and 30 genes were used. For both the networks, the proposed algorithm 
performed very well. For noiseless environment, the proposed approach 
predicted the network with 100% accuracy. However with the increase of noise 
level present in the data the algorithm's accuracy has been reduced. But still its 
performance remained acceptable. For real data the proposed method predicted 
eight true regulations which is much better than most of the existing state of the 
art methods. Thus, along with some improvements in future this work may be 
served as an initiative for the future researchers in this area. In future it can be 
tested on large networks of thousand or more genes to evaluate performance on 
real large networks.  To reconstruct large scale gene networks of complex 
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organisms, an improvement in methodology, algorithmic efficiency, computing 
power and additional domain knowledge will also be included with the current 
form. 
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