

Research in

ISSN : P-2409-0603, E-2409-9325

AGRICULTURE, LIVESTOCK and FISHERIES

An Open Access Peer-Reviewed International Journal

Article Code: 509/2025/RALF

Article Type: Research Article

Res. Agric. Livest. Fish.

Vol. 12, No. 3, December 2025: 487-492.

A Comparative Study on Efficacy of Piperazine Citrate and Levamisole Against Natural Infected Ascariasis in Indigenous Chicken of Bangladesh

Tapan Kanti Paul^{1,*}, Md. Matiur Rahman^{2,*}, Md. Khademul Islam³, Abdullah Al Sad⁴, Md. Masud Parvej⁵, Munira Parvin Mukta⁶ and Md Mahfuzul Haque^{4*}

¹Department of Pharmacology, ²Department of Medicine, ³Department of Epidemiology and Public Health,

⁴Department of Surgery and Theriogenology, and ⁵Department of Anatomy and Histology, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Tilagor, Bangladesh; ⁶Govt. College of Applied Human Science, University of Dhaka, Dhaka-1000, Bangladesh.

***Corresponding author:** Md Mahfuzul Haque; E-mail: mahfuzsau55@gmail.com

ARTICLE INFO

ABSTRACT

Received

18 October 2025

Revised

05 December 2025

Accepted

18 December 2025

Key words:

Poultry farming
Ascaridia galli
Piperazine citrate
Levamisole
Kurigram district
Hematological analysis

Backyard poultry farming is an essential component of rural livelihoods in Bangladesh, particularly for women, as it provides both nutrition and income. Indigenous chickens raised under traditional management systems are highly susceptible to gastrointestinal parasitic infections, with *Ascaridia galli* being the most prevalent and pathogenic nematode. This study investigated the prevalence of *A. galli* and evaluated the efficacy of two commercial anthelmintics Piper® (piperazine citrate) and Neotrax® (levamisole) in indigenous chickens aged 2 to 12 months across several villages in Rowmari Thana, Kurigram district. The overall prevalence of ascariasis was 86%, with the highest infection rate (90%) observed in younger birds (2-4 months). Oral administration of Piper® (250 mg/kg) and Neotrax® (0.08 g/kg) resulted in significant improvements in body weight (10.42% and 30%, respectively) and complete elimination of parasite eggs by day 14, which was sustained through day 28. Hematological analyses showed increases in TEC, Hb, and PCV, along with reductions in ESR and TLC, indicating improved health status in treated birds. Postmortem examinations further confirmed the absence of intestinal lesions in treated groups, in contrast to the severe pathology observed in untreated controls. The study concludes that Piper® and Neotrax® are highly effective and safe for managing *A. galli* infections and offer a practical strategy for improving poultry health and productivity in rural backyard farming systems.

To cite this article: Paul T. K., M. M. Rahman, M. K. Islam, A. A. Sad, M. M. Parvej, M. P. Mukta and M. M. Haque, 2025. A comparative study on efficacy of piperazine citrate and levamisole against natural infected ascariasis in indigenous chicken of Bangladesh. Res. Agric. Livest. Fish. 12(3): 487-492.

DOI: <https://doi.org/10.3329/ralf.v12i3.86183>

Copyright © 2025; The Authors. Published by AgroAid Foundation

This is an open access article licensed under the terms of the Creative Commons Attribution 4.0 International License

OPEN ACCESS

www.agroaid-bd.org/ralf, E-mail: editor.ralf@gmail.com

Introduction

Global poultry production continues to expand rapidly, driven by increasing demand for affordable animal protein. Broiler chickens are particularly important due to their fast growth, efficient feed utilization, and consumer preference for lean meat (Ariana et al., 2011). However, intensive production exposes birds to various stressors that can compromise health and productivity (Toghyani et al., 2010). Traditionally, antibiotics have been used as growth promoters to enhance feed efficiency and disease resistance, but their use has been restricted due to the risk of antimicrobial resistance and consumer health concerns (Ariana et al., 2011). Phytopreparative feed additives, including herbs and plant extracts, have gained attention as natural alternatives to antibiotics. Green tea (*Camellia sinensis*) is rich in catechins, particularly epigallocatechin gallate (EGCG), known for its antimicrobial, antioxidant, and immunomodulatory properties (Abdul-Azeem, 2005; Guo et al., 2004). Previous studies have suggested that green tea may improve growth performance and carcass quality in broilers, though findings remain inconsistent (Sarker et al., 2010). This study aimed to evaluate the effects of green tea powder supplementation on growth performance, feed efficiency, carcass traits, and hematological profiles of broiler chickens, with the goal of determining its potential as a natural antibiotic substitute (Ariana et al., 2011).

Materials and Methods

Experimental Design and Management

The experiment was conducted at Aziz Poultry Farm, Magura Sadar, under the supervision of the Department of Pharmacology and Toxicology, Sylhet Agricultural University, Bangladesh. One hundred fifty-day-old Cobb-500 chicks were randomly allocated to three groups ($n = 50$ per group):

- T_0 : Control (basal diet only)
- T_1 : Antibiotic (basal diet + amoxicillin 30%, 1 g/kg feed)
- T_2 : Green tea (basal diet + 0.5% green tea powder, 5 g/kg feed)

Birds were reared for 35 days under identical management conditions with ad libitum feed and water. Standard commercial pre-starter, starter, and grower feeds (Nourish Feed Ltd.) were used.

Data Collection

Live body weight was recorded weekly. Feed intake and feed conversion ratio (FCR) were calculated at 7-day intervals. At day 35, five birds per group were randomly selected for slaughter to measure dressing percentage.

Hematological and Biochemical Analysis

Blood samples were collected from wing veins at day 35. Parameters analyzed included Total Erythrocyte Count (TEC), Hemoglobin (Hb), Packed Cell Volume (PCV), Serum Glutamate Oxaloacetate Transaminase (SGOT), and Serum Glutamate Pyruvate Transaminase (SGPT), using standard methods Lamberg and Rothstein (1977); Coffin (1995); Gupta and Charan (2007).

Statistical Analysis

Data were analyzed using one-way ANOVA (Minitab v20), and mean differences were determined using Tukey's test. Significance was set at $P < 0.001$.

Results and Discussion

Growth Performance

Broilers supplemented with green tea (T_2) exhibited significantly higher ($P < 0.001$) body weight gain (2004.88 g) compared to antibiotic (1964.86 g) and control groups (1914.75 g).

Table 1. Comparison of live body weight among the group

Group	Mean Live Weight gain (g)				
	Day 7	Day 14	Day 21	Day 28	Day 35
T ₀ (N=50)	167.55b	463.27c	899.46c	1462.18c	1914.75c
T ₁ (N=50)	179.27a	475.78b	921.44b	1487.49b	1964.86b
T ₂ (N=50)	182.07a	485.05a	940.63a	1518.56a	2004.88a
SEM	1.34	1.77	3.25	4.44	6.69
Level of Significance	***	***	***	***	***

T= Control group, T= Antibiotic supplemented group, T= Green Tea supplemented group, N= Number of birds, SEM= Standard Error of Mean

***Values in rows with different superscripts differ significantly ($p < 0.001$)

Carcass Traits

The highest dressing weight (1443.51 g) and dressing percentage (72%) were recorded in the green tea group. Offal weights (heart, liver, spleen) were also significantly higher ($P < 0.001$) in T_2 , while gizzard weight was slightly lower.

The intestinal length was longest in T_2 (160.48 cm) compared with T_0 (145.30 cm).

T0 T1 T2

Feed Intake

All the feed intake values are presented in Table 2. Feed was supplied in different groups T₀, T₁ and T₂ separately. Every 7 days interval total consumed feed amount of each group are calculated from total feed stock. Feed intake was slightly lower in the green tea group (2987 g) compared to the control (3086 g).

Table 2. Comparison of feed intake among the group

Group	Average feed intake (g/bird)				
	Day 7	Day 14	Day 21	Day 28	Day 35
T ₀ (N=50)	150	535	1180	2150	3086
T ₁ (N=50)	156	540	1165	2125	3026
T ₂ (N=50)	160	555	1152	2100	2987

Feed Conversion Ratio (FCR)

All the FCR values are presented in Table 3. FCR improved significantly in the green tea group (1.49) compared with antibiotic (1.54) and control (1.61). Use of dietary green tea improves feed conversion ratio.

Table 3. Effects of treatments on FCR 7 days interval

Group	Feed Conversion Ratio (FCR)				
	Day 7	Day 14	Day 21	Day 28	Day 35
T ₀ (N=50)	0.90	1.15	1.31	1.47	1.61
T ₁ (N=50)	0.87	1.13	1.26	1.43	1.54
T ₂ (N=50)	0.80	1.14	1.22	1.38	1.49

Hematological and Biochemical Parameters

All the hematological values are presented in Table 4. The green tea-supplemented group showed significant increases ($P<0.001$) in Hb (13.75 g/dl), PCV (41.70%), and TEC ($4.85\times10^6/\text{mm}^3$) compared to the control. SGOT and SGPT levels were also elevated within physiological ranges, suggesting enhanced liver function. The mean values of hemoglobin increased significantly ($p<0.001$) in all the treated groups and the highest was recorded in group T₂ (13.752g/dl) and lowest in control group T₀ (9.806g/dl). The mean value of PCV (Packed Cell Volume) also increased significantly ($p < 0.001$) in all the treated groups. The highest value was recorded in group T₂ (41.707%) and lowest in control group T₀ (36.463%). The mean values of TEC (Total Erythrocyte Count) in all treated groups were increased significantly ($p < 0.001$) than control group. The highest TEC value was recorded in group T₂ (4.850 million/mm³) and lowest in group T₀ (3.113 million/mm³).

Table 4. Haemato-biochemical parameters in broilers after being treatments

Items	Treatment (Mean)			SEM	Level of Significance
	T ₀ (N=50)	T ₁ (N=50)	T ₂ (N=50)		
Hemoglobin Content (g/dl)	09.806 ^c	11.820 ^b	13.752 ^a	0.315	***
PCV (%)	36.463 ^c	38.866 ^b	41.707 ^a	0.437	***
TEC (million/ ³ mm blood)	03.113 ^b	03.687 ^b	04.850 ^a	0.172	***
SGOT (U/L)	342.80 ^a	332.56 ^b	287.96 ^c	4.440	***
SGPT (U/L)	06.757 ^a	05.743 ^b	04.77 ^c	0.186	***

T= Control group, T= Antibiotic supplemented group, T= Green Tea supplemented group, N= Number of birds, SEM= Standard Error of Mean

***Values in rows with different superscripts differ significantly ($p<0.001$)

The inclusion of 0.5% green tea powder improved body weight gain and feed efficiency in broilers, consistent with findings by Sarker et al., (2010) and Biswas et al., (2000). Green tea catechins may enhance digestive enzyme activity, modulate gut microflora, and reduce oxidative stress, leading to improved nutrient utilization (Abdul-Azeem, 2005; Guo et al., 2004). There was a tendency of Green Tea Powder (GTP) to suppressed feed intake (Biswas et al., 2001) without change of the body weight gain. Sarker et al. (2010) showed feed intake highly decreased by increasing the percentage of green tea powder on diet. Feed intake is more decreased in 1.0% green tea powder than 0.5%. Same observation showed by (Yang et al., 2003) that feed intake decreased more in 1.0% green tea powder than 0.5% green tea powder supplied with normal diet and feed intake more decreased in 0.5% green tea powder supplement diet than control. Reduced feed

intake with improved FCR indicates better metabolic efficiency. This has been also observed in other feeding experiments using layers (Biswas et al., 2000; Toghyani et al., 2010). Several experiment (Biswas et al., 2001; Sarker et al., 2010; Yang et al., 2003) showed that increased percentage (0.5%) of green tea powder improved feed efficiency or Feed Conversion Ratio (FCR) than control. Similar result observed in current experiment that dietary 0.5% GTP improved FCR in broiler. The positive effects on hematological indices suggest that green tea promotes hematopoiesis and overall physiological health. Increased Hb, PCV, and TEC values support improved oxygen transport and metabolic activity, aligning with earlier reports (Yang et al., 2003). The increased level of total erythrocyte count, hemoglobin content and packed cell volume might be due to the effects on haemopoietic organs. Enhanced SGOT and SGPT values within normal limits indicate improved liver metabolism without toxicity. Dietary supplementation of green tea also affects offal's weight significantly and increase the intestinal length observed significantly in green tea treatment group (Abdul-Azeem, 2005; Guo et al., 2004). These results confirm that green tea powder can serve as a safe and effective alternative to antibiotic growth promoters, improving productivity and health performance in broilers (Abdul-Azeem, 2005; Guo et al., 2004).

Conclusion

Dietary supplementation of 0.5% green tea powder significantly improved growth performance, feed efficiency, dressing yield, and hematological parameters in broiler chickens. Green tea may serve as a natural and sustainable alternative to antibiotic growth promoters in poultry production.

Conflict of interest

The authors declare that there is no conflict of interests.

Acknowledgments

The authors acknowledge the Department of Pharmacology and Toxicology, Sylhet Agricultural University, and Nourish Poultry & Hatchery Ltd. for laboratory and technical support to conduct the research work.

References

1. Ariana M, Abdolhossein S, Mohammad AE and Rahman J 2011. Effects of powder and extract form of green tea and marigold, and α -tocopheryl acetate on performance, egg quality and egg yolk cholesterol levels of laying hens in late phase of production. *Journal of Medicinal Plants Research*, 5(13): 2710–2716.
2. Abdel-Azeem FA 2005. Green tea flowers (*Camellia sinensis*) as natural anti-oxidants feed additives in growing Japanese quail diets. *Egyptian Poultry Science Journal*, 25(3): 569–588.
3. Biswas MAH, Miyazaki Y, Nomura K and Wakita M, 2000. Influences of long-term feeding of Japanese green tea powder on laying performance and egg quality in hens. *Asian-Australasian Journal of Animal Sciences*, 13: 980–985.
4. Biswas AH and Wakita M 2001. Comparison of two dietary factors, green tea powder feeding and feed restriction, influencing laying performance and egg quality in hens. *Bulletin of the Faculty of Bioresources, Mie University* 25/26, 55–61.

5. Coffin DL 1995. Manual of Veterinary Clinical Pathology. Third ed. Coin stock Publishing Associates. Inc. Ithaca New York, 116-157.
6. Guo FC, Williams BA, Kwakkel RP, Li, HS, Li, XP, Luo JY, Li WK and Verstegen MWA 2004. Effects of mushroom and herb polysaccharides as alternatives for an antibiotic, on the cecal microbial ecosystem in broiler chickens. *Poultry Science*, 83: 175–182.
7. Gupta G and Charan S 2007. Exploring the potential of *O. sanctum* (Shyama Tulsi) as a feed supplement for its growth promoter activity in broiler chicken, *Indian Journal of Poultry Science*, 42(2): 140-143.
8. Lamberg SL and Rothstein L 1977. "Hematology and Urinalysis" AVI publishing company, Inc. Westport, Connecticut, USA.
9. Sarker MSK, Kim GM and Yang CJ 2010. Effect of green tea and biotite on performance, meat quality and organ development in Ross broiler. *Egyptian Poultry Science Journal*, 30(1): 77–88.
10. Toghyani M, Toghyani M, Gheisari A, Chalamkari G and Mohammadrezaei M, 2010. Growth performance, serum biochemistry and blood hematolgy of broiler chicks fed different levels of black seed (*Nigella sativa*) and peppermint (*Mentha piperita*). *Livestock Science*, 129: 173–178.
11. Yang CJ, Yang IY, Oh DH, Bae IH, Cho SG, Kong IG, Uuganbayar D, Nou IS and Choi KS 2003. Effect of green tea by-product on performance and body composition in broiler chicks, *Asian-Australasian Journal of Animal Sciences*, 16: 867–872.