
Rajshahi University J. of  Sci. 38, 25-39 (2010) 
ISSN 1681-0708  

 

 
 

 
Linear Stability of a Thin Film Flowing 

Down an Uneven Incline 
 

H. A. Jasmine 
Department of Mathematics, University of Rajshahi,  

Rajshahi-6205, Bangladesh 
 
 

Abstract 
The linear stability of a thin film of viscous fluid falling down an uneven 
inclined heated wall is examined. Long wave theory developed by Benny 
[1] is employed. It is demonstrated that Marangoni effect  makes the flow 
unstable when either the inclination is quite steep or when the bottom 
undulations are sufficiently short. 

 
 

Introduction 
The thin liquid film has a vast number of important industrial applications, such 
as cooling of thin liquid film radiator, hot fuel surfaces in nuclear reactors, rocket 
engines, microelectronics arrays, and gas turbine blade tips. If the fluid layer is 
sufficiently thin, thermocapillary convection induced by gradients in surface 
tension, is expected to be the  dominant instability mechanism. This is known as 
the Marangoni effect.  
 

Using a long wave perturbation method, Benny [1] was the first to obtain a single 
equation of the evolution type for the free surface in the case of isothermal flow. 
In the investigation of thermocapillary force on the span of 
supercritical/subcritical regions, Mukhopadhyay and Mukhopadhyay [2] reported 
that the unconditional stable region vanishes after a cutoff Marangoni number, 
whereas other regions increase with the increase in Marangoni number for fixed 
values of other parameters. Furthermore, both amplitude and nonlinear wave 
speed increase in  the supercritical region. On the other hand, in the subcritical 
region, the threshold amplitude decreases with the increase in Marangoni 
number. By taking a large Pe′clet number for the dynamics of a film going down 
a heated wall, Trevelyan et al. [3] show two types of wall boundary conditions: 
heat flux and specified temperature (ST). They employ a weighted residual 
attempt via a first order in ε single mode Galerkin approximation of the 
momentum equation to develop averaged models. The heat transport was 
represented by two approaches: (i) a simple first order in  ε weighted residual 
approximation through a single test function which does not meet all boundary 
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conditions, (ii) a refined treatment of the energy equation with a first order in ε 
Galerkin approximation based on a set of test functions that satisfy all boundary 
conditions. They also formulated a long wave equation (LWE) approximation to 
make sure that the models obtained from their refined weigthed residuals 
approach based on a high-order Galerkin projection yield LWE with an 
appropriate gradient expansion, thus confirming the validity of their models close 
to criticality.  
 
The stability of flow over uneven topography was considered by  Davalos-
Orozco [4] who utilized a Benny type equation to analyze Newtonian flow down 
a vertical wall with smooth corrugations. D'Alessio et al. [5] derive and 
implement a model for laminar flow over an inclined surface exhibiting periodic 
undulations in the case of isothermal flow. Their model includes inertial and 
surface tension effects as well as important second-order diffusive terms by using 
weighted residual method. The stability of a viscous film sliding a vertical non-
uniformly heated wall under gravity was studied by  Samanta [6]. She shows that 
as Pe′clet number increases, the subcritical stable region decreases while the 
supercritical unstable region increases. 
 
The present investigation  uses long wave theory to investigate the linear 
stability of a thin film falling down an uneven inclined heated wall 
including inertial as well as surface tension effects coupled with important 
second-order diffusive terms.  
 
Mathematical Formulation 
 
We consider the two dimensional flow of a thin viscous liquid film flowing down 
an uneven inclined heated plane. We define an (x, z) coordinate system with the 
x-axis inclined at an angle β with respect to the horizontal  direction, and  with 
the z-axis pointing in the upward normal direction. The surface over which the 
fluid is  flowing is given by  z = b(x). The governing equations are: continuity, 
momentum of the fluid flow and energy for the temperature field 
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where , ρ, p, and T are the velocity, density,  pressure and temperature of the 
liquid film respectively,  is the acceleration due to gravity, ν = µ / ρ is the the  

u
r

g
r

 
Fig.1. Numerical steady-state solution for Ma = 0,5, and We =100, Re =5, am =0.2,      
          k = 2π, cotβ = 0.5.   
 
kinematic viscosity, κ is the thermal diffusivity of the liquid and µ is the 
magnetic permeability. On the wall, the boundary condition for the velocity is 
 
 u =  w = 0    on  z = b(x). 
 
The thermal boundary  condition for the specified temperature is 
 
T = Tw    on  z  = b(x), 
 
where  Tw is the constant wall temperature for ST. At the free surface z = z1 = 
h(x,t) + b(x), the boundary conditions are 
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Fig.2. Numerical steady-state solution for Ma = 0, 5, and We = 100, Re = 5,   
          am=0.2,      k = 2π, cotβ = 5.   
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, I is the identity 

matrix, σ is the surface tension of the liquid, pa is the pressure of the ambient gas 

phase and αg is the heat  transfer co-efficient between the liquid and the air. 

 
We have assumed the thermocapillary effect to be modeled by using a linear a 

approximation for the surface tension 

 

( ),)( 0 aTTT −−= γσσ  

where σ0 is the surface tension at the reference temperature, Ta taken to be the 
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Fig.3. Numerical steady-state solution for Ma = 0, 5, and We = 20, Re = 5,   
          am=0.2,   k = 2π, cotβ = 0.5.   
 

temperature of the ambient gas phase, and 
0TTT =

⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

−=
σγ  is a positive constant for 

most common fluids. 
 
We define the dimensionless quantities for the governing equations and 
boundary conditions as 
 

U = Uu* , *wU
L
Hw = ,  *t

U
Lt = ,  p = ρU2 p*,  

x = L x*, z = H z*, T – Ta = *TT∆ , h = Hh* 

The equations of motion and energy in  dimensionless form become(after 
droping *'s) 
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Fig.4. Numerical steady-state solution for Ma = 0, 5, and We = 20, Re = 5,     
          am=0.2,   k = 2π, cotβ = 5.   
 

( ) zzxxzezxte wwpRwwuwwR δδβδ ++−−=++ 3cot3 ,                           3(c) 

( ) ( )zzxx
r

zxte TT
p

wTuTTR +=++ 21 δδ ,                                                           3(d) 

where U = (Q / H), Nusselt thickness  H = (3µQ / ρg sinβ)1/3, Q is the volume 
flux of the equilibrium flow,  δ = H / L = H / λb is the shallowness parameter,  

          
Fig. 5. Critical Reynolds number Re as a function of bottom amplitude am for   
           different values of Marangoni number, when We = 100, δ = 0.1, B = 1,  
           and cotβ =0.5 
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Re= ρQ / µ is the Reynolds number, pr = ν/κ is the Prandtl number, ∆T = TW - Ta,  

and λb is the wavelength of the bottom. 

The boundary conditions at the wall z = b(x)  reduce to 

u = w =0,    T = 1   on    z = b(x).  

The boundary conditions at the free surface  z = z1 = h(x,t) + b(x) are 
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where We = σ0 / ρU2 is the Weber number,  Ma = γ∆T / ρHU2  is the Marangoni 
number, and  B = αgH / λb = αgH / L  is the Biot number.  
 
If the Reynolds number Re, Pe′clet number Pe (= Re Pr), and Marangoni number 
Ma are  assumed to be of O(1), and terms of  O(δ3) and higher  are neglected, 
then we obtain the second-order approximation to the Navier-Stokes and energy 
equations with respect to δ: 
 

0=+ zx wu ,                                                                                                       5(a) 

( ) zzxxxezxte uupRwuuuuR +++−=++ 23 δδδ ,                              5(b) 

zzze wpR δβ +−−= cot30 ,                                                                 5(c) 

( ) zzxxzxte TTwTuTTP +=++ 2δδ ,                                                                        5(d) 
 
We note that the surface tension is of second order or larger if the Weber number 
is of O(1/δ) or larger.  Neglecting O(δ3)  and higher order terms, the boundary 
conditions on  z = b(x) are 
 

u = w = 0,    T =  1,                                                                                        (6) 
 
and the boundary conditions at the free surface z = z1 = h(x, t) + b(x) as 
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Fig. 6. Critical Reynolds number Re as a function of bottom amplitude am for   
          different values of Marangoni number, when We = 100, δ = 0.1, B = 1,  
          and cotβ =5. 
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Fig. 7. Critical Reynolds number Re as a function of bottom amplitude am for  
          different values of Marangoni number, when We = 10, δ = 0.1, B = 1,  
          and cotβ =0.5 
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The scaled bottom profile is b(x) = am cos(2π x), where am = Ab / H = Ab /δλb  and  
ab = O(1), where the parameters Ab and λb the amplitude and wavelength of the 
undulations, respectively. 
 
3. Long wave approximation 
 

To find out the asymptotic solutions of the above system of nonlinear equations 
together with boundary conditions we use long wave perturbation analysis. The 
variables are expanded as 
 

 
Fig. 8. Critical Reynolds number Re as a function of bottom amplitude am for  
           different values of Marangoni number, when We = 10, δ = 0.1, B = 1,  
          and cotβ = 5 
 

L++= 10 uuu ε ,     ,  ,   , L++= 10 www ε L++= 10 ppp ε L++= 10 TTT ε

These are then substituted into the system of equations (5a-5d), and boundary 
conditions (6a-7d). In this problem we assume We ∼ O(1/δ2), and  M ∼ O(1). The 
zeroth order (ε0) terms in equations and boundary conditions can be written as. 
 

000 =+ zx wu ,      ,                                                                    8(a) 030 =+zzu
 

0cot30 =+ βze pR ,       .                                                               8(b)  00 =zzT
 
Boundary conditions at  z =   b(x): 
 
u0  = w0 = 0,      T0 = 1.                                                                                    (9) 
 
Boundary conditions at  z = h(x, t) +  b(x): 
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The solution of the zeroth order equations then is 
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The kinematic boundary condition by using zeroth order solution becomes 
 

03 2 =+ xt hhh                                                                                       (12) 
 
Equating first order terms (ε1) from the system of equations and boundary 
conditions, 
we obtain. 

011 =+ zx wu ,                                                                        13(a) 
( zxtexezz uwuuuRpRu 0000001 +++= ,                                                 13(b) 

zezz pRw 10 = ,      ( )zxtezz TwTuTPT 000001 ++= .                          13(c) 
 
Boundary conditions at  z = b(x) 
 
u1 = w1 = 0 ,    T1 = 0.                                                                                   (14) 
Boundary conditions at  z = h(x, t) + b(x) 
 

( ) 11 ubhw xx += ,                                                                                            15(a) 
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The solution of the first order equations then is given by 
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When these values  are substituted in the solutions of the zeroth order and first 
order equations as well as into the kinematic boundary condition (7a), we obtain 
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Equation (20) represents the first order Benny [1] type equation for the viscous 
fluid flowing down an uneven incline with heated wall. When h =1, and  b =0, 
the critical condition for  ST yields 
 

2
12
5cot

6
5 BFMR ae −= β ,                                                                             (21) 

 
where Rc is the critical Reynolds number. When Ma > 0 , the Marangoni effect is 
destabilized as Rc decreases with increase in Ma. When Ma< 0, the Marangoni 
effect is stabilizes the flow. For  Ma = 0, the above equation reduces to the  well-
known critical condition for free  film falling. That is Rc =  5/6 cotβ  which is the 
critical Re for the isothermal case as obtained by Benjamin [7] and Yih [8] 
 
Linear Stability Analysis 
 
The steady-state solution to the equation (20) is given by   h= hs(x)  where hs(x) 
satisfies the nonlinear differential equation given by 
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where prime denotes differential with respect to x. We have solved the equation 
(22) by using the MATLAB routine bvp4c. Figures 1-4 represents numerical 
steady-state solution when  Ma = 0, Ma = 5,  Re = 5,  am =0.2, k =2π , and B =1. In 
figure 1, We = 100 and cotβ = 0.5. In figure 2, We = 100 and cotβ = 5. In figure 3, 
We = 20 and cotβ = 0.5. In figure 4, We = 20 and cotβ = 5. All these figures show 
that Marangoni effect has significant influence on steady-state solution. When  
Ma = 0, our result is consistent with isothermal case investigated by D'Alessio et 
al. [5]. 
 
We linearize the equation (20) by introducing perturbation η and setting 
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The linearized perturbation equations can be written in the form 
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where 
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where A = cotβ 
 
The coefficients in equation (23) are periodic functions for the case of an uneven 
bottom. We  conduct the stability analysis by apply Floquet-Bloch theory. We 
consider the perturbation as Bloch-type function in the form 
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Introducing the Bloch-type functions with truncated series into the perturbation 
equations yields an algebraic eigenvalue problem. The exponential factor 
containing the bloch wave number K  represents disturbances which interact with 
the periodic bottom topography via the equilibrium flow. The later  is represented 
by the Fourier series composed of the harmonics of k. In the case of weak bottom 
undulations, an approximate method of solution making use of the analytical 
steady-state solution can be employed. However, in the general case, the 
algebraic eigenvalue problem must be solved numerically for the temporal 
growth rate ℜ(σ ). In this way we can determine the critical Reynolds number for 
the onset of instability, and for supercritical flows we can compute the 
wavelength and speed of unstable disturbances. 
 
For the even bottom case, our results reveal that while the critical Reynolds 
number is independent of the Weber number, in the presence of bottom 
topography the onset of instability is strongly influenced by the effect of 
Marangoni number and surface tension. In figures 5-8, we present the 
distribution of the critical Reynolds number Rc with the amplitude of the bottom 
undulation am, for several values of Marangoni number, k =2π , and B =1. In 
figure 5, We = 100  and cotβ = 0.5. In figure 6, We = 100 and cotβ = 5. In figure 
7, We = 10 and cotβ = 0.5. In figure 8, We = 10 and cotβ = 5. Our results show 
that as Marangoni effect increases with decreasing Reynolds number,  the  
Marangoni effect is destabilizing the flow. When Ma =0 , our results are 
consistent with those of D'Alessio et al. [5] for isothermal case. 
 
Conclusion 
 

We investigate the periodically varying bottom topography on the linear stability 
with combined effect of thermal and strong surface tension. These include a 
mathematical model based on the long wave theory first proposed by Benny [1] 
for even bottom. This model we have extended to account for heated wavy 
bottom topography. Numerical simulations have been done for different values of 
Marangoni number and surface tension. Our numerical results show that as 
Marangoni number increases, critical Reynolds number decreases and flow 
becomes unstable. Asymptotic analyses have also been conducted to both 
complement and extend our finding. Theoretical predictions were supported by 
our numerical simulations. We conclude that  Marangoni effect shall destabilize 
the flow provided that the inclination is sufficiently steep or the bottom 
undulation are sufficiently short. 
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