Characterizations of relative n-annihilators of nearlattices

Dr. M. S. Raihan Associate Professor Department of Mathematics Rajshahi University

Characterizations of relative n-annihilators of nearlattices

Abstract: In this paper we have introduced the notion of relative n-annihilators around a fixed element n of a nearlattice S which is used to generalize several results on relatively nearlattices. We have also given some characterizations of distributive and modular nearlattices in terms of relative n- annihilators.

Keywords: Annihilator, Relative annihilator and Relative n-annihilator.

AMS Subject classifications (2001): 06A12, 06A99, 06B10.

Introduction.

 Relative annihilators in lattices and semi-lattices have been studied by many authors including [1], [2], [3] and [4]. Also [5] has used the annihilators in studing relative normal lattices. In this paper, we introduce the notion of relative annihilators around a fixed element n of a nearlattice S which is used to generalize several results on relatively nearlattices.

For a, $b \in S$, $\lt a$, b $>$ denotes the relative annihilator, that is

 $\langle a, b \rangle = \{x \in S: x \land a \leq b\}.$ In presence of distributivity, it is easy to show that each relative annihilator is an ideal. Also note that $\langle a, b \rangle = \langle a, a \land b \rangle$. For detailed literature on this see [1] and [4]. Again for a, $b \in L$, where L is a lattice, recall that $<$ a, b $>_{d}$ = {x \in L: x \vee a \geq b} is a relative dual annihilator. In presence of distributivity of L, $\langle a, b \rangle_d$ is a dual ideal (filter).

In case of a nearlattice it is not possible to define a dual relative

annihilator ideal for any a and b. But if n is an upper element of S, then $x \vee n$ exists for all $x \in S$ by the upper bound property of S. Then for any $a \in (n]$, we can talk about dual relative annihilator ideal of the form $\langle a, b \rangle_d$ for any b∈S. That is, for any a $\leq n$ in S, $\langle a, b \rangle_d = \{x \in S: x \vee a \geq b\}.$

For a, $b \in S$ and an upper element $n \in S$,

we define, $\langle a, b \rangle^n = \{x \in S : m(a, n, x) \in \langle b \rangle_n\}$ $= \{x \in S: b \land n \le m(a, n, x) \le b \lor n\}.$ We call $\lt a$, b $>$ ⁿ the annihilator of a relative to b around the element n or simply a relative n-annihilator. It is easy to see that for all a, $b \in S$, $\lt a$, b $>$ ⁿ is always a convex subset containing n. In presence of distributivity, it can easily be seen that $\langle a, b \rangle$ ⁿ is an n-ideal. If $0 \in S$, then putting n =0, we have, < a, b >ⁿ = < a, b >.

For two n-ideals A and B of a nearlattice S , $\langle A, B \rangle$ denotes

.

 ${x \in S: m(a, n, x) \in B$ for all $a \in A}$, when n is a medial element. In presence of distributivity, clearly $\langle A, B \rangle$ is an n-ideal. Moreover, we can easily show that $\langle a, b \rangle^n = \langle \langle a \rangle_n, \langle b \rangle_n \rangle.$

In this paper, we have given several characterizations of $\langle a, b \rangle$ ⁿ. We have also given some characterizations of distributive and modular nearlattices in terms of relative n-annihilators.

1. Relative Annihilators around a central element of a Nearlattice.

We start with the following characterization of $\langle a, b \rangle$ ⁿ.

Theorem 1.1 *Let* S *be a nearlattice with a central element* n. *Then for all* a, b∈S, *the following conditions are equivalent.*

(i) $\langle a, b \rangle^n$ *is an* n-*ideal*.

(ii) $\langle a \wedge n, b \wedge n \rangle_d$ *is a filter and* $\langle a \vee n, b \vee n \rangle$ *is an ideal.*

Proof. (I) \Rightarrow (ii). Suppose (i) holds. Let x, y \in < a \vee n, b \vee n > and

 $x \vee y$ exists. Then $x \wedge (a \vee n) \le (b \vee n)$. Thus $(x \wedge (a \vee n)) \vee n \le (b \vee n)$, then by the neutrality of n, $(x \vee n) \wedge (a \vee n) \le (b \vee n)$.

Also m(x \vee n, n, a) = (x \vee n) \wedge (a \vee n) \leq b \vee n. This implies x \vee n \in < a, b \geq ⁿ. Similarly,

 $y \vee n \in < a, b>^n$. Since $< a, b>^n$ is an n-ideal,

so $x \vee y \vee n \in ^n$. This implies $m(x \vee y \vee n, n, a) \leq b \vee n$. That is,

 $(x \vee y \vee n) \wedge (a \vee n) \leq b \vee n$ and so $(x \vee y) \wedge (a \vee n) \leq b \vee n$. Therefore,

 $x \vee y \in$.

Moreover, for $x \in \langle a \vee n, b \vee n \rangle$ and $t \leq x$ ($t \in S$).

Obviously, $t \wedge (a \vee n) \leq b \vee n$, and so $t \in \langle a \vee n, b \vee n \rangle$.

Hence $\lt a \lt n$, $b \lt n >$ is an ideal.

A dual proof of above shows that $\langle a \wedge n, b \wedge n \rangle_d$ is a filter.

(ii) \Rightarrow (i). Suppose (ii) holds and x, y ∈ < a, b >ⁿ.

Then $b \land n \leq (x \land a) \lor (x \land n) \lor (a \land n) \leq b \lor n$, and

 $b \wedge n \le (y \wedge a) \vee (y \wedge n) \vee (a \wedge n) \le b \vee n$. So, $b \vee n \le [(x \wedge a) \vee (x \wedge n) \vee (a \wedge n)] \wedge n =$

 $(x \wedge n) \vee (a \wedge n)$. This implies $x \wedge n \in < a \wedge n$, $b \wedge n >_d$. Similarly,

 $y \wedge n \in \langle a \wedge n, b \wedge n \rangle_d$. Since $\langle a \wedge n, b \wedge n \rangle_d$ is a filter, so we have, $x \wedge y \wedge n \in \langle a \rangle$

 \wedge n, $b \wedge n >_{d}$. Thus, $(x \wedge y \wedge n) \vee (a \wedge n) \ge (b \wedge n)$.

But m(x \land y \land n, n, a) = (x \land y \land n) \lor (a \land n) \ge (b \land n), and

so x \land y \land n ∈ < a, b $>^n$. Again, by neutrality of n, (x \lor n) \land (a \lor n) =

 $(x \wedge a) \vee n \leq (b \vee n)$. Similarly, $(y \vee n) \wedge (a \vee n) \leq (b \vee n)$.

Thus $((x \land y) \lor n) \land (a \lor n) \le (b \lor n)$.

But $((x \land y) \lor n) \land (a \lor n) = m((x \land y) \lor n, n, a)$, as n is neutral.

There fore, $(x \wedge y) \vee n \in < a, b>^n$ and so by the convexity of $< a, b>^n$,

 $x \wedge y \in ^n$.

A dual proof of above shows that $x \vee y \in < a$, $b > n$. Clearly, $< a$, $b > n$ contains n. Therefore, $<$ a, b $>^n$ is an n –ideal. \Box

Proposition 1.2 *Let* S *be a nearlattice with a central element* n. *Then for all* $a, b \in S$, *the following conditions hold.*

(i)
$$
< a \vee n
$$
, $b \vee n > is an ideal if and only if [n) is a distributive subnearlattice of S.$

(ii)
$$
<
$$
 a \wedge n, b \wedge n $>$ _d is a filter if and only if $(n]^d$ is a distributive
subnearlattice of S.

Proof. Suppose for all a, $b \in S$, $\langle a \vee n, b \vee n \rangle$ is an ideal. Thus for all

p, q ∈[n), $\langle p, q \rangle$ ∩ [n) is an ideal in the subnearlattice [n). Then by [1.1], [n) is distributive.

Conversely, suppose [n) is distributive. Let x, $y \in \langle a \vee n, b \vee n \rangle$ and $x \vee y$ exists. Then $x \wedge (a \vee n) \leq b \vee n$. Since n is neutral, so $(x \vee n) \wedge (a \vee n) =$

 $[x \wedge (a \vee n)] \vee n \leq b \vee n$ implies that $x \vee n \in < a \vee n$, $b \vee n >$.

Similarly, $y \lor n \in < a \lor n$, $b \lor n >$. Then $(x \lor y) \land (a \lor n)$

 $\leq (x \vee y \vee n) \wedge (a \vee n) = [(x \vee n) \wedge (a \vee n)] \vee [(y \vee n) \wedge (a \vee n)]$ as [n) is distributive.

 \leq (b \vee n).

Therefore, $x \vee y \in < a \vee n$, $b \vee n >$. Since $< a \vee n$, $b \vee n >$ has always the hereditary property, so $\langle a \vee n, b \vee n \rangle$ is an ideal.

(ii) can be proved dually. \Box

By Theorem 1.1 and above result and using [8, theorem 1.5.2], we have the following result.

Theorem 1.3 *Let* S *be a nearlattice with a central element* n. *Then for all* a, $b \in S$, $\langle a, b \rangle$ ⁿ is an n-ideal if and only if P_n(S) is distributive nearlattice.

Recall that a nearlattice S is distributive if for all x, y, $z \in S$,

 $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ provided $y \vee z$ exists.[3] has given an alternative definition of distributivity of S. A nearlattice S is distributive if and only if for all t, x, y, $z \in S$, $t \wedge ((x \wedge y) \vee (x \wedge z)) = (t \wedge x \wedge y) \vee (t \wedge x \wedge z).$

Similarly, by [4], a nearlattice S is modular if and only if for all t, x, y, z \in S with $z \le x$, $X \wedge ((t \wedge y) \vee (t \wedge z)) = (X \wedge t \wedge y) \vee (t \wedge z).$

Since for a sesquimedial element n, S is distributive if and only if $P_n(S)$ is distributive, we have the following Corollary, which is a generalization of

[1, Theorem 1] and a result of [6]. This also generalizes a result of [7, theorem 3.1.3.].

Corollary 1.4 *Suppose* S *is a nearlattice. Then for a central element* $n \in S$, $\langle a, b \rangle$ ⁿ *is an* n-*ideal for all* a, b∈S *if and only if* S *is distributive*.

[1] gave a characterization of distributive lattices in terms of relative annihilators. Then [4] extended the result for nearlattices. [3] generalized the result for n-ideals in lattices. Following result gives a generalization of that result for n-ideals in nearlattices.

Theorem 1.5 *Let* n *be a central element of a nearlattice* S. *Then the following conditions are equivalent*.

- (i) S *is distributive*.
- (ii) $\langle a \vee n, b \vee n \rangle$ *is an ideal and* $\langle a \wedge n, b \wedge n \rangle$ *is a filter whenever* < $b >_n \subseteq$ < $a >_n$.

Proof. (i)⇒(ii). Suppose (i) holds. That is, S is distributive. Then by Corollary1.4, $\langle a, b \rangle$ ⁿ is an n-ideal for all $a, b \in S$. Thus by Theorem 1.1, (ii) holds. **(ii)**⇒(i). Suppose (ii) holds and let x, y, $z \in [n]$ and y \vee z exists.

Clearly, $(x \wedge y) \vee (x \wedge z) \le x$. So, $\langle x \wedge y \rangle \vee (x \wedge z)$ is an ideal as

$$
\langle (x \wedge y) \vee (x \wedge z) \rangle_n \subseteq \langle x \rangle_n. \text{ Since } x \wedge y \leq (x \wedge y) \vee (x \wedge z),
$$

so $y \in \langle x, (x \land y) \lor (x \land z) \rangle$. Similarly, $z \in \langle x, (x \land y) \lor (x \land z) \rangle$.

Hence $y \vee z \in \langle x, (x \wedge y) \vee (x \wedge z) \rangle$ and so $x \wedge (y \vee z) \leq (x \wedge y) \vee (x \wedge z)$. This implies $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ and so [n) is distributive. Using the other part of (ii) we can similarly show that (n] is also distributive. Thus by [8, theorem 1.5.2], $P_n(S)$ is distributive and so S is distributive. \Box

Theorem 1.6 *Let* n *be a central element of a nearlattice* S. *Then the following conditions are equivalent*.

- (i) $P_n(S)$ *is modular.*
- (ii) *For* a, b∈S *with* < b >_n \subseteq < a >_n, x ∈ < b >_n and y ∈ < a, b >ⁿ *imply* $x \wedge y$, $x \vee y \in < a$, $b >^n$ *if* $x \vee y$ *exists in* S.

Proof. (i) \Rightarrow (ii). Suppose P_n(S) is modular. Then by [8, theorem 1.5.2], [n) and (n] are modular. Here $\langle b \rangle_n \subseteq \langle a \rangle_n$, so $a \wedge n \le b \wedge n \le n \le b \vee n \le a \vee n$. Since $x \in \langle b \rangle_n$, so $b \wedge n \leq x \leq b \vee n$.

Hence $a \wedge n \leq b \wedge n \leq x \wedge n \leq x \vee n \leq b \vee n \leq a \vee n$.

Now, $y \in < a, b>^n$ implies m(y, n, a) $\in < b>_{n}$.

Thus, $(y \wedge a) \vee (y \wedge n) \vee (a \wedge n) \leq b \vee n$, and so by the neutrality of n,

 $((y \land a) \lor (y \land n) \lor (a \land n)) \lor n = (y \lor n) \land (a \lor n) \le b \lor n.$

Thus, using the modularity of [n) and the existence of $x \vee y$,

 $m(x \vee y \vee n, n, a) = (x \vee y \vee n) \wedge (a \vee n)$

 $= [(a \vee n) \wedge (y \vee n)] \vee (x \vee n)$ as $x \vee n \leq b \vee n \leq a \vee n$.

This implies $m(x \vee y \vee n, n, a) \leq b \vee n$ and so $x \vee y \vee n \in < a, b>^n$. Since n is neutral,

so $a \land n \leq b \land n \leq x \land n$ implies that

$$
b \land n \le (x \land n) \lor (y \land n) \lor (a \land n)
$$

= ((x \lor y) \land n) \lor (a \land n)
= m((x \lor y) \land n, n, a)

$$
\le b \lor n.
$$

Therefore, $(x \vee y) \wedge n \in < a, b>^{n}$. Hence by convexity of $< a, b>^{n}$,

 $x \vee y \in ^n$.

Again, using the modularity of (n], a dual proof of above shows that

 $x \wedge y \in < a, b>^n$. Hence (ii) holds.

(ii) \Rightarrow (i). Suppose (ii) holds. Let x, y, z∈[n) with $x \le z$ and whenever $x \vee y$ exists. Then $x \vee (y \wedge z) \leq z$. This implies $\langle x \vee (y \wedge z) \rangle_n \subseteq \langle z \rangle_n$.

Now, $x \le x \vee (y \wedge z)$ implies $x \in \langle x \vee (y \wedge z) \rangle_n$.

Again, $y \wedge z \le x \vee (y \wedge z)$ implies $m(y, n, z) = y \wedge z \in \langle x \vee (y \wedge z) \rangle_n$.

Hence $y \in \langle z, x \vee (y \wedge z) \rangle^{n}$. Thus by (ii), $x \vee y \in \langle z, x \vee (y \wedge z) \rangle^{n}$. That is, $(x \vee y) \wedge z$ \leq x \vee (y \wedge z) and so (x \vee y) \wedge z = x \vee (y \wedge z). Therefore, [n) is modular.

Similarly, using the condition (ii) we can easily show that (n] is also modular. Hence by [8, theorem 1.5.2], $P_n(S)$ is modular. \Box

We conclude this paper with the following characterization of minimal prime nideals belonging to an n-ideal. Since the proof of this is almost similar to [8, theorem 2.1.4], we omit the proof.

Theorem 1.7 *Let* S *be a distributive nearlattice and* P *be a prime* n-*ideal of* S *belonging to an* n-*ideal* J. *Then the following conditions are equivalent*.

- (i) P *is minimal prime* n-*ideal belonging to* J.
- (ii) $x \in P$ *implies* << $x >_n$, J > $\subset P$.

REFERENCES

- 1. M. Mandelker, *Relative annihilators in lattices*, Duke Math. J. 40, 377-386(1970).
- 2. J. Varlet, *Relative annihilators in semi-lattices,* Bull. Austral. Math. Soc. 9, 169-185(1973).
- 3. A.S.A. Noor and M. A. Ali, *Relative annihilators around a neutral element of a lattice*, Rajshahi University Studies (Part-B), 28,141-146(2000).
- 4. A.S.A. Noor and A.K.M.S. Islam, *Relative annihilators in nearlattices*, Rajshahi University Studies (Part-B), J. Sci. 25, 117-120(1997).
- 5. W.H. Cornish, *Normal lattices*, J. Austral. Math. Soc. 14, 200-215(1972).
- 6. A.S.A. Noor and M.A. Ali, *Minimal Prime* n-*ideals of a lattice*, Journal of Science, North Bengal University Review, India, 9(1), 30-36(1998).
- 7. M.A. Ali, *A study on finitely generated* n-*ideals of a lattice*, Ph.D. Thesis, Rajshshi University, Rajshahi(1998).
- 8. Raihan M.S., On Principal n-Ideals of a Distributive Nearlattice, Ph.D. Thesis, Rajshahi University, Rajshahi(2006).