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Introduction.  

        Relative annihilators in lattices and semi-lattices have been studied by many authors 

including [1], [2], [3] and [4]. Also [5] has used the annihilators in studing relative 

normal lattices. In this paper, we introduce the notion of relative annihilators around a 

fixed element n of a nearlattice S which is used to generalize several results on relatively 

nearlattices. 

        For a, b ∈S, < a, b > denotes the relative annihilator, that is  

< a, b > = {x∈S: x ∧ a ≤ b}. In presence of distributivity, it is easy to show that each 

relative annihilator is an ideal. Also note that < a, b > = < a, a ∧ b >. For detailed 

literature on this see [1] and [4]. Again for a, b∈L, where L is a lattice, recall that  

< a, b >d = {x∈L: x ∨ a ≥ b} is a relative dual annihilator. In presence of distributivity of 

L, < a, b >d is a dual ideal (filter). 

        In case of a nearlattice it is not possible to define a dual relative  

annihilator ideal for any  a and  b. But if n is an upper element of S, then x ∨ n exists for 

all x∈S by the upper bound property of S. Then for any a∈(n], we can talk about dual 

relative annihilator ideal of the form  < a, b >d for any b∈S. That is, for any a ≤ n in S,  

< a, b >d = {x∈S: x ∨ a ≥ b}. 

        For a, b∈S and an upper element n∈S, 

we define,  < a, b >n = {x∈S: m(a, n, x)∈< b >n} 

                                   = {x∈S:  b ∧ n ≤  m(a, n, x) ≤ b ∨ n}. 



        We call < a, b >n the annihilator of a relative to b around the element n or simply a 

relative n-annihilator. It is easy to see that for all a, b∈S, < a, b >n is always a convex 

subset containing n. In presence of distributivity, it can easily be seen that < a, b >n is an 

n-ideal. If 0∈S, then putting n =0, we have, < a, b >n = < a, b >. 

        For two n-ideals A and B of a nearlattice S,   < A, B > denotes   

{x∈S: m(a, n, x)∈B for all  a∈A}, when  n is a medial element. In presence of 

distributivity, clearly < A, B > is an n-ideal. Moreover, we can easily show that  

< a, b >n = < <a>n, <b>n >. 

        In this paper, we have given several characterizations of < a, b>n. We have also 

given some characterizations of distributive and modular nearlattices in terms of relative 

n-annihilators.  

           

.



1. Relative Annihilators around a central element of a Nearlattice. 

 

We start with the following characterization of  < a, b >n. 

 

Theorem 1.1  Let S be a nearlattice with a central element n. Then for all  

 a, b∈S, the following conditions are equivalent.  

(i)  <a, b >n  is an  n-ideal. 

(ii)  < a ∧ n, b ∧ n >d is a filter and  < a ∨ n, b ∨ n >  is an ideal. 

Proof.  (I)⇒(ii). Suppose (i) holds. Let x, y∈< a ∨ n, b ∨ n >   and   

x ∨ y exists. Then x ∧ (a ∨ n) ≤ (b ∨ n). Thus  (x ∧ (a ∨ n)) ∨ n ≤ (b ∨ n), then by the 

neutrality of  n, (x ∨ n) ∧ (a ∨ n) ≤ (b ∨ n).    

Also m(x ∨ n, n, a)  =  (x ∨ n) ∧ (a ∨ n) ≤ b ∨ n. This implies x ∨ n∈< a, b >n. Similarly, 

y ∨ n∈< a, b >n. Since < a, b >n is an n-ideal,  

so x ∨ y ∨ n ∈ < a, b >n. This implies   m(x ∨ y ∨ n, n, a) ≤ b ∨ n.  That is,  

 (x ∨ y ∨ n) ∧ (a ∨ n) ≤ b ∨ n and so (x ∨ y) ∧ (a ∨ n) ≤ b ∨ n. Therefore,  

x ∨ y∈< a ∨ n, b ∨ n >. 

Moreover, for x∈ < a ∨ n, b ∨ n > and t ≤  x (t∈S).  

Obviously,    t ∧ (a ∨ n) ≤ b ∨ n, and so  t∈< a ∨ n, b ∨ n >.  

Hence < a ∨ n, b ∨ n > is an ideal.  

A dual proof of above shows that  < a ∧ n, b ∧ n >d  is a filter.  

(ii)⇒(i). Suppose (ii) holds and x, y∈< a, b >n.  

Then b ∧ n ≤  (x ∧ a) ∨ (x ∧ n) ∨ (a ∧ n) ≤ b ∨ n, and   

b ∧ n ≤ (y ∧ a) ∨ (y ∧ n) ∨ (a ∧ n) ≤ b ∨ n. So, b ∨ n ≤ [(x ∧ a) ∨ (x ∧ n) ∨ (a ∧ n)] ∧ n = 

(x ∧ n) ∨ (a ∧ n). This implies x ∧ n∈< a ∧ n, b ∧ n >d. Similarly,   

y ∧ n ∈ < a ∧ n, b ∧ n >d. Since  < a ∧ n, b ∧ n >d  is a filter, so we have,  x ∧ y ∧ n ∈ < a 

∧ n, b ∧ n >d. Thus, (x ∧ y ∧ n) ∨ (a ∧ n) ≥ (b ∧ n).  

But m(x ∧ y ∧ n, n, a) = (x ∧ y ∧ n) ∨ (a ∧ n) ≥ (b ∧ n), and   

so x ∧ y ∧ n∈< a, b >n. Again, by neutrality of n, (x ∨ n) ∧ (a ∨ n) =  

(x ∧ a) ∨ n ≤ (b ∨ n). Similarly, (y ∨ n) ∧ (a ∨ n) ≤  (b ∨ n).   



Thus ((x ∧ y) ∨ n) ∧ (a ∨ n) ≤ (b ∨ n).  

But  ((x ∧ y) ∨ n) ∧ (a ∨ n) = m((x ∧ y) ∨ n, n, a), as n is neutral.  

There fore, (x ∧ y) ∨ n∈< a, b >n and so by the convexity of < a, b >n,  

x ∧ y∈< a, b >n. 

 A dual proof of above shows that x ∨ y∈< a, b >n.  Clearly, < a, b >n contains n. 

Therefore, < a, b >n is an n –ideal. � 

 

Proposition 1.2 Let  S be a nearlattice with a central element  n. Then for all a, b∈S, the 

following conditions hold.  

(i)  < a ∨ n, b ∨ n > is an ideal if and only if  [n) is a distributive  

                   subnearlattice of S. 

(ii) < a ∧ n, b ∧ n >d  is a filter if and only if  (n]d is a distributive 

                       subnearlattice of  S.  

Proof. Suppose for all a, b∈S,  < a ∨ n, b ∨ n > is an ideal. Thus for all   

p, q∈[n), < p, q > ∩ [n) is an ideal in the subnearlattice  [n).Then by  [1.1], [n) is 

distributive.  

Conversely, suppose [n) is distributive. Let x, y∈< a ∨ n, b ∨ n > and x ∨ y exists. Then  

x ∧ (a ∨ n) ≤ b ∨ n. Since n is neutral, so (x ∨ n) ∧ (a ∨ n) =  

[x ∧ (a ∨ n)] ∨ n ≤ b ∨ n  implies that  x ∨ n∈< a ∨ n, b ∨ n >. 

Similarly, y ∨ n∈< a ∨ n, b ∨ n >. Then (x ∨ y) ∧ (a ∨ n)  

≤ (x ∨ y ∨ n) ∧ (a ∨ n) = [(x ∨ n) ∧ (a ∨ n)] ∨ [(y ∨ n) ∧ (a ∨ n)] as [n) is distributive.                                  

≤ (b ∨ n). 

Therefore, x ∨ y∈< a ∨ n, b ∨ n >. Since < a ∨ n, b ∨ n > has always the hereditary 

property, so < a ∨ n, b ∨ n > is an ideal. 

(ii) can be proved dually.  � 

 

By Theorem 1.1  and above result and using  [8, theorem 1.5.2], we have the 

following result. 

  



Theorem  1.3  Let S be a nearlattice with a central element n. Then for all  a, b∈S,  

< a, b >n is an  n-ideal if and only if Pn(S) is distributive nearlattice. � 

 

Recall that a nearlattice S is distributive if for all x, y, z∈S,   

x ∧(y ∨ z) = (x ∧ y) ∨ (x ∧ z)  provided  y ∨ z  exists.[3] has given an alternative 

definition of distributivity of  S. A nearlattice S is distributive if and only if for all t, x, y, 

z∈S, t ∧ ((x ∧ y) ∨ (x ∧ z)) = (t ∧ x ∧ y) ∨ (t ∧ x ∧ z).  

Similarly, by  [4], a nearlattice  S is modular if and only if for all  t, x, y, z∈S with  z ≤ x,   

x ∧ ((t ∧ y) ∨ (t ∧ z)) = (x ∧ t ∧ y) ∨ (t ∧ z).  

Since for a sesquimedial element  n, S is distributive if and only if  Pn(S) is distributive, 

we have the following Corollary, which is a generalization of   

[1, Theorem 1] and a result of  [6]. This also generalizes a result of  

[7, theorem  3.1.3.]. 

 

Corollary  1.4  Suppose  S is a nearlattice. Then for a central element n∈S,  < a, b >n is 

an  n-ideal for all  a, b∈S if and only if  S is distributive. � 

 

[1] gave a characterization of distributive lattices in terms of relative annihilators. 

Then  [4] extended the result for nearlattices. [3] generalized the result for  n-ideals in 

lattices. Following result gives a generalization of that result for n-ideals in nearlattices. 

 

Theorem 1.5  Let n be a central element of a nearlattice S. Then the following conditions 

are equivalent. 

(i) S is distributive. 

(ii)  < a ∨ n, b ∨ n > is an ideal and  < a ∧ n, b ∧ n >d is a filter 

                        whenever < b >n ⊆ < a >n. 

Proof. (i)⇒(ii). Suppose (i) holds. That is, S is distributive. Then by Corollary1.4,  

< a, b >n is an n-ideal for all a, b∈ S. Thus by Theorem 1.1, (ii) holds.  

(ii)⇒(i). Suppose (ii) holds and let x, y, z∈[n) and  y ∨ z exists.  



Clearly,  (x ∧ y) ∨ (x ∧ z) ≤ x. So, < x, (x ∧ y) ∨ (x ∧ z) > is an ideal as   

< (x ∧ y) ∨ (x ∧ z) >n ⊆ < x >n. Since  x ∧ y ≤ (x ∧ y) ∨ (x ∧ z),  

so  y∈< x, (x ∧ y) ∨ (x ∧ z) >. Similarly, z∈< x, (x ∧ y) ∨ (x ∧ z) >. 

Hence  y ∨ z∈< x, (x ∧ y) ∨ (x ∧ z) > and so  x ∧ (y ∨ z) ≤ (x ∧ y) ∨ (x ∧ z). This implies 

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and so [n) is distributive. Using the other part of (ii) we 

can similarly show that (n] is also distributive. Thus by [8, theorem 1.5.2],  Pn(S) is 

distributive and so  S is distributive. � 

 

Theorem 1.6  Let n be a central element of a nearlattice S. Then the following conditions 

are equivalent. 

(i)  Pn(S) is modular. 

(ii)  For a, b∈S with < b >n ⊆ < a >n, x∈< b >n and y∈< a, b >n

                       imply x ∧ y,  x ∨ y∈< a, b >n if  x ∨ y exists in  S. 

Proof.  (i)⇒(ii). Suppose   Pn(S) is modular. Then by [8, theorem 1.5.2], [n) and  (n] are 

modular. Here  < b >n ⊆ < a >n, so  a ∧ n ≤ b ∧ n ≤ n ≤ b ∨ n ≤ a ∨ n. Since x∈< b >n, so 

b ∧ n ≤ x ≤ b ∨ n.  

Hence  a ∧ n ≤ b ∧ n ≤ x ∧ n ≤ x ∨ n ≤ b ∨ n ≤ a ∨ n. 

Now, y∈< a, b >n implies m(y, n, a)∈< b >n. 

Thus, (y ∧ a) ∨ (y ∧ n) ∨ (a ∧ n) ≤ b ∨ n, and so by the neutrality of n,  

((y ∧ a) ∨ (y ∧ n) ∨ (a ∧ n)) ∨ n = (y ∨ n) ∧ (a ∨ n) ≤ b ∨ n.  

Thus, using the modularity of [n) and the existence of x ∨ y,  

m(x ∨ y ∨ n, n, a) = (x ∨ y ∨ n) ∧ (a ∨ n) 

           = [(a ∨ n) ∧ (y ∨ n)] ∨ (x ∨ n) as  x ∨ n ≤ b ∨ n ≤ a ∨ n.  

This implies  m(x ∨ y ∨ n, n, a) ≤ b ∨ n  and so  x ∨ y ∨ n ∈ < a, b >n. Since n is neutral, 

so a ∧ n ≤ b ∧ n ≤ x ∧ n implies that   

b ∧ n ≤ (x ∧ n) ∨ (y ∧ n) ∨ (a ∧ n) 

         = ((x ∨ y) ∧ n) ∨ (a ∧ n) 

         = m((x ∨ y) ∧ n, n, a) 

         ≤ b ∨ n.     



Therefore, (x ∨ y) ∧ n∈< a, b >n. Hence by convexity of < a, b >n,  

x ∨ y∈< a, b >n. 

Again, using the modularity of (n], a dual proof of above shows that   

x ∧ y∈< a, b >n. Hence (ii) holds. 

(ii)⇒(i). Suppose (ii) holds. Let x, y, z∈[n)  with  x ≤ z and whenever  x ∨ y exists. Then 

x ∨ (y ∧ z) ≤ z. This implies < x ∨ (y ∧ z) >n ⊆ < z >n. 

 Now, x ≤ x ∨ (y ∧ z) implies x∈< x ∨ (y ∧ z) >n. 

Again,  y ∧ z ≤ x ∨ (y ∧ z) implies  m(y, n, z) = y ∧ z∈< x ∨ (y ∧ z) >n.  

Hence y ∈ < z, x ∨ (y ∧ z) >n. Thus by (ii), x ∨ y∈< z, x ∨ (y ∧ z) >n. That is,  (x ∨ y) ∧ z 

≤ x ∨ (y ∧ z)  and so  (x ∨ y) ∧ z = x ∨ (y ∧ z). Therefore,  [n) is modular. 

Similarly, using the condition (ii) we can easily show that (n] is also modular. Hence by 

[8, theorem 1.5.2], Pn(S) is modular. � 

 

We conclude this paper with the following characterization of minimal prime n-

ideals belonging to an n-ideal. Since the proof of this is almost similar to [8, theorem 

2.1.4], we omit the proof. 

 

Theorem 1.7   Let S be a distributive nearlattice and P be a prime n-ideal of  S 

belonging to an  n-ideal  J. Then the following conditions are equivalent. 

(i) P is minimal prime n-ideal belonging to J. 

(ii)  x∈P implies  < < x >n, J > ⊄ P. �   
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