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Lots of reports on the generation of stress by increase in temperature in the bacterial cells especially in 

Escherichia coli has been observed so far. Current study further emphasized such effect on the cells of 

Pseudomonas putida (SUBP03). Conventional methods relating growth assessment of bacteria were 

employed. The optical density of bacterial cells at 600 nm (OD600) in the minimal broth along with the 

culturable cells were assessed in the form of colony forming units (CFUs) in the minimal agar media at 

different temperatures (27 °C, 30 °C, 33 °C, 37 °C and 40 °C). Morphological observations were made 

to further clarify the bacterial physiology and the spot tests were performed to examine the cell 

viability. Cells of P. putida (SUBP03) were found to grow vigorously at 30 °C, while the growth was 

found to decline at lower temperature (27 °C) and  along with the increase in temperature (at 33 °C, 37 

°C and 40 °C). However, the morphological changes were insignificant. Furthermore, cells were 

noticed to completely lose culturability at 40 °C after 48 hours.  

 

Influence of temperature on the growth of Pseudomonas putida 

(SUBP03) 
 

   Pseudomonas species are well–known rod–shaped, 

flagellated, gram–negative bacterium (1, 2). However, 

Pseudomonas often persisting in the environment like 

Escherichia coli, which may face many growth 

retarding stress factors such as nutrient depletion, 

temperature fluctuation, variation in pH and redox 

potential, limited water activity (aw), elevated level of 

reactive oxygen species (ROS), osmotic imbalance 

together with anomalous solute concentrations, etc. (3–

23). Notably, bacteria were found to utilize unified 

strategies to deal with the environmental stress (3–5, 

24–26). Nevertheless, several studies apparently 

suggested the expression of the global molecular 

chaperones, which maintain the cellular homeostasis, 

including rpoE, rpoS and rpoH genes in E. coli; dnaK, 

dnaJ, and grpE  in Pseudomonas spp.; CspB and CspE 

in Bacillus spp. Cells; and GroEL and DnaK proteins in 

Salmonella spp. (3–5, 7, 8, 10, 12, 13, 19, 21–23, 27–

40). 

   In acquiring stress, our earlier studies revealed four 

independent aspects, wherein (i) the influence of the 

temperature up–shift on the generation of oxidative 

stress (19, 22, 37); (ii) impulsive accretion of the 

reactive oxygen species (ROS) at the early stationary 

phase of bacterial growth (12), (iii) the origination of 

oxidative stress upon supplementation of the oxidative 

agent, H2O2 (21, 23) and (iv) the hindering effect of 

different aeration speed on the formation of colony 

forming units due to the suggestive endogenous 

oxidative stress (22).  
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different aeration speed on the formation of colony 

forming units due to the suggestive endogenous oxidative 

stress (22).  

   In all instances, the physiological influence of the 

external and internal oxidative stress (12, 18, 22, 23) and 

heat stress (unpublished) in E. coli (SUBE01), 

Pseudomonas aeruginosa (SUBP01), Pseudomonas 

fluorescens  (SUBP02), Bacillus spp. (SUBB01) and 

Salmonella spp. (SUBS01) has been inquired well and 

evidently brought the new information on the defense 

strategy against stress and the ascertainment of their 

critical growth temperature (unpublished)  as observed 

through their sustainability in growth pattern. These 

previous findings led us to extend the research interest in 

other bacterial cells primarily to assess the optimum and 

critical growth temperature of our laboratory stock culture 

of Pseudomonas putida (SUBP03). 
 

MATERIALS AND METHODS 

 
   Conventional experiments measuring the bacterial growth were conducted as 

described earlier by Nur et al. (23). Laboratory stock cultures of Pseudomonas 

putida (SUBP03) was used in this study. Minimal media (dextrose 1.0 g/L, 

dipotassium phosphate 7.0 g/L, monopotassium phosphate 2.0 g/L, sodium citrate 

0.5 g/L, magnesium sulfate 0.1 g/L and ammonium sulfate 1.0 g/L) for both agar 

(MA) and broth (MB) were used for the assay of the bacterial culturability (19). 

After 24 hour incubation on minimal agar plates at 37 °C, one loopful of each of the 

bacterial culture was introduced into 5 ml minimal broth followed by 100 rpm 

(rotation per minute) at 37 °C for 4–6 hours (pre–culture). After adjusting optical 

density of the pre–culture at 600 nm (OD600) to 0.1, 30 µL each was introduced into 

2 different sets of 30 ml of minimal broth and incubated at 27 °C, 30 °C, 33 °C, 37 

°C and 40 °C at shaking condition (100 rpm). At every 12 hours cell growth was 

monitored by measuring OD600, and the formation of colony forming units (CFUs) 

were estimated by counting the colonies up to 72 hours at every 24 hour intervals 

(19, 21-23).  
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FIG. 1. Assessment of growth of Pseudomonas putida (SUBP03) at 27 °C, 30 °C, 33 °C, 37 °C and 40 °C in terms of OD600 (a) and CFU (b) 
in shaking condition up to 72 hours. Notably, when the P. putida (SUBP03) cells were grown at 27 °C, 33 °C and 37 °C, substantial 

reduction in cell turbidity (a) as well as in the generation of the colony forming units (CFUs) were observed (b) up to 72 hours of incubation 

periods in minimal media. Interestingly, a dramatically reduction in both cell turbidity and colony forming units (CFUs) were observed 

when the cells were challenged at 40 °C after 12 hours to 72 hours of incubation periods. 

FIG. 2. Morphological changes of Pseudomonas putida (SUBP03) cells at 27 °C, 30 °C, 33 °C, 37 °C and 40 °C after 72 hours of incubation 

periods. Surprisingly, no morphological change was observed under light microscope. 

FIG. 3. Confirmative demonstration of culturability and survival potential of Pseudomonas putida (SUBP03)  through spot tests in minimal 
agar media at 27 °C, 30 °C, 33 °C, 37 °C and 40 °C temperature after 12 hours and 72 hours of incubation periods. Notably, a relatively 

slower growth was observed when bacterial cells were grown at 37 °C and 40 °C on minimal agar after 72 hours of incubation periods. 
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(19, 21-23).  

   For the observation of cell morphology and arrangements, simple staining 

(Crystal Violet, Hucker’s Solution) was applied as previously done (21-23). An 

aliquot of 10 µL from each bacterial culture suspension was removed by 12 

hours intervals and the shape and organization of cells were observed under 

light microscope (Optima Biological Microscope G206, manufactured in 

Taiwan) at 1000× magnification (21). Finally spot tests were conducted to 

further confirm the bacterial viability under temperature stress. As described 

previously, each of the bacterial culture suspensions was serially diluted in 9 ml 

nutrient broth to obtain up to 10–4 fold dilution (19, 21-23). From each dilution, 

an aliquot of 5 µl was dropped on to the minimal agar, dried off for 15 minutes, 

and finally the plates were incubated at 37 °C for 24 hours. Spotting on the agar 

was accomplished at every 12 hours of growth (19, 21-23). 

 

RESULTS AND DISCUSSION 

 

   Pseudomonas putida (SUBP03) grows best at 30 

°C. The optimum growth temperature for Pseudomonas 

putida (SUBP03) was assessed through the 

measurement of optical density of bacterial cells at 600 

nm (OD600) in the minimal broth along with the 

detection of culturable cells in the form of colony 

forming units (CFUs) in the minimal agar media up to 

72 hours. After 12 hours of incubation at 30 °C the cell 

number was found to be increase rapidly by 

approximately 4 logs (Figure 1), which was comparable 

to those cells grown at 27 °C, 33 °C, 37 °C and 40 °C. 

Surprisingly, under the light microscope, no 

morphological change was observed (Figure 2). 

Besides, a steady growth was noticed through spot at 27 

°C, 30 °C and 33 °C (Figure 3). Hence, the optimum 

temperature of our test bacterial strain of Pseudomonas 

putida (SUBP03) was recorded to be 30 °C. Present 

finding is quite consistent with the earlier studies where 

P. putida has been noticed to exhibit highest growth at 

30 °C too (3–5). 

   Critical growth temperature of P. putida (SUBP03) 

was recorded to be 40 °C. The inability to grow at 37 

°C led our interest further to examine the critical 

growth temperature for the test bacterial strain of 

Pseudomonas putida (SUBP03). While a gradual 

decrease was observed in both CFU and the cell 

turbidity (Figure 1), when the cells were grown at 40 

°C after 12 to 72 hours of incubation periods, 

respectively, a relatively shower growth was noticed 

through spot, when bacterial cells were grown at 40 °C 

(Figure 3), whereas a complete growth cessation was 

observed at 41 °C (data not shown). Previously, the 

maximum growth temperatures of Pseudomonas putida 

were recorded to be 35 °C by Balows et al. (3). In the 

current study, Pseudomonas putida (SUBP03) were 

found to lose the culturability completely at 41 °C. 

Hence the critical growth temperature of this 

Pseudomonas putida was recorded to be 40 °C, which 

is indeed corroborating with the data achieved as stated 

in the earlier investigation (4).  
 

CONCLUSION 

 

   In a separate study, the oxidative stress events were              
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investigated within P. aeruginosa (SUBP01) and P. fluorescens 

(SUBP02) against the oxidant 3 mM H2O2 in a concentration 

(unpublished). The findings of the current study revealed the 

heat shock state in case of P. putida (SUBP03), which may 

further increment the existing knowledge on the stress response 

in Pseuomonas spp. However, the limitation of this study 

underlies the lack of study in genetic level with the presentation 

of preliminary data. However, detection of the optimal and 

critical growth temperatures of P. putida (SUBP03) may draw 

interest within the closely related fields. Nevertheless, the 

expressional analyses of certain heat shock genes are worth to 

understand the detailed scenario as well as to complete the 

current investigation. 
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