Characterizations of relative n-annihilators of nearlattices

Dr. M. S. Raihan Associate Professor Department of Mathematics Rajshahi University

Characterizations of relative n-annihilators of nearlattices

Abstract: In this paper we have introduced the notion of relative n-annihilators around a fixed element n of a nearlattice S which is used to generalize several results on relatively nearlattices. We have also given some characterizations of distributive and modular nearlattices in terms of relative n- annihilators.

Keywords: Annihilator, Relative annihilator and Relative n-annihilator.

AMS Subject classifications (2001): 06A12, 06A99, 06B10.

Introduction.

Relative annihilators in lattices and semi-lattices have been studied by many authors including [1], [2], [3] and [4]. Also [5] has used the annihilators in studing relative normal lattices. In this paper, we introduce the notion of relative annihilators around a fixed element n of a nearlattice S which is used to generalize several results on relatively nearlattices.

For a, $b \in S$, < a, b > denotes the relative annihilator, that is

 $< a, b > = {x \in S: x \land a \le b}$. In presence of distributivity, it is easy to show that each relative annihilator is an ideal. Also note that $< a, b > = < a, a \land b >$. For detailed literature on this see [1] and [4]. Again for a, b \in L, where L is a lattice, recall that $< a, b >_d = {x \in L: x \lor a \ge b}$ is a relative dual annihilator. In presence of distributivity of L, $< a, b >_d$ is a dual ideal (filter).

In case of a nearlattice it is not possible to define a dual relative

annihilator ideal for any a and b. But if n is an upper element of S, then $x \vee n$ exists for all $x \in S$ by the upper bound property of S. Then for any $a \in (n]$, we can talk about dual relative annihilator ideal of the form $\langle a, b \rangle_d$ for any $b \in S$. That is, for any $a \leq n$ in S, $\langle a, b \rangle_d = \{x \in S : x \vee a \geq b\}$.

For a, b \in S and an upper element n \in S, we define, $\langle a, b \rangle^n = \{x \in S: m(a, n, x) \in \langle b \rangle_n\}$

$$= \{ x \in S: b \land n \le m(a, n, x) \le b \lor n \}.$$

We call $< a, b >^n$ the annihilator of a relative to b around the element n or simply a relative n-annihilator. It is easy to see that for all a, $b \in S$, $< a, b >^n$ is always a convex subset containing n. In presence of distributivity, it can easily be seen that $< a, b >^n$ is an n-ideal. If $0 \in S$, then putting n =0, we have, $< a, b >^n = < a, b >$.

For two n-ideals A and B of a nearlattice S, < A, B > denotes

•

 $\{x \in S: m(a, n, x) \in B \text{ for all } a \in A\}$, when n is a medial element. In presence of distributivity, clearly < A, B > is an n-ideal. Moreover, we can easily show that $< a, b >^n = < <a>_n, _n >$.

In this paper, we have given several characterizations of $\langle a, b \rangle^n$. We have also given some characterizations of distributive and modular nearlattices in terms of relative n-annihilators.

1. Relative Annihilators around a central element of a Nearlattice.

We start with the following characterization of $\langle a, b \rangle^n$.

Theorem 1.1 Let S be a nearlattice with a central element n. Then for all $a, b \in S$, the following conditions are equivalent.

(i) $\langle a, b \rangle^n$ is an n-ideal.

(ii) $\langle a \wedge n, b \wedge n \rangle_d$ is a filter and $\langle a \vee n, b \vee n \rangle$ is an ideal.

Proof. (I) \Rightarrow (ii). Suppose (i) holds. Let x, y $\in <$ a \lor n, b \lor n > and

 $x \lor y$ exists. Then $x \land (a \lor n) \le (b \lor n)$. Thus $(x \land (a \lor n)) \lor n \le (b \lor n)$, then by the neutrality of $n, (x \lor n) \land (a \lor n) \le (b \lor n)$.

Also m(x \vee n, n, a) = (x \vee n) \wedge (a \vee n) \leq b \vee n. This implies x \vee n \in < a, b $>^{n}$. Similarly,

 $y \lor n \in \langle a, b \rangle^n$. Since $\langle a, b \rangle^n$ is an n-ideal,

so $x \lor y \lor n \in \langle a, b \rangle^n$. This implies $m(x \lor y \lor n, n, a) \le b \lor n$. That is,

 $(x \lor y \lor n) \land (a \lor n) \le b \lor n$ and so $(x \lor y) \land (a \lor n) \le b \lor n$. Therefore,

 $x \lor y \in < a \lor n, b \lor n >.$

Moreover, for $x \in \langle a \lor n, b \lor n \rangle$ and $t \leq x$ ($t \in S$).

Obviously, $t \land (a \lor n) \le b \lor n$, and so $t \in \langle a \lor n, b \lor n \rangle$.

Hence $\langle a \lor n, b \lor n \rangle$ is an ideal.

A dual proof of above shows that $\langle a \wedge n, b \wedge n \rangle_d$ is a filter.

(ii) \Rightarrow (i). Suppose (ii) holds and x, y $\in <$ a, b $>^{n}$.

Then $b \land n \le (x \land a) \lor (x \land n) \lor (a \land n) \le b \lor n$, and

 $b \land n \le (y \land a) \lor (y \land n) \lor (a \land n) \le b \lor n$. So, $b \lor n \le [(x \land a) \lor (x \land n) \lor (a \land n)] \land n = (x \land a) \lor (x \land n) \lor (x \land n) \lor (x \land n)$

 $(x \land n) \lor (a \land n)$. This implies $x \land n \in \langle a \land n, b \land n \rangle_d$. Similarly,

 $y \land n \in \langle a \land n, b \land n \rangle_d$. Since $\langle a \land n, b \land n \rangle_d$ is a filter, so we have, $x \land y \land n \in \langle a \rangle$

 \wedge n, b \wedge n $>_d$. Thus, (x \wedge y \wedge n) \vee (a \wedge n) \geq (b \wedge n).

But $m(x \land y \land n, n, a) = (x \land y \land n) \lor (a \land n) \ge (b \land n)$, and

so $x \land y \land n \in \langle a, b \rangle^n$. Again, by neutrality of n, $(x \lor n) \land (a \lor n) =$

 $(x \land a) \lor n \le (b \lor n)$. Similarly, $(y \lor n) \land (a \lor n) \le (b \lor n)$.

Thus $((x \land y) \lor n) \land (a \lor n) \le (b \lor n)$.

But $((x \land y) \lor n) \land (a \lor n) = m((x \land y) \lor n, n, a)$, as n is neutral.

There fore, $(x \land y) \lor n \in \langle a, b \rangle^n$ and so by the convexity of $\langle a, b \rangle^n$,

 $x \wedge y \in \langle a, b \rangle^n$.

A dual proof of above shows that $x \lor y \in < a, b >^n$. Clearly, $< a, b >^n$ contains n. Therefore, $< a, b >^n$ is an n-ideal. \Box

Proposition 1.2 *Let* S *be a nearlattice with a central element* n. *Then for all* $a, b \in S$, *the following conditions hold.*

Proof. Suppose for all $a, b \in S$, $\langle a \lor n, b \lor n \rangle$ is an ideal. Thus for all

p, $q \in [n)$, $< p, q > \cap [n)$ is an ideal in the subnear lattice [n]. Then by [1.1], [n] is distributive.

Conversely, suppose [n) is distributive. Let x, $y \in \langle a \lor n, b \lor n \rangle$ and $x \lor y$ exists. Then $x \land (a \lor n) \le b \lor n$. Since n is neutral, so $(x \lor n) \land (a \lor n) =$

 $[x \land (a \lor n)] \lor n \le b \lor n$ implies that $x \lor n \in \langle a \lor n, b \lor n \rangle$.

Similarly, $y \lor n \in \langle a \lor n, b \lor n \rangle$. Then $(x \lor y) \land (a \lor n)$

 \leq $(x \lor y \lor n) \land (a \lor n) = [(x \lor n) \land (a \lor n)] \lor [(y \lor n) \land (a \lor n)]$ as [n) is distributive.

 \leq (b \vee n).

Therefore, $x \lor y \in \langle a \lor n, b \lor n \rangle$. Since $\langle a \lor n, b \lor n \rangle$ has always the hereditary property, so $\langle a \lor n, b \lor n \rangle$ is an ideal.

(ii) can be proved dually. \Box

By Theorem 1.1 and above result and using [8, theorem 1.5.2], we have the following result.

Theorem 1.3 Let S be a nearlattice with a central element n. Then for all $a, b \in S$, $< a, b >^n$ is an n-ideal if and only if $P_n(S)$ is distributive nearlattice. \Box

Recall that a nearlattice S is distributive if for all x, y, $z \in S$,

 $x \land (y \lor z) = (x \land y) \lor (x \land z)$ provided $y \lor z$ exists.[3] has given an alternative definition of distributivity of S. A nearlattice S is distributive if and only if for all t, x, y, $z \in S$, $t \land ((x \land y) \lor (x \land z)) = (t \land x \land y) \lor (t \land x \land z)$.

Similarly, by [4], a nearlattice S is modular if and only if for all t, x, y, $z \in S$ with $z \le x$, $x \land ((t \land y) \lor (t \land z)) = (x \land t \land y) \lor (t \land z).$

Since for a sesquimedial element n, S is distributive if and only if $P_n(S)$ is distributive, we have the following Corollary, which is a generalization of

[1, Theorem 1] and a result of [6]. This also generalizes a result of

[7, theorem 3.1.3.].

Corollary 1.4 Suppose S is a nearlattice. Then for a central element $n \in S$, $< a, b >^n$ is an n-ideal for all $a, b \in S$ if and only if S is distributive. \Box

[1] gave a characterization of distributive lattices in terms of relative annihilators. Then [4] extended the result for nearlattices. [3] generalized the result for n-ideals in lattices. Following result gives a generalization of that result for n-ideals in nearlattices.

Theorem 1.5 *Let* n *be a central element of a nearlattice* S. *Then the following conditions are equivalent.*

- (i) S is distributive.
- (ii) $< a \lor n, b \lor n > is an ideal and <math>< a \land n, b \land n >_d is a filter$ whenever $< b >_n \subseteq < a >_n$.

Proof. (i) \Rightarrow (ii). Suppose (i) holds. That is, S is distributive. Then by Corollary1.4, $< a, b >^{n}$ is an n-ideal for all $a, b \in S$. Thus by Theorem 1.1, (ii) holds. (ii) \Rightarrow (i). Suppose (ii) holds and let x, y, z \in [n) and y \lor z exists. Clearly, $(x \land y) \lor (x \land z) \le x$. So, $\langle x, (x \land y) \lor (x \land z) \rangle$ is an ideal as

 $\langle (x \land y) \lor (x \land z) \rangle_n \subseteq \langle x \rangle_n$. Since $x \land y \le (x \land y) \lor (x \land z)$,

so $y \in \langle x, (x \land y) \lor (x \land z) \rangle$. Similarly, $z \in \langle x, (x \land y) \lor (x \land z) \rangle$.

Hence $y \lor z \in \langle x, (x \land y) \lor (x \land z) \rangle$ and so $x \land (y \lor z) \leq (x \land y) \lor (x \land z)$. This implies $x \land (y \lor z) = (x \land y) \lor (x \land z)$ and so [n) is distributive. Using the other part of (ii) we can similarly show that (n] is also distributive. Thus by [8, theorem 1.5.2], $P_n(S)$ is distributive and so S is distributive. \Box

Theorem 1.6 Let n be a central element of a nearlattice S. Then the following conditions are equivalent.

- (i) $P_n(S)$ is modular.
- (ii) For a, $b \in S$ with $\langle b \rangle_n \subseteq \langle a \rangle_n$, $x \in \langle b \rangle_n$ and $y \in \langle a, b \rangle^n$ imply $x \land y$, $x \lor y \in \langle a, b \rangle^n$ if $x \lor y$ exists in S.

Proof. (i) \Rightarrow (ii). Suppose $P_n(S)$ is modular. Then by [8, theorem 1.5.2], [n) and (n] are modular. Here $\langle b \rangle_n \subseteq \langle a \rangle_n$, so $a \wedge n \leq b \wedge n \leq n \leq b \vee n \leq a \vee n$. Since $x \in \langle b \rangle_n$, so $b \wedge n \leq x \leq b \vee n$.

Hence $a \land n \le b \land n \le x \land n \le x \lor n \le b \lor n \le a \lor n$.

Now, $y \in \langle a, b \rangle^n$ implies $m(y, n, a) \in \langle b \rangle_n$.

Thus, $(y \land a) \lor (y \land n) \lor (a \land n) \le b \lor n$, and so by the neutrality of n,

 $((y \land a) \lor (y \land n) \lor (a \land n)) \lor n = (y \lor n) \land (a \lor n) \le b \lor n.$

Thus, using the modularity of [n) and the existence of $x \lor y$,

 $m(x \lor y \lor n, n, a) = (x \lor y \lor n) \land (a \lor n)$

 $= [(a \lor n) \land (y \lor n)] \lor (x \lor n) \text{ as } x \lor n \le b \lor n \le a \lor n.$

This implies $m(x \lor y \lor n, n, a) \le b \lor n$ and so $x \lor y \lor n \in \langle a, b \rangle^n$. Since n is neutral, so $a \land n \le b \land n \le x \land n$ implies that

$$b \wedge n \leq (x \wedge n) \vee (y \wedge n) \vee (a \wedge n)$$
$$= ((x \vee y) \wedge n) \vee (a \wedge n)$$
$$= m((x \vee y) \wedge n, n, a)$$
$$\leq b \vee n.$$

Therefore, $(x \lor y) \land n \in \langle a, b \rangle^n$. Hence by convexity of $\langle a, b \rangle^n$,

 $x \lor y \in \langle a, b \rangle^n$.

Again, using the modularity of (n], a dual proof of above shows that

 $x \land y \in \langle a, b \rangle^n$. Hence (ii) holds.

(ii) \Rightarrow (i). Suppose (ii) holds. Let x, y, z \in [n) with x \leq z and whenever x \lor y exists. Then

 $x \lor (y \land z) \le z$. This implies $\langle x \lor (y \land z) \rangle_n \subseteq \langle z \rangle_n$.

Now, $x \le x \lor (y \land z)$ implies $x \in \langle x \lor (y \land z) \rangle_n$.

Again, $y \land z \le x \lor (y \land z)$ implies $m(y, n, z) = y \land z \in \langle x \lor (y \land z) \rangle_n$.

Hence $y \in \langle z, x \lor (y \land z) \rangle^n$. Thus by (ii), $x \lor y \in \langle z, x \lor (y \land z) \rangle^n$. That is, $(x \lor y) \land z \leq x \lor (y \land z)$ and so $(x \lor y) \land z = x \lor (y \land z)$. Therefore, [n) is modular.

Similarly, using the condition (ii) we can easily show that (n] is also modular. Hence by [8, theorem 1.5.2], $P_n(S)$ is modular. \Box

We conclude this paper with the following characterization of minimal prime nideals belonging to an n-ideal. Since the proof of this is almost similar to [8, theorem 2.1.4], we omit the proof.

Theorem 1.7 Let S be a distributive nearlattice and P be a prime n-ideal of S belonging to an n-ideal J. Then the following conditions are equivalent.

- (i) P is minimal prime n-ideal belonging to J.
- (ii) $x \in P$ implies $\langle \langle x \rangle_n, J \rangle \not\subset P$. \Box

REFERENCES

- 1. M. Mandelker, Relative annihilators in lattices, Duke Math. J. 40, 377-386(1970).
- J. Varlet, *Relative annihilators in semi-lattices*, Bull. Austral. Math. Soc. 9, 169-185(1973).
- 3. A.S.A. Noor and M. A. Ali, *Relative annihilators around a neutral element of a lattice*, Rajshahi University Studies (Part-B), 28,141-146(2000).
- 4. A.S.A. Noor and A.K.M.S. Islam, *Relative annihilators in nearlattices*, Rajshahi University Studies (Part-B), J. Sci. 25, 117-120(1997).
- 5. W.H. Cornish, Normal lattices, J. Austral. Math. Soc. 14, 200-215(1972).
- A.S.A. Noor and M.A. Ali, *Minimal Prime* n-*ideals of a lattice*, Journal of Science, North Bengal University Review, India, 9(1), 30-36(1998).
- M.A. Ali, A study on finitely generated n-ideals of a lattice, Ph.D. Thesis, Rajshshi University, Rajshahi(1998).
- 8. Raihan M.S., On Principal n-Ideals of a Distributive Nearlattice, Ph.D. Thesis, Rajshahi University, Rajshahi(2006).