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Abstract
The linear stability of a thin film of viscous fluid falling down an uneven
inclined heated wall is examined. Long wave theory developed by Benny
[1] is employed. It is demonstrated that Marangoni effect makes the flow
unstable when either the inclination is quite steep or when the bottom
undulations are sufficiently short.

Introduction

The thin liquid film has a vast number of important industrial applications, such
as cooling of thin liquid film radiator, hot fuel surfaces in nuclear reactors, rocket
engines, microelectronics arrays, and gas turbine blade tips. If the fluid layer is
sufficiently thin, thermocapillary convection induced by gradients in surface
tension, is expected to be the dominant instability mechanism. This is known as
the Marangoni effect.

Using a long wave perturbation method, Benny [1] was the first to obtain a single
equation of the evolution type for the free surface in the case of isothermal flow.
In the investigation of thermocapillary force on the span of
supercritical/subcritical regions, Mukhopadhyay and Mukhopadhyay [2] reported
that the unconditional stable region vanishes after a cutoff Marangoni number,
whereas other regions increase with the increase in Marangoni number for fixed
values of other parameters. Furthermore, both amplitude and nonlinear wave
speed increase in the supercritical region. On the other hand, in the subcritical
region, the threshold amplitude decreases with the increase in Marangoni
number. By taking a large Pe’clet number for the dynamics of a film going down
a heated wall, Trevelyan et al. [3] show two types of wall boundary conditions:
heat flux and specified temperature (ST). They employ a weighted residual
attempt via a first order in ¢ single mode Galerkin approximation of the
momentum equation to develop averaged models. The heat transport was
represented by two approaches: (i) a simple first order in ¢ weighted residual
approximation through a single test function which does not meet all boundary
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conditions, (ii) a refined treatment of the energy equation with a first order in ¢
Galerkin approximation based on a set of test functions that satisfy all boundary
conditions. They also formulated a long wave equation (LWE) approximation to
make sure that the models obtained from their refined weigthed residuals
approach based on a high-order Galerkin projection yield LWE with an
appropriate gradient expansion, thus confirming the validity of their models close
to criticality.

The stability of flow over uneven topography was considered by Davalos-
Orozco [4] who utilized a Benny type equation to analyze Newtonian flow down
a vertical wall with smooth corrugations. D'Alessio et al. [5] derive and
implement a model for laminar flow over an inclined surface exhibiting periodic
undulations in the case of isothermal flow. Their model includes inertial and
surface tension effects as well as important second-order diffusive terms by using
weighted residual method. The stability of a viscous film sliding a vertical non-
uniformly heated wall under gravity was studied by Samanta [6]. She shows that
as Pe’clet number increases, the subcritical stable region decreases while the
supercritical unstable region increases.

The present investigation uses long wave theory to investigate the linear
stability of a thin film falling down an uneven inclined heated wall
including inertial as well as surface tension effects coupled with important
second-order diffusive terms.

Mathematical Formulation

We consider the two dimensional flow of a thin viscous liquid film flowing down
an uneven inclined heated plane. We define an (X, z) coordinate system with the
x-axis inclined at an angle B with respect to the horizontal direction, and with
the z-axis pointing in the upward normal direction. The surface over which the
fluid is flowing is given by z = b(x). The governing equations are: continuity,
momentum of the fluid flow and energy for the temperature field

Vu=0 1(a)
L\ 1 2.

U +lUVu=——Vp+oV-u+g

¢ +(0.v) . , 1(b)

Ty +(@0.V)T =v2T 1(c)
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where @, p, p, and T are the velocity, density, pressure and temperature of the
liquid film respectively, g is the acceleration due to gravity, v = p/ p is the the
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Fig.1. Numerical steady-state solution for M, = 0,5, and W, =100, R, =5, a, =0.2,
k =2x, cotp =0.5.

kinematic viscosity, k is the thermal diffusivity of the liquid and p is the
magnetic permeability. On the wall, the boundary condition for the velocity is

u=w=0 on z=Db(x).
The thermal boundary condition for the specified temperature is
T=T, on z =b(x),

where T, is the constant wall temperature for ST. At the free surface z =z, =
h(x,t) + b(x), the boundary conditions are

fi=vo.f, Patizi=c(MVL, 2()
he +GV(h—2)=0 2(b)

AVTH +ag(T —T,) =0 2(c)
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Fig.2. Numerical steady-state solution for M, =0, 5, and W, = 100, R, = 5,
am=0.2, k=2nx,cotp=5.

1
Here N"=——1 [ lel]r and 1X] are unit vectors normal
(1+ le)}/ GA— Z1x

(outward pointing) and tangential to the interface, respectively, and = pi +2ue i

ouj Ouj
the stress tensor with the rate of strain tensor €= ( ax' +—6X_ ] I is the identity
| 1

matrix, o is the surface tension of the liquid, p, is the pressure of the ambient gas

phase and oy is the heat transfer co-efficient between the liquid and the air.

We have assumed the thermocapillary effect to be modeled by using a linear a

approximation for the surface tension

o(T)=0p — (T -Ta),

where oy is the surface tension at the reference temperature, T, taken to be the
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Fig.3. Numerical steady-state solution for M, =0, 5, and W, = 20, R, = 5,
am=0.2, k=2nx, cotp=0.5.

temperature of the ambient gas phase, and =—[g—:] is a positive constant for
T=T,

most common fluids.

We define the dimensionless quantities for the governing equations and
boundary conditions as
H * L *
U =Uu*, W:TUW , t:Ut , p=pU?p*,
X=Lx*z=Hz* T-T,= atT*, h=Hh*
The equations of motion and energy in dimensionless form become(after
droping *'s)
Uy +W; =0 3(a)

5Re(ut+uux+wuz):—5Rer+3+52uXX+uzz, 3(b)
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Fig.4. Numerical steady-state solution for M, =0, 5, and W, = 20, R, = 5,
am=0.2, k=2nx, cotp =5.

§Re(wt +uwx+wwz):—RepZ —3cotﬂ+53wxx+§wzz , 3(c)
1

SRe(T; +uTy +WTZ)=p—(52TXX +TZZ), 3(d)
r

where U = (Q / H), Nusselt thickness H = (3uQ / pg sinp)**, Q is the volume
flux of the equilibrium flow, 8 =H/L =H /A, is the shallowness parameter,
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Fig. 5. Critical Reynolds number R, as a function of bottom amplitude a,, for
different values of Marangoni number, when W, =100, 6 =0.1, B =1,
and cotp =0.5
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Re= pQ / p is the Reynolds number, p, = v/ is the Prandtl number, AT = Ty - T,,
and Ay is the wavelength of the bottom.

The boundary conditions at the wall z = b(x) reduce to

u=w=0, T=1 on z=Db(x).

The boundary conditions at the free surface z = z; = h(x,t) + b(x) are

w=h + 714U, 4(a)
3

2 1 A

p —R—§ﬁ+ 52212XT (52212qu + W, — le(Uz + 52WZ )): — (W, - MaT)(SZleX(1+ 52212XT 2, 4(b)

e

1
@— 62212qu2 +5%w, )— 4522100y = — SM R (Ty + 21T, )(1+ 52z12XT 2, 4(c)
1
2 2.2 o _
(TZ -0 ZlXTXXl"'d ZlXT 2 +BT =0 4(d)

where W, = o,/ pU? is the Weber number, M, = yAT / pHU? is the Marangoni
number, and B = agH /A, = ogH / L is the Biot number.

If the Reynolds number R, Pe’clet number P, (= Re P;), and Marangoni number
M, are assumed to be of O(1), and terms of O(5°) and higher are neglected,
then we obtain the second-order approximation to the Navier-Stokes and energy
equations with respect to &:

Uy +W; =0 5(a)
§Re(ut+qu+Wuz)=—§Rer+3+52uxx+uzz, 5(b)
0=—-Rgp; —3cot S+ Wy , 5(c)
SP(Ty +UTy +WT, )= 62Ty + T, 5(d)

We note that the surface tension is of second order or larger if the Weber number

is of O(1/8) or larger. Neglecting O(5%) and higher order terms, the boundary
conditions on z = b(x) are

u=w=0, T=1, (6)

and the boundary conditions at the free surface z = z; = h(x, t) + b(X) as
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Fig. 6. Critical Reynolds number R, as a function of bottom amplitude a,, for
different values of Marangoni number, when W, =100, 6 =0.1, B =1,

and cotp =b.
w=h + 214U,
20
p —R—Wz +52(We —MgT )21 =0 ,
e

UZ +§2WX _45221Xux :_é‘MaRe(TX + ZlXTZ) ]
1
(TZ —5221XTX)+ BT(1+ 52212XT2 =0
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Fig. 7. Critical Reynolds number R, as a function of bottom amplitude a,, for
different values of Marangoni number, when W, =10,6=0.1,B=1,

and cotp =0.5
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The scaled bottom profile is b(x) = an, cos(2n X), where a, = A,/ H = Ay /62, and
a, = O(1), where the parameters A, and A, the amplitude and wavelength of the
undulations, respectively.

3. Long wave approximation

To find out the asymptotic solutions of the above system of nonlinear equations
together with boundary conditions we use long wave perturbation analysis. The
variables are expanded as

L ' L L L ' L
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a

Fig. 8. Critical Reynolds number R, as a function of bottom amplitude a,, for
different values of Marangoni number, when W, =10,6=0.1,B=1,
and cotp =5

U=Ug+e&Up+--  w=wWyg+ewg+---, P=Po+teéePr+-, T=Tg+eTg+-,
These are then substituted into the system of equations (5a-5d), and boundary

conditions (6a-7d). In this problem we assume We ~ O(1/8%), and M ~ O(1). The
zeroth order (£°) terms in equations and boundary conditions can be written as.

Upx +Woz =0,  Upz; +3=0, 8(a)

RePoz +3cot =0,  Tozz =0, 8(b)

Boundary conditions at z = b(x):
Ug = Wp = 0, To =1. (9)

Boundary conditions at z = h(x, t) + b(x):
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Wo =h; + (hx + by )UO ; 10(a)
Upz =0 10(b)
Po =—-We 52(hxx +by) 10(c)
Toz =—BTp. 10(d)
The solution of the zeroth order equations then is
3
Ug :E(z—b)(2h+b—z) 11(a)
3
Wo = E(Z —b)2hby + (b - z)(hy + by )] , 11(b)
1+ B(h+b-2)
0 _W ' 11(c)
and
3 h+b-
Po :M ~We (e + byy ) . 11(d)

Re
The kinematic boundary condition by using zeroth order solution becomes

by +3h%h, =0 (12)

Equating first order terms (g') from the system of equations and boundary
conditions,

we obtain.

Uy +Wp; =0 13(a)
U1z = Re Pox + Re (Uigt + UgUiox + Wolgz ), 13(b)
Wozz =ReP1z, Tz =Pe(Tor +UoTox + WoToz ). 13(c)
Boundary conditions at z = b(x)

uu=w; =0, T;=0. (14)
Boundary conditions at z = h(x, t) + b(x)

wy = (hy +by )y, 15(a)
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12w, 15(b)
€
Uz =— MaRe[TOx + (hx + bX)TOZ] ) 15(C)
T, =-BT 15(d)
The solution of the first order equations then is given by

1
U = g[(b — 2)(Reuahy + Reugoht + u3)), (16)

wy = Re(b - Z)[(hx)zwll +hyWip + Wiz + hthywag + hewys + hygwyg + w7 + W18J (17)

3
=2 [+ )by -1 2, 9
e
2
T =$ohx[(T11+T12) 22 T3~ F(Tyg +T15)] | 19)
where

Upq = 3(hb3 —3hb%z + 3hbz? — hz® + 4h4)— M,BF?,

Upp = (8bz —4p? +12h? _422), Uyg =—4(z —b—2h)poy cot 2 , F= t+Bh)’

1

W11:4—0

[S(b - z)((b —2)% 4 40h3)]+ MaB%F2(b-12),
Wi :%[Shbx((b —2)%+ 4h3)]— M 4 BF 2by

1 1
W3 :4—0[3h(b - z)((b -2)3 +10h3)]7EMaBF2(b -1),
3h 1
W14:7(b—2), W15:—be[(b—z)2—3h2],
1 1
wg=—=o-2fo-2)-e], iy =262y,

1 1
Wig =E[b -+ 2h]gxp0x +E[(b - be_ z +3h)] Poxx

T =- [3z3B ~15hBz? - 522 + 20h2822J , Tio= [15Bz2 — 207 —15Bhz + 6OBh2Jb
Tia= [33(5z ~b)p? +20Bh%(3z - b)Jb2 , Tia=- 2h3[452h2 +5Bh —lOJz :
Tyis =[Bh(b + 4z)4 + 3Bh)+ 20(z - b)|b® + [2h3(452h2 +5Bh —10) b.

When these values are substituted in the solutions of the zeroth order and first
order equations as well as into the kinematic boundary condition (7a), we obtain

2
hy +3nh2hy + 5| %Rehehx +%MaReBF2h2hX —cot ghS(h, +bx)+%WeReh3(hxxx +byy)| =0 (20)
X



36 H. A. Jasmine. : Rajshahi Univ. J. of Sci. 38, 25-39 (2010)

Equation (20) represents the first order Benny [1] type equation for the viscous
fluid flowing down an uneven incline with heated wall. When h =1, and b =0,
the critical condition for ST yields

5 5 2
Rezgcotﬂ—EMaBF , (21)

where R; is the critical Reynolds number. When M, > 0, the Marangoni effect is
destabilized as R, decreases with increase in M,. When M,< 0, the Marangoni
effect is stabilizes the flow. For M, = 0, the above equation reduces to the well-
known critical condition for free film falling. That is R, = 5/6 cotp which is the
critical R for the isothermal case as obtained by Benjamin [7] and Yih [8]

Linear Stability Analysis

The steady-state solution to the equation (20) is given by h=hy(x) where hs(X)
satisfies the nonlinear differential equation given by

/
2
3h§h§+5gRehghé+%MaReBF2h§h§—cotﬁh§(h’+b’)+%weReh§(h§”+b”’)] =0 (22)

where prime denotes differential with respect to x. We have solved the equation
(22) by using the MATLAB routine bvp4c. Figures 1-4 represents numerical
steady-state solution when M,=0, M,=5, R=5, a,=0.2,k=2n,and B =1. In
figure 1, W, =100 and cotp = 0.5. In figure 2, W, = 100 and cotp = 5. In figure 3,
W, = 20 and cotp = 0.5. In figure 4, W, = 20 and cotp = 5. All these figures show
that Marangoni effect has significant influence on steady-state solution. When
M, = 0, our result is consistent with isothermal case investigated by D'Alessio et
al. [5].

We linearize the equation (20) by introducing perturbation n and setting
h = hg(x) + £ 77 (X, t)
The linearized perturbation equations can be written in the form

92 3 *n

on on n
—+Cn+Crp—+C3—+C4—+C5—=0 (23)
ot ox ox? ox3 axt

where
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1
51+ hyB)*
+180ReHg (h)? ~151E" + 36RehSHY + 5 WeRehCH B + 180RE()*B* + 305 WS B2
+2053W, RSN /B3 + 120K () 2B + 56 W, R0 — 15310 B* + 1053, RrSHLH
— 30 (W)*B* ~100MaReBhg (N)? +144RehEN! B+ 5MReB(H)? +5aMaReBRI +720R2()°B
+1200R ()28 +5M,R.B2h2H, — 1209/ B + 56 WeR2H" + 2053, R13N/'B

Q = (120 B +180:30{B? + 30EH{B* + 3tngh, + 30Ny (H)? ~15:RARE N

+55WRhS0/"'B* — 153 Er/B* + 36R NN/ B* — 30N B* + 105 W, RN /B
+305W,R"'B? + 2053 Reh2b"'B3 + 2053, RhS0"/B + 108GRE ()2 B2

—90 {0’/ B2 - 600" B3 + 216R I h./B2 - 60 B + 144R.h8n!/ B3 —180m N B2
~120 b’ B2 + 105WRhhINY + 4053, R/ B + 720RN (W))? B3 — 60ARH B3
—90rn/B? —60areh,B - 30sn b’ —180mrE(H))2B + 6053, RACHIN! /B2
+105WRehghlb” + 4053, Rh2H’"'B + 6053 RNl B2 + 405 Rohn{h!// B3

+405W,R D83 +1202H[B)
o 1
*efLengf

— 4512 B + 216RnEH.B? + 216N B — 15K B2 +155%W,Roh2hB + 553, R /B8 +

(@502 + 450382 + 1508 + 553, Rehh"/B3 + 1553, Reh2b"B + 155, RS0 /B2

55WeRehhl/ +10M, R, B — 90ARCH, B +155WeRhEH. /B2 + 7250 B2 + 563, Rehgb
—30AKH, Bt — 90NN, B? — 45N B2 + 150, + 72Rhh, —30AhK, —155hb/)hy)

Cs —;&LZRethZ —10AhZB? + 24R,h2B — 20AhZB + 5M 4ReB —10Ah, +12Reh;‘)(>‘h§)

"~ 10(L+ hsB)2

1
Cq=083WgRehZhl , c5=§53we Re h?,

where A = cotf3
The coefficients in equation (23) are periodic functions for the case of an uneven

bottom. We conduct the stability analysis by apply Floguet-Bloch theory. We
consider the perturbation as Bloch-type function in the form
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o0
5= Ot aiKx Znneinkx

N=-o0

Introducing the Bloch-type functions with truncated series into the perturbation
equations yields an algebraic eigenvalue problem. The exponential factor
containing the bloch wave number K represents disturbances which interact with
the periodic bottom topography via the equilibrium flow. The later is represented
by the Fourier series composed of the harmonics of k. In the case of weak bottom
undulations, an approximate method of solution making use of the analytical
steady-state solution can be employed. However, in the general case, the
algebraic eigenvalue problem must be solved numerically for the temporal
growth rate R(c ). In this way we can determine the critical Reynolds number for
the onset of instability, and for supercritical flows we can compute the
wavelength and speed of unstable disturbances.

For the even bottom case, our results reveal that while the critical Reynolds
number is independent of the Weber number, in the presence of bottom
topography the onset of instability is strongly influenced by the effect of
Marangoni number and surface tension. In figures 5-8, we present the
distribution of the critical Reynolds number R, with the amplitude of the bottom
undulation an,, for several values of Marangoni number, k =2z , and B =1. In
figure 5, W, =100 and cotp = 0.5. In figure 6, W, = 100 and cotp = 5. In figure
7, W, = 10 and cotp = 0.5. In figure 8, W, = 10 and cotp = 5. Our results show
that as Marangoni effect increases with decreasing Reynolds number, the
Marangoni effect is destabilizing the flow. When M, =0 , our results are
consistent with those of D'Alessio et al. [5] for isothermal case.

Conclusion

We investigate the periodically varying bottom topography on the linear stability
with combined effect of thermal and strong surface tension. These include a
mathematical model based on the long wave theory first proposed by Benny [1]
for even bottom. This model we have extended to account for heated wavy
bottom topography. Numerical simulations have been done for different values of
Marangoni number and surface tension. Our numerical results show that as
Marangoni number increases, critical Reynolds number decreases and flow
becomes unstable. Asymptotic analyses have also been conducted to both
complement and extend our finding. Theoretical predictions were supported by
our numerical simulations. We conclude that Marangoni effect shall destabilize
the flow provided that the inclination is sufficiently steep or the bottom
undulation are sufficiently short.
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