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Abstract

In this paper we consider the scenario where continuous microdata have been
noise infused using a differentially private Laplace mechanism for the purpose
of statistical disclosure control. We assume the original data are independent
and identically distributed, having distribution within a parametric family of
continuous distributions. We use a variant of the Laplace mechanism that
allows the range of the original data to be unbounded by first truncating the
original data and then adding appropriate Laplace random noise. We propose
methodology to analyze the noise infused data using multiple imputation. This
approach allows the data user to analyze the released data as if it were original,
i.e., not noise infused, and then to obtain inference that accounts for the noise
infusion mechanism using standard multiple imputation combining formulas.
Methodology is presented for univariate data, and some simulation studies are
presented to evaluate the performance of the proposed method. An extension
of the proposed methodology to multivariate data is also presented.
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1. Introduction

Research on privacy preserving statistical databases is essential for addressing the following
situation. A data producer constructs a dataset X (for example, by conducting a survey)
which contains useful information about the relevant population, and it is desirable for
this information to be released. However, privacy and confidentiality concerns prevent the
dataset X from being released. (In some settings a distinction is made between privacy
and confidentiality [Nayak, Zhang, and Adeshiyan, 2015], but here we will consider these
terms to be synonymous.) To resolve these competing objectives, a transformation (often
randomized) is constructed from X to Z, and the dataset Z is released, instead of X.
The goal is to construct this transformation such that by releasing Z, the two objectives
are satisfied: (1) individual’s privacy is protected; and (2) the released dataset is useful for
drawing inference on the relevant population. Statistical disclosure control methodology
refers to the methodology used to make the transformation from X to Z.

Differential privacy (Dwork et al.l |2006], 2017) is a mathematical definition for quantifying
the privacy protection provided by the transformation from X to Z. The definition of
differential privacy is designed to control the effect of any one individual’s information on
the released data. One may refer, for example, to Wasserman and Zhou| (2010)), Dwork
and Roth) (2014)), Vadhan| (2016)), and Dwork et al.| (2017)) for discussion on the interpre-
tation of differential privacy, as well as for some standard transformations (such as the
Laplace mechanism and exponential mechanism) that satisfy differential privacy. Differen-
tial privacy possesses desirable properties such as closure under composition, closure under
postprocessing, and group privacy (Dwork et al., [2017)), and the approach has gained con-
siderable popularity in recent years. Differential privacy has also been applied in practice,
see for example, Machanavajjhala et al. (2008]), Erlingsson, Pihur, and Koroloval (2014)),
and |Differential Privacy Team, Apple (2017)).

In this paper we propose methodology that uses a differentially private noise infusion
mechanism to protect the data, and multiple imputation to facilitate valid data analysis.
An advantage of using multiple imputation is that data users can analyze the released,
multiply imputed data as if it were original data, and then apply simple multiple imputation
combination formulas to obtain valid inference that accounts for the extra variability due
to the noise infusion. The methodology presented in this paper can be summarized as
follows. One first applies random noise infusion to transform from X to Z in such a way
that differential privacy is attained. Then one sets up a missing data problem, where the
noise infused data Z are viewed as the observed data, and the original data X are viewed
as the missing data. Based on the “observed” data Z, the “missing” data X are multiply
imputed to obtain «*(®), ..., 2*(™ m > 1. Then the multiply imputed data «*V) ... &*(™)
are released. Because the transformation from X to Z is differentially private, it follows
from the result on closure under postprocessing (Dwork et al. (2017), we also present a
similar property in our setting in Result that the overall transformation from X to
x*M . x*(M) is also differentially private under the parametric scenario that we will
describe in Section For drawing inference on the underlying population, the data user
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can then analyze each dataset *() as if it were the original data, and then apply multiple
imputation combining formulas to obtain valid inference based on the entire released data
{a:*(l), . ,w*(m)}. Thus this approach enables the data user to obtain valid inference using
standard methods and software, in conjunction with simple combination formulas.

In this paper we use Laplace random noise to make a transformation from X to Z that
satisfies differential privacy, however, we employ a modification to the standard Laplace
mechanism that incorporates truncation. The standard Laplace mechanism (Proposition
3.3 of Dwork et al., 2017) assumes that the L; Sensitivity (Definition 3.1 of Dwork et
al., [2017) of the chosen query is finite. The query refers to the function of X that will
be noise infused via Laplace additive noise. In this paper we assume the query is X
itself, and we assume that the original data are independent and identically distributed
(iid), having continuous distribution within a parametric family. Under many common
parametric models the sample space (or support) is not bounded (e.g. normal, lognormal,
exponential), and hence the Ly sensitivity of X is not finite. We use a modified version of
the Laplace mechanism that enables differential privacy to be attained even if the sample
space of the original data is not bounded (Result [3) by first truncating the original data
to a finite interval and then adding appropriate random noise. A similar variant of the
Laplace mechanism that incorporates truncation is also discussed by |Duchi et al.| (2018).

Synthetic data methodology (Raghunathan, Reiter, and Rubin) [2003; Reiter, 2003; [Reiter,
2005; Drechsler, 2011)) is a well established form of statistical disclosure control method-
ology that also uses concepts of multiple imputation for missing data (Rubin) 1987) to
enable valid inference to be drawn on the underlying population using the released data.
The methodology proposed in this paper differs from established synthetic data methods,
because the proposed method takes the explicit step of infusing noise using a differentially
private mechanism before applying multiple imputation. The output of our methodology
is a set of m > 1 multiply imputed datasets, which, to a user, would appear the same as
the output of synthetic data methodology. As discussed by Rubin (1993)), an advantage of
synthetic data is that data users can analyze the released data using standard statistical
procedures (in conjunction with multiple imputation combination formulas that are simple
to apply). The proposed methodology shares this advantage, because the methods that
the data user can apply for drawing inference are nearly the same (we propose to use the
combination formulas of Rubin| (1987) and |Li, Raghunathan, and Rubin| (1991)) for missing
data, instead of the formulas of |Raghunathan, Reiter, and Rubin| (2003), [Reiter| (2003),
or Reiter] (2005)) for synthetic data, due to the nature of the missing data and imputation
process) as those used for synthetic data. However, the extra step of infusing noise be-
fore applying multiple imputation allows the noise level to be controlled, and differential
privacy to be attained at a desired privacy-loss budget. As with synthetic data, the most
complicated part of the proposed methodology is carrying out the imputation, and this
would be performed by the data producer, and not the data user. Furthermore, algorithms
for generating these imputed values are developed in this paper.

In some settings differential privacy can be attained using synthetic data methodology via
a specialized choice of the prior distribution in the Bayesian model specification; however,
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in such settings it has been shown that the usual combination formulas may not be appli-
cable (Charest), 2010). The methodology proposed in this paper uses ideas from our earlier
work (Klein and Sinhal, 2013) where we considered noise multiplication for privacy pro-
tection, and then applied multiple imputation for data analysis. There we suggested that
the initial step of applying noise multiplication may be advantageous because it allowed
explicit control over the level of noise infused into the released data. In this paper, we take
direct advantage of this control over the level of noise, in fact, by infusing noise in such
a way that differential privacy is satisfied, and then developing appropriate imputation
procedures under this type of noise infusion.

The outline of the paper is as follows. In Section we present the general setup, and
some basic definitions and results concerning differential privacy that are used in the paper.
Following Wasserman and Zhou (2010), we present these definitions and results using a
statistical framework. In Section [3.| we introduce the standard Laplace mechanism, and
the modification to the Laplace mechanism using truncation, as applied in our setting. In
Section [4] we derive methodology for applying multiple imputation to impute the original
data, based on data that have been noise infused using the Laplace mechanism with trun-
cation; and we review the combination formulas used for drawing inference. Specifically,
in Section we derive some basic distributional results, including a sampling algorithm
that will be needed; in Section we discuss how the distributional results can be applied
for direct likelihood based analysis based on Z; in Section we apply the distributional
results to develop procedures for carrying out multiple imputation; and in Section [.4]
we discuss how to use the multiply imputed data to draw inference. Section |[5.| presents
some numerical results; specifically Section [5.1.| presents an application of the proposed
methodology when the original data are normally distributed; and Section [5.2.| presents
some simulation studies to assess the finite sample properties of the proposed methodology
in this case. In Section we extend the proposed methodology to multivariate data.
Section [7] contains some concluding remarks. Proofs of the results and other technical
details appear in the technical report Klein and Sinha/ (2019).

2. General Setup

Suppose the original data are X1,..., X, by f(x]0), where f(x|0) is the probability density
function (pdf) of a continuous distribution and 6 = (61, ...,6,) is an unknown parameter
such that @ € ® C RP. Suppose each X; € X where X C R denotes the support of the
pdf f(x|@) such that f(z|@) > 0if z € X, and f(z]0) =0 if x ¢ X'. We assume that the
original data Xi,...,X,, are sensitive and cannot be released. Instead, the original data
are modified, using a randomized mechanism, to create a sanitized dataset, denoted by
Z1,...,Z5n, that may then be released. Here n and n can be unequal and each Z; € R. Let
X =(X1,...,X,) and Z = (Z1,...,Z;). The randomized mechanism used to create the
sanitized dataset induces a conditional distribution for Z, given X = x.

Let B(R) be the class of Borel sets in R, let B(R™) be the class of Borel sets in R?,
and let X" = X x --- x X C R" be the n-fold Cartesian product. For two vectors



Klein and Sinha: Multiple Imputation for Parametric Inference. .. 99

a = (ay,...,ay) and b = (by,...,b,) in X", define §(a,b) = |{i : a; # b;}|, where for a
set A having a finite number of elements, |A| is the number of elements in A. We now
state the definition of e-differential privacy (Dwork et al., [2006, [2017)), which is a condition
imposed on the conditional distribution of Z, given X . The conditional distribution of Z,
given X, is also referred to as the data release mechanism (Wasserman and Zhou, 2010).
As discussed by Dwork et al.| (2006, 2017)), the definition of differential privacy requires the
notion of neighboring datasets, where a dataset is an element of X”. For a given distance
function, two datasets are called neighbors if and only if their distance equals 1. Following
Wasserman and Zhou (2010]), the definition stated below is based on the notion where
a,b € X" are neighbors if and only if 6(a,b) = 1.

Definition 1. For a given € > 0, the conditional distribution of Z, given X, is said to
satisfy e-differential privacy if

P(ZeA|X=a)<eP(ZcA|X =D) (1)
for all A € B(R™) and all a,b € X™ such that §(a,b) = 1.

Remark 1. Observe that in e-differential privacy, small values of € provide more privacy,
while large values provide less privacy. The quantity € is referred to as the privacy-loss
budget.

Remark 2. It is said that the randomized transformation (or randomized mechanism)
used to transform from X to Z satisfies e-differential privacy, if under this transformation,
the conditional distribution of Z, given X, satisfies e-differential privacy.

The following lemma presents an equivalent characterization of e-differential privacy based
on expectation.

Lemma 1. Let € > 0. The following statements are equivalent.
(a) The conditional distribution of Z, given X, satisfies e-differential privacy.

(b) E[h(Z)|X = a] < e‘E[h(Z)| X = b] for all nonnegative functions h that are mea-
surable from (R", B(R")) to (R, B(R)), and all a,b € A™ such that §(a,b) = 1.

In the sequel, we will make use of the following result; we note that the result on closure
under postprocessing (Proposition 2.4) of Dwork et al| (2017), and Part 2 of Lemma 2.6 of
Wasserman and Zhou (2010) are both similar to this result

Result 1. Suppose that the conditional distribution of Z, given X, satisfies e-differential
privacy, and let Y be a random vector in R® such that Y and X are conditionally indepen-
dent, given Z. Then the conditional distribution of Y, given X, also satisfies e-differential
privacy.
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3. Laplace Mechanism, Standard Version and with Trunca-
tion

From now on 7, the sample size of the sanitized dataset Z, will be taken as equal to n,
the sample size of the original dataset X. Let Lap(u,o) denote the Laplace distribution
having pdf hpap(w) = 5 exp{—|w — p|/o}, —00 < w < 00, —00 < p < 00, 0 < 0 < o0.
Recall that if W ~ Lap(u,o), then E(W) = p and Var(W) = 202, Also recall that if
r1,72 € R, then

|[r1] = |rel| < |r1 =72, (2)
which is a consequence of the triangle inequality: |r; + 72| < |r1] + |r2| (Bartle and Sher-
bert), 2000, page 31). The following is a standard data release mechanism that satisfies e-
differential privacy, referred to as the Laplace mechanism. While this result is well known
(see, for example, Proposition 3.3 of Dwork et al.l 2017, or Theorem 3.6 of Dwork and
Rothl [2014), below we state the Laplace mechanism as it applies to our scenario.

Result 2. (standard Laplace mechanism) Let € > 0 and let A = sup{|la — S| : a, 5 € X'}.
If A € (0,00), and

Zi=X;+ R, i=1,...,n, where Ri,..., R, " Lap (0,A/e), (3)
then conditional distribution of Z, given X, satisfies e-differential privacy.

For many choices of the original data distribution f(z|@), the sample space X is not a
bounded set and hence sup{|a — | : a, 5 € X} = oo. For example if f(x|@) is the normal
pdf, then X = R and sup{|a — 5] : a, 8 € R} = o0; if f(x]0) is the lognormal pdf, then
X = (0,00) and sup{|a — ] : a, 5 € (0,00)} = c0. If sup{|a — (| : o, 5 € X'} = o0, then
the Laplace mechanism as stated in Result [2| cannot be applied. To obtain e-differential
privacy using Laplace additive noise without requiring that sup{|a—pf| : o, 8 € X'} is finite,
we consider the following modified version of the Laplace mechanism that incorporates
truncation of the original data. A similar variant of the Laplace mechanism is also discussed
by Duchi et al.| (2018)).

Result 3. (Laplace mechanism with truncation) Let ¢ > 0, and let L,U € R be such that
L<U. If

L+ R;, if X; <L, - U—1L

Zi={ X;+Ri, fL<X;,<U, % i=1,...,n, whereRl,...,Rn“NdLap<o,>,
U+R;, ifX;>U, ¢

(4)

then the conditional distribution of Z, given X, satisfies e-differential privacy.

4. Methodology for Multiple Imputation Based Inference

Throughout this section we work under the notation of Section 1 with 7 = n, and we let
Zi,...,Zy, be defined as in Result
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4.1. Joint, Marginal, and Conditional Distributions

The conditional pdf of Z;, given X; = z;, is

1 - i—L 3 .
5€ lzi=Ll/e if gy < L

9zix (zilwi) = § Le lzmmlle i L <a; <U
%Ce"zi_UVC, ifa; >U
6—|zi—L|/c e—|zi—mi|/c e—\zi—U\/c
= L(—oo,1) (#i) ——— + [0 (@) ———— + L00) (¥:) —5—

where ¢ = (U — L)/¢, and 14 is the indicator function for the set A. The joint pdf of
(Xz’Zz) is
9x,2(%i, 2110) = gzx (zilz:) f (2|6)

—L|/e e~ lzi—wil/c e—lz=Ul/e
5 f(@i]0) + [, 00) (i) e

e l%

=I_o1) (@)Tf(xi\@) + I (i) f(x:]0).

The marginal pdf of Z; is
97(20) = / 9x,z(w, 2;|0)dw
R

_lz—L _ il _1z-U]

—/{aﬂwxme — Fwl0) + L1, (1) 5 F (w]6) + L(1,00) (w) g’fmw&dm
R

2c

and therefore,

0 e—lzi—Ll/c L 0\d 1 U eiuwlje Ay e—lzi=Ul/c poo Y
gz(zi\)—Qc/_oof(w|)w+26/Le f(w|)w+2€/U F(w]8)duw

I pjey+ L [ e pwl)aw + S~ F(U6

— S Fwe) o [ e ul)du + S (1~ FUIO),
where F(w|@) = [“  f(t|@)dt is the cumulative distribution function (cdf) of a random
variable whose pdf is f(z|@). Hence the marginal pdf of Z; is

U —|zi=Ul|/c
F(L|6) + ;C/L e Fml/e f(w]0) dw + BTH — F(U16)]. (5)

0 e—lzi—Ll/c
92(:410) = — —
The conditional pdf of X;, given Z; = z;, is

9x,z(xi, %0)
X ziag = 7
gzl 0 = o)

e—lzi—Ul/c

e—lzi—Ll/c e—lzi—zl/c
I(foo,L) (%‘)Tf(xi’@) + I[L,U] (%’)Tf(xi\e) + I(U,oo) (%)Tf(xﬂ@)

—lz;—Ll|/c U __|s—wl/e —lz;=Ul/c
e F(LIO) + 5 [, e”lmmwl/e f(w]@)dw + “—5——[1 — F(U|0)]
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and hence the conditional pdf of X, given Z; = z;, can be expressed as

F(@410) {1 —oo,1y (@)™ P HVe 4 Iy g (wg)eVFmmille 4 [y o) (i) e 71 U1e}

xX; Zz‘,o =
9X|Z( | ) e—lzz‘—LVCF(L]O) + fLU e—|zi—w|/cf(w|0)dw + 6_|Zi_UVC[1 - F(U0)]

(6)
Result 4. For given values of z € R and 8 € O, the following algorithm produces a random
variable X* having the density gx|z(z*|2,0), where gx|z is the pdf defined in Equation
(6). Define
I ooy (@)e FHe 4 Iy py(w)e 1772 4 gy ooy () e 1770 1e
I(—oo,ny(2)e 1 FHe 1 11y, 11(2) + T(7,00) (2) e 1270V

K(z,z) =

and proceed as follows.

1. Generate V and X independently such that V' ~ Uniform(0,1) and X ~ f(z|).

2. If V < K(X, z) then accept X and deliver X* = X. Otherwise reject X and return to
Step 1.

The expected number of iterations of Steps 1 and 2 required to obtain X* is
M(z,0) =C(z,0) {I(—oo,L)(Z)e_‘Z_LI/c + o) (2) + I(Um)(z)e_'Z_UVc} ,

where C(z, ) = {e—lz—Ll/cmLyo) + [V emleulle f(w|@)dw + e I#=Ul/e[1 — F(Um)]}_1

Remark 3. The pdf of the conditional distribution of X;, given Z; = z;, can be expressed
in the form of a mixture distribution; details appear in the technical report Klein and Sinha
(2019).

4.2. A Look At Likelihood Based Data Analysis

By Equation it follows that the likelihood function for @ based the observed sanitized
data Z = z is

z(0|z) = HgZ 2i|0)

T e+ L [ el pplovaw + S Bule
—H F(LIO) + 5 [ = i) + 1~ FUIO)]
(7)
The likelihood function for 8 based on the observed original data X = x is
Lx(0lz) =[] f(il6). (8)

=1
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If the original data X were observed, then analysis for 8 can be conducted under the
likelihood function (8). Generally, if f(z|0) is a standard parametric model, then likeli-
hood based analysis under can be conducted in a straightforward manner using readily
available software. However, since the sanitized data Z are observed instead of X, the
likelihood function is , which obviously differs from the original data likelihood function
(8). One way to compute the maximum likelihood estimate (MLE) of 6 under the likeli-
hood function (7)), is by means of the EM algorithm (Dempster, Laird, and Rubin| 1977}
Little and Rubin, 2002). To apply the EM algorithm in this scenario, we setup a missing
data problem with X as the missing data, Z as the observed data, and hence (X, Z) as
the complete data. Then the complete data likelihood function is

n

Lxz 0z, 2) =[] gxz(i,210) = [ [ 921x (zil2i) £ (2:]0) o [ f(2:10) = Lx (6]).
-1

i=1 i=1

Therefore, with ) denoting an estimate of 8 at iteration ¢, the E step of an EM algorithm
for computing the MLE of 6 under (7)), is to compute

Q618) = / 0 (01) [T 93012l 0, 0
X'n

=1

where Ox(0|x) = log Lx(0]x) = > log f(x;|@). The M step of the EM algorithm is
to compute 8%+ such that Q(OUFD|0M) > Q(0|0M) for all & € O. Depending on the
choice of f(x|@), the E and/or M steps may have a closed form.

4.3. Using the Sanitized Data to Multiply Impute the Original Data

Instead of a direct likelihood based approach, we now consider an alternative approach
based on multiple imputation (Rubin, 1987). Under the multiple imputation based ap-
proach, the observed Z = z will be used to create multiply imputed versions of the original
data X, that we denote by D 2*™) where m > 1. An advantage of this approach
is that each imputed data set *) can be analyzed as if it were the original data (analysis
can be based on the simple likelihood function , instead of the more complicated likeli-
hood ([7])), and the overall inference is then obtained using standard multiple imputation
combination formulas.

We setup a missing data problem (Little and Rubin, [2002) with X as the missing data, Z
as the observed data, and hence (X, Z) as the complete data (as we did in the preceding
section when discussing the EM algorithm). In order to apply the multiple imputation
methodology of Rubin| (1987), we will impute the missing data X under a Bayesian model,
and to do so, we place a prior density pg(@) on 6. The missing data X are multiply
imputed by taking m > 1 random draws from the posterior predictive distribution of X,
given Z = z. A general procedure for drawing (x*, %) from the joint posterior distribution
of (X,0), given Z = z, is given in Algorithm
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Algorithm 1. Draw (z*,0") from the joint posterior distribution of (X, @), given Z = z.

1. Draw 6% = (07, ...,0,) from the posterior distribution of 6, given Z = 2.

2. Draw «* = (7, ..., x}) from the conditional distribution of X, given Z = z,0 = 6*.

Return (*,0%) as a draw from the posterior distribution of (X, 8), given Z = z.

Observe that in Step 1 of Algorithm [I} we sample from the posterior distribution of @,
given Z = z, and the pdf of this distribution is

po|z(0|2) o< pe(8)Lz(0]2)

n e—lzi—Ll/c U e—lzi=Ul/c
=po(0) ]| {QCF<L|0> + Qi /L e BT f(w]O)dw + — ——[1 - F<U|0>]} :
(9)

In some cases, depending on the choice of the original data distribution f(z|@), and prior
distribution pg(@), a computationally efficient method for taking a random draw from the
posterior density of @, given Z = z, may not be readily available because the pdf in
Equation @ may have a complicated form (involving integrals that may not have closed
form expressions). We can bypass direct sampling from the posterior distribution of 6,
given Z = z, by using the data augmentation algorithm (Tanner and Wongj, (1987} Little
and Rubin, |2002)). The data augmentation algorithm is equivalent to a Gibbs Sampler, and
it is an approach that uses Markov chain Monte Carlo (MCMC) to approximately sample
from the posterior distribution of (X, 0), given Z = z. A data augmentation algorithm
for generating a Markov chain whose stationary distribution is the posterior distribution
of (X,0), given Z = z, is presented in Algorithm

Step 1 of Algorithm [] requires sampling from the conditional distribution of X, given
Z =z and 6 = 0. The conditional pdf of X, given Z = z and 0 is

9xz(x|z,0) H9X|Z (2|2, 6)

where gx| z(x;|2i,0) is the pdf defined in Equation @) Recall that Result [4| provides a
general algorithm for drawing a random variable having the pdf (6). Hence Step 1 of
Algorithm [2] can be implemented as follows.

1. Use Result {4] to draw mgtﬂ) ~ gX|Z(x|zi,0(t)) for each i = 1,...,n. Hence obtain
2t = (azgtﬂ) ) ngrl)).

Step 2 of Algorithm [2] requires sampling from the posterior distribution of 8, given X =
2D and Z = z. The posterior pdf of 8, given X = x and Z = z, is
pG\X,Z(OI:sz) o pe (6 HgXZ (74, 2i|0) = H{QZ\X (zi|zi) f(2i]0)} er(e)Hf(v’UiW)y

=1 =1
(10)
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Algorithm 2. General form of a data augmentation/Gibbs sampling algorithm for gener-
ating a Markov chain whose stationary distribution is the posterior distribution of (X, ),
given Z = z. Algorithm (3| (below) provides specific details on how this procedure can be
implemented in practice.

Set an initial value 8 € ©.
Set a large natural number 7'.

Set t = 0.

While ¢t < T, do the following {

1. Draw z(ttD = (xgtﬂ), . .,x,(fﬂ)) from the conditional distribution of X, given 8 =
0", Z = z.

2. Draw 90t = (9§t+1)"“’91()t+1)) from the posterior distribution of 8, given X =
2t 7 = 2.
3. Update t =1t + 1.

}

Return (M), 0W), (2®, 63)), ... (2™, 01,

and hence, letting pg;x (€|x) denote the posterior density of 8, given X = x, we have

n
poix (0|z) = poix z(0|x, 2) x pe(0) H f(zi]0).
i=1
That is, the posterior distribution of 8, given X and Z, is the same as the posterior
distribution of 8, given X. Because pg x (0|z) is the usual posterior density of 6, given
the original data X = @, it will usually be known how to take a random draw from this
distribution. Hence Step 2 of Algorithm [2| can be implemented as follows.

2. Draw 9(4+1 = (9§t+1), . ,91(;“)) ~ pox (0]z"T1) where pg x (8|21} is the posterior
density of 6, given X = x(+1),

Thus the general procedure of Algorithm [2] can be implemented using the specific steps
shown in Algorithm

There are two standard ways in which Algorithm [3|can be applied to obtain m approximate
draws from the posterior distribution of (X, @), given Z = z (see, for example, Hu, Mitra,
and Reiter| (2013) for a general discussion on the use of MCMC for multiple imputation).
The two ways of using Algorithm [3] are as follows.

(a) Run Algorithm |3 a total of m times, independently, to generate m independent
Markov chains that have converged, and take the final value from each chain.

(b) Run Algorithm [3|a single time to generate a single Markov chain, and after the chain
has converged, take m draws from the converged part of the chain. The m draws
should be far enough apart from each other within the chain so that the draws are
approximately independent.
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Algorithm 3. Specific details on how the general data augmentation method of Algorithm
can be implemented in practice.

Set an initial value 8°) € ©.
Set a large natural number 7.
Set t = 0.

While t < T, do the following {

1. Use Result {4| to draw xz(tﬂ) ~ gX|Z(J:\zZ-,9(t)) for each ¢ = 1,...,n. Hence obtain
) — (xgt'l'l)" $£Lt+1))‘

2. Draw 9¢+1) = (9§t+1), . ,91(,t+1)) ~ pox (0]z"T1)) where pg x (8|2 +1) is the posterior
density of 8, given X = x(**1); that is, pg x (0|x) o pe(0) [T}, f(xz(Hl)\O).
3. Update t =1t + 1.

}

Return (M), 0W), (2®, 63)), ... (2™, 61,

Remark 4. The multiply imputed values of X, namely z*(), ... 2*(™) can be generated

using either Algorithm or [3] Each of these algorithms uses the observed value Z = z,
but not the observed value X = x. Therefore, we may conclude that (w*(l), .. ,w*(m))
is conditionally independent of X, given Z. Because the conditional distribution of Z
given X satisfies e-differential privacy, Result [I] implies that the conditional distribution of
(a:*(l), - ,w*(m)), given X, also satisfies e-differential privacy. Regarding the conditional
independence of (a:*(l), e ,x*(m)) and X, given Z, we have two additional comments.

(a) Algorithms [2| and |3| require an initial value 0°). The initial value ) can be a
function of Z, but it should not be a function of X, so that the required conditional
independence between (:13*(1), .. ,w*(m)) and X, given Z, holds.

(b) We are working under the paradigm where the original data are known to be iid from
a distribution within the parametric family 7 = {f(z|0) : 6 € ©}, and it is only the
parameter @ that is unknown and must be estimated from the observed data. The
Algorithms or [3] do not use X, but instead use Z along with the knowledge
that the original data are iid from a distribution within the parametric family F, to
generate multiply imputed values of X.

4.4. Data Analysis Using Multiple Imputation Combination Formulas

Suppose that a data analyst observes the multiply imputed data *(, ..., £*(™) and wants
to draw inference on the unknown parameter 6, or on a function of 8. Below we review the
inferential procedures of Rubin| (1987)) for a scalar-valued estimand, and the procedures of
Rubin/ (1987) and [Li, Raghunathan, and Rubin| (1991)) for a vector-valued estimand. In
addition to [Rubin/ (1987) and Li, Raghunathan, and Rubin| (1991), one may also refer to
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Rubin/ (1996), Schafer| (1997)), |Little and Rubin| (2002)) and |[Reiter and Raghunathan| (2007)
for more information on these procedures, and for additional procedures.

Scalar-Valugd Estimand. Suppose that @@ = Q(6) is the scalar-valued parameter of
interest. Let Q(X) be an estimator of (@) based on the original data X, and let V(X)) be
an estimator of the variance of Q(X ), also based on the original data X. Let Q; = Q(m*(j )
and V]* = V(cc*(j)) be the values of Q and V when computed on the jth imputed dataset
x*) for j = 1,...,m. Define the following
Qm = li@*. Vo= iiv.* B :Li@*_Q )2.
me= o jroYm T o p jo Pm 14 J m

m
Jj=1

Then Q,, is an estimator of @, and the variance of Q,, is estimated by T, = V,, +
(14 1) By,. The distribution of (Qm — Q)/v/T}, is approximated by a ¢ distribution with
w= (m—1)(1+7,1)? degrees of freedom where r,,, = (1+m~!)B,,V,-. Hence, to obtain
a test of significance for @, or a confidence interval, one can use (Q., —Q)/v/T, along with
its approximate t distribution.

Vector-Valued Estimand. Suppose that @ = Q(0) is the k x 1 dimensional vector-valued
parameter of interest. Let Q(X) be a k x 1 dimensional estimator of Q(0) based on the
original data X, and let V(X)) be a k x k dimensional estimator of the covariance matrix
of Q(X), also based on the original data X. Let Q} = Q(x*1)) and Vi= V(z*9)) be
the values of Q and V when computed on the jth imputed dataset *U) for j =1,...,m.
Define the following
1 1 1 -
Qu=—> Q) Vm=—3 Vj, Bn=—"7> (Q;-Q,)(Q; - Q)
j=1 j=1 j

m —
Jj=1

Then Q,, is an estimator of @, and the covariance matrix of @Q,, is estimated by T, =
Vo + (1 + %) B,,,. Define the quantity

Q.- Q'V, (@, Q)
E(1+7m)

Sm =

where r,, = (1+ mfl)tr(BmV:nl)/k. The distribution of Sy, is approximated by an Fj, ,,
distribution with
2
4+ [k(m —1) — 4] [1+r,;1 (1— ﬁ)} . ifk(m—1) >4,
(m—1) (BL) (1 +r;1)2, if k(m —1) < 4.

Hence, to obtain a test of significance for @Q, or a confidence ellipsoid, one can use S, along
with its approximate F' distribution.



108 International Journal of Statistical Sciences, Vol. 24(2)s, 2024

5. Simulation Studies Under the Normal Model

In this section we present simulation results to evaluate finite sample properties of the
proposed method in the case that f(z|@) is the normal model. In Section we present
details to illustrate how the proposed methodology can be applied under the normal model,
and in Section we summarize some results of the simulation study.

5.1. Application to the Normal Model

Suppose f(x|@) is the normal pdf with mean y and variance o2, that is,

1

1
f(z|0) = Wexp [—M(x —u)ﬂ , tE€R, peR, 0% € (0,00),

and hence 8 = (u,02), X =R, ® = R x (0,00). We specify the following conjugate prior
distribution for (i, 2) (see, for example, Gelman et al., 2014),

2
u\a%N(Ao,”), 2~ (1)
RO Xvo

where \g € R, kg € (0,00), vg € (0,00), 19 € (0, 00) are parameters of the prior distribution.
Under this specification, the prior density on (u,o?) is

po(p,0%) = {(27;;,2>—1/2 o [—%(M B )\0)2} } {(1:20():;2(02)—@0/2)—1 exp [_%‘02} } 7

2

for 4 € R and 02 € (0,00). Then the posterior distribution of (11,0?), given X = x, can
be represented as follows:

2

2 o 2 Tn
u\a,szwN()\n,>, o X =z~ —, (12)

K, 2
where )\, = %, Kn = Ko +n, Tn = 70+ (n — 1)s2 + (7 - M) v = 1o + 1,

=157 2, and s2 = L3 | (2; — )% Hence the posterior density of (u,0?), given

X ==, is

ora?\ /2 Fn (@)V"/z Tn
st = {(22) " sn - s { Eor et [ 22])

2

for 4 € R and 02 € (0,00). Drawing a random sample from the posterior distribution of
(u,02), given X = x, is readily accomplished using the representation in , and hence
Algorithm [3]is readily applied to obtain «*(!), ... 2*(™) as discussed in Section For
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the starting value 0 needed to run Algorithm |3, one use the MLE of 6 based on Z.
As discussed in Section [£.2] the MLE of 6 based on Z can be computed using the EM
algorithm. In this case, the log-likelihood function for € based on X = x is

n

1
252 (i — p)?
i=1

—— log(27r) - = log - Z % zn:xz -
i=1 i=1

and the E step of the EM algorithm is to compute

{x(6]@) = — log(2m) - glogw?) -

Q(6)6") = / Ox (0]) [ [ 92 (wilz:, 0 )da
Rn i=1

n 2 n
L ny
-/ {_ og(2m) = 5 108(0%) = 33 72t > s 202} 9x1z (w121, 0 d
- 11

i=1

n 2
" np
=—— 10g(27r) - flog Z Po(z;,01) + lel (2,0 — 552"
where
01(2,8) = [ gyl 60)du
—00

o—lzi— L|/cf_ wf(w]@ dw+fLUwf(w\0( Ve~ lzi—wl/eqyy 4 e—l2i— U\/Cf wf(w|0 )
e~z Ll/e P (LIOW) + [ e=lzimwl/e f(w]0®)dw + e=12=Ul/e[1 — F(U|6W)]

and

[e.9]

Pa(z;,0) :/ w?gx|z(w|z;, 8D)dw

—00

e —|zi— L|/cf 2f(w]0(t dw+fL 2f w’g t))e |2i— w‘/de+e |zi— U|/cf w2 U)|9 )

el LI/ p(LIOW) + [} e~limul/e f(w]@®)dw + e~==Ul/e[1 — F(U|0W)]

By maximizing Q(G\O(t)) with respect to 8, we obtain the following equations which define
the sequence of EM iterations:

t+1 Z% 2i, 0 7 (U t+1 {Z ¢2 2i, 0 (U(H_l))Q

Here the integrals that appear in 1111(21-,0('5)) and @bg(zi,e(t)) can be expressed in closed
form, up to the standard normal cdf; the relevant formulas appear in the technical report
Klein and Sinha (2019).
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Remark 5. Observe that in this case we are using a proper prior distribution for 6. If an
improper prior distribution is used, then one must be careful, because even if the posterior
distribution of 6, given the original data X, is proper, the posterior distribution of 8,
given the noise infused data Z, may be improper. Consider the normal example with
n > 1, and improper prior pg(u,0?) o 1/0%, —00 < u < o0, 0 < 0? < co. Then the
posterior distribution of (u,0?), given the original data X, is proper (Klein and Sinhal,
2013)). However, the posterior distribution (u,0?), given the noise infused data Z, is not
proper. Proof that the posterior distribution of (i, 0?), given Z, is not proper is provided
in the technical report Klein and Sinha/ (2019).

5.2. Simulation Results

We now present numerical evaluations to study the finite sample properties of the proposed
methodology under the normal scenario of Section[5.1] The simulation results are displayed
in Tables and [3| and we set ;= 0, 02 = 1 in all cases, and the parameters in the prior
distribution are set to Ag = 1, kg = 0.1, 79 = 10, vy = 5. Each of these tables shows results
when the parameter of interest is the mean u, and also when the parameter of interest
is the variance o%; and each table also shows results for each € € {1,2,3,4,5}, and each
[L,U] € {[-3,3],[—4,4]}. Tables and [3| show results for (the number of imputations)
m = 10, 30, and 50, respectively. For each setting the tables display Monte Carlo estimates
(multiplied by 100), based on 2500 iterations, of root mean squared error of the estimator
(RMSE), bias of the estimator (Bias), and standard deviation of the estimator (SD), as

—

well as the average of the standard deviation estimator over the simulation runs (SD),
empirical coverage probability of the nominal 0.95 confidence interval (Cvg), and average
length of this confidence interval over the simulation runs (EL).

We use the methodology of Section to obtain an estimator for the parameter of
interest, along with an associated standard deviation estimator, and confidence interval.
Let fi, = Z and 62 = 137 (z; — 2)% = =12 ie., fi, and 62 are the MLEs of p
and o2 based on the original data. In applying the methodology of Section when
the parameter of interest is Q(0) = u, we take Q(x) = Z, V() = 62/n; and when the
parameter of interest is Q(8) = 02, we take Q(x) = 62, V() = 2(62)?/n. Furthermore,
we use Algorithm |3 to generate the multiply imputed data 2*(), ..., *(™). For the initial
value 89 needed to run Algorithm (3] we use the MLE of 8 based on Z, which we compute
via the EM algorithm. We used the statistical computing software R (R Core Team,
2018)) to obtain the simulation results. The EM algorithm and Algorithm 3| are the most
computationally intensive parts of the simulation. Using Rcpp (Eddelbuettel and Francois,
2011; Eddelbuettel, [2013; Eddelbuettel and Balamutal [2017) we implemented the EM
algorithm, Algorithm [3] and the Laplace mechanism with truncation in C++, and
called the C++ implementations from R. Within each iteration of the simulation we ran
Algorithm [3] a single time with a burn-in of 1000 iterations, and subsequently we sampled
every 100th iteration until we obtained the desired number of m imputed values. For the
EM algorithm we stopped when either a maximum number of 1000 iterations was reached,
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or the convergence criterion {[u(® — p+D]2 +[(02)®) — (2)HD]2}11/2 < 104 was satisfied.
The following is a summary of the simulation results of Tables [T} 2| and [3]

1. When the parameter of interest is u: We o]/aﬁerve that Cvg tends to be close to the
nominal value of 95%, Bias is close to 0, and SD is close to SD. In this sense, we are able
to obtain inference for p that is approximately valid in all the scenarios considered, even
those with smaller e. Because SD is close to SD, the results indicate that the multiple
imputation standard deviation estimator 1/7}, is an approximately unbiased estimator
for the standard deviation of Q,,. As ei(Pected, for given values of n, L, U, and m, we
observe in the tables that RMSE, SD, SD, and EL tend to decrease as € increases; and
as € gets larger the amount of decrease in these quantities reduces. We also observe
that for given values of n, €, L, and U, the quantities RMSE, SD, S/]\), and EL tend to
decrease as m increases; though there are some exceptions, and the amount of decrease
reduces as m increases.

2. When the parameter of interest is 02: We observe that f9£ the smaller values of €

considered, Cvg tends to exceed the nominal value of 95%, SD is greater than SD, and

the Bias is also not approximately equal to 0. In Table (m = 10), when n = 5000, € = 1

we also see that Cvg is 90.44% and 87.12% in the [L,U] = [-3, 3] and [L,U] = [—4, 4]

cases, respectively; in these same scenarios when m = 30 or m = 50 the value of Cvg

is more than 95%. In the Tables, we observe that Cvg tends to get closer to 95%, and

Bias gets closer to 0, as € increases. When Cvg exceeds 95%, we observe that SD is

greater than SD, indicating that the multiple imputation standard deviation estimator

is positively biased for the standard deviation of Q,,. We also observe that when the
sample size increases from n = 1000 to n = 5000, Bias and Cvg appear to get closer to

0 and 95%, respectively, and also SD is closer to SD.

3. On the choice of L and U: Looking at the Laplace mechanism with truncation in ,
recall that in addition to €, this data release mechanism also has the tuning parameters
L and U. Result 3| shows that the conditional distribution of Z, given X, under this
mechanism satisfies e-differential privacy, irrespective of the choice of L and U. We
observe that if [L,U] is too narrow then most of the Z; values will equal L + R; or
U + R;, which seems to cause a large amount of information loss in the data compared
to a wider choice of [L, U] which would give more Z; values equal to X; + R;. However,
the variance of the noise variable R; is 2[(U — L)/€]?, and thus if the interval [L, U] is
too wide, then the variance of R; will be large, which seems to cause a large amount
of information loss in the data compared to a narrower choice of [L,U] which would
give a smaller variance for R;. Thus it appears to be undesirable to choose [L,U] to
be too narrow, and it also appears undesirable to choose [L, U] to be too wide. In the
simulation studies we have considered the cases [L,U] = [-3,3] and [L,U] = [—4,4],
and the original data are distributed as N(0,1) so that P(X; € [-3,3]) ~ 0.99730 and
P(X; € [—4,4]) = 0.99994. Clearly under both of these choices, most of the original
values are in the interval [L, U]. We observe in the Tables that inference tends to be less
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accurate in the [L,U] = [—4,4] cases compared to the corresponding [L,U] = [-3, 3].
Thus in the simulation scenarios, the interval [—3, 3] contains most of the original data,
and while [—4,4] covers even more, the increase in variance of R; seems to offset any
benefit.

4. Comparison with original data inference: In this setting, with X1, ..., X, iid as N(0,1),
X=n1tY0, X, 6% =n"1 3" (Xi — X)2, we note that 100 x [Var(X)]/2 = 100 x
1/y/n = 3.16 if n = 1000, ~ 1.41 if n = 5000; and 100 x [Var(6%)]'/? = 100 x

2(n —1)/n? = 4.47 if n = 1000, =~ 2.00 if n = 5000. One can compare these values
with the values of SD given in the tables to assess the amount of increase in standard
deviation due to the combination of the Laplace mechanism with truncation (4f), and
multiple imputation based methodology.

6. Extension to Multivariate Data

In this section we extend the proposed methodology to the case of multivariate data.
Suppose the original data consist of g-dimensional random vectors X1,..., X, id f(x]0).
As in Section[2] assume f((@) is the pdf of a continuous distribution and @ = (61,...,0,) €
© C RP is an unknown parameter. In this setting, each X; = (Xj1,...,Xiy) € X, where
X C R? is the support of f(x|@) such that f(x|@) > 0 if x € X, and f(x|@) = 0 if
x ¢ X. Let Z;,...,Z5 denote the sanitized dataset, where each Z; = (Zj1,...,Z;y) €
RY. Let B(R?") be the class of Borel sets in R, and X" = X x --- x X C R be
the n-fold Cartesian product. Let X = (X4,...,X,) and Z = (Z1,...,Z5). For two
vectors @ = (ai,...,a,) = ((a11,...,01),-- -, (@p1,...,anqg)) € X" and b = (by,...,b,) =
((b11,--,b19)- -5 (bnay - - - bng)) € X, define §(a,b) = |{i : a; # b;}|. Below we state the
definition of e-differential privacy (Dwork et al., 2006, 2017), as it applies in the present
multivariate scenario. As before, we follow Wasserman and Zhou| (2010), treating a,b € X"
as neighbors if and only if §(a, b) = 1.

Definition 2. For a given € > 0, the conditional distribution of Z, given X, is said to
satisfy e-differential privacy if

P(ZcA|lX =a)<eP(ZcA|X=0b) (13)
for all A € B(R?") and all a,b € X™ such that d(a,b) = 1.

Lemma [1| and Result [If continue to hold in the multivariate scenario, with the obvious
adjustments. Below we state a version of the Laplace mechanism (Dwork and Roth| 2014;
Dwork et al., 2017)) for the present multivariate scenario. We state the Laplace mechanism
below in such a way that the random noise variables are independent, but not identically
distributed.
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Result 5. (standard Laplace mechanism for multivariate data) For each j = 1,...,q,
let ¢, > 0 and Aj; = sup{|a; — G| : @ = (,...,0q) € X, 8 = (B1,...,54) € X}. If
Aj € (0,00) forall j =1,...,q, and

Zij = Xij + Rij, (14)

where R;j ~ Lap (0,A;/¢;), independently, for j = 1,...,¢ and i = 1,...,n, then condi-

tional distribution of Z, given X, satisfies e-differential privacy with € = Zg‘:l

Ej.
Remark 6. In Result |5, the Laplace random variables R;;, © = 1,...,n, 7 =1,...,q are
independent, but not identically distributed; instead, the noise variable R;; is scaled to Xi

according to R;; ~ Lap (0,A,/e;), leading to 9 ¢;)-differential privacy. In Result
J 3/ €j j=1€J

one can instead draw R;; i Lap (O, el ?:1 Aj), j=1,...,q,1=1,...,n, in which case

the conditional distribution of Z, given X, will satisfy e-differential privacy. In this version

with R;; ud Lap (O, e ! ;7-:1 Aj>, one would only specify a single value € > 0, instead of

the g positive values €1, ..., €.

As in the univariate scenario, for many choices of the original data distribution f(x|@),
the sample space X is such that A; is not finite for all j =1,...,¢, and hence the Laplace
Mechanism in Result [5|cannot be applied. For example if f(x|0) is the multivariate normal
pdf, then X = R?, and hence A; = oo for j = 1,...,q. We now consider a modification
of Result |5, analogous to the Laplace mechanism with truncation of Result |3, enabling
e-differential privacy to be obtained in the multivariate scenario without requiring that A;
is finite for all j =1,...,q.

Result 6. (Laplace mechanism with truncation for multivariate data) For each j =
1,...,q,1let ¢, >0, and let L;,U; € R be such that L; < Uj. If

Lj—}-Rij, if Xij < Lj,
Zij: Xij+Rij7 lfLJSXZJSUJ, ,7=1,...,q, 1 =1,...,n, (15)
Uj—f-Rij, iinj > Uj,

where R;; ~ Lap (0, (U; — L;)/¢€;) independently for j =1,...,gand i =1,...,n, then the

conditional distribution of Z, given X, satisfies e-differential privacy with e = > ¢

=1 €j.

For the rest of this section, let 7 = n, and let Z be defined as in Result [ The conditional
pdf of Z;;, given X;; = x5, is

1 —|zi;—Ljl/c; 3
che |zij =L/ i, if Tij < Lj

— 1 —lzig—zijl/ej; : . .
gj.21x (zijlwig) = { ggye” o rul/en, i Ly < iy < U;

1 —|z;=Ujl/c; H
che |2i;=Uj/ 7, lf;pij > Uj

e—lzii—Ljl/c; e~ lzii—wijl/cs e~ 1zii=Ujl/¢;
e+, ) (@) o+ [ 00) (Ti)

(7OO’LJ)(:CU) QCj 2Cj 2Cj ’
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where ¢; = (U; —
pdf of Z;, given X; = x;, is
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Lj)/ej, and I is the indicator function for the set A. The conditional

il e —lzij=Ljl/c; e~ lzii—zijl/e; e~ 17ii=Ujl/ej
9z\x (zilz:) = 1:[ {I< o0,L;) (Ti5) 3, + Iz, vy (i) o + It} 00) (Ti5) %, }
The joint pdf of (X, Z;) is
9x,2(Ti, 2i|0) = f($i|9)gZ\X(Zi|$i)

q =Lyl _ 1z =) 1235 —Ujl
e e e 9
= f(@il®) [ [ § L—oo.L)) @is) —5— + Iz, v, (2i5) + L(v; 00) (%i5)
ey 7 26]' s QCJ' J QCJ'
The marginal pdf of Z; is
gz(zi|0)=/ gx,z(w, 2;|0)dw
R4
|25 —Ljl 1255 —wjl 12i —Ujl

kl e % e % e <
= /Rq f(w\@) H {I(_Oo,Lj)(wj)% + I[LJ’UJ](wj)T + I(Uﬁoo)(wj)ch} dw.

j=1
The conditional pdf of X;, given Z; = z;, is

gx.z(xi, 2:(0)
x;|z;,0) = —"——" "~ 16
‘zij.*Lj‘ 7|zij.*wij‘ IZU*U |
F@i10) Ty { 1o (@) 5 + 1,0 (040) 5 + L, o) (@07 5 — |
- N1l _lzig—wyl BETET]
qu w|0 J 1 {I( oo,L; )(w])42cj1 — 4 I[Lj,Uj](wj)e 2ch] + I(Ug,oo) wJ }dw
_ =i =Lyl |zi5—i5l _ =iy *UJI
fil0) IT5-, {I( sry(@gle 9+l u)(@gle 9+ Iy, 00 (i)e }
[z —Ljl [z35—wjl _ 124 U5

qu w|0 j 1 {I( 0o,L; )(’LUJ)@7 <j

+ I[L%Uj](wj)ei

}dw

E + I(Ujvoo)(wj) K

Result 7. For given values of z € R? and 8 € ©, the following algorithm produces a

random vector X* having the density gx|z(z*|z,8),

Equation . Define

lzj—Ljl

I {I(—oo,Lj)(ﬂfj)e_ g

+ I, vy (j)e

where gx|z is the pdf defined in

lzj—z;l

9+ Ly 00)(T))e

K(x,z)

- 1z Ll
1 {I(—oo,Lj)(Zj)e

and proceed as follows.

l=;=U;

J J
T () e (e T
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1. Generate V and X independently such that V' ~ Uniform(0,1) and X ~ f(«|@).

2. If V < K(X, z) then accept X and deliver X* = X. Otherwise reject X and return
to Step 1.

The expected number of iterations of Steps 1 and 2 required to obtain X™ is

=

M(z,0) = C(z,0) {I< vor) (21)€ TP TEN G 4 I (25) + T, 00 (7)€ 750 Ul/cj},

j=1
where
1 - 1 _lEiwl 12Ul
0 ®) = IO T Voo™ i)™ 5+ Ly o

Using the distributional results above, the likelihood based data analysis and imputation
methods can be derived in a completely analogous way as how these results were derived
in Sections and respectively. For the multivariate version of Algorithm [3| one
would use Result [7] in place of Result [4] in step 1; but otherwise, extending each of the
Algorithms and [3| to the multivariate scenario requires only the obvious modifications
to account for vector-valued X;, instead of real-valued X;. The methods described in
Section [£.4] can be applied for data analysis based on the multiply imputed data. The
(multivariate version of) Result can be used to conclude that the conditional distribution
of the multiply imputed data *(), ... x*(™) given X, satisfies e-differential privacy under
the assumed parametric scenario.

7. Conclusion

In this paper we have proposed methodology to randomly transform an original dataset
X to Z using the Laplace mechanism with truncation as stated in Result The mod-
ified version of the Laplace mechanism using truncation enables e-differential privacy to
be obtained without requiring the sample space of the original data to be bounded. We
proposed to setup a missing data problem with X as the missing data, and Z as the ob-
served data, and hence to multiply impute X, based on Z, thus obtaining &*(), ... x*(m),
Because the imputation process (Algorithm l, ' or . only uses Z, but not X, it follows
that (z*(, ..., 2*(™)) is conditionally independent of X, given Z. Therefore, by Result
we may conclude that the conditional distribution of *(), ... &*(™) given X, satisfies
e-differential privacy. By releasing the multiply imputed data &*(V), ... x*(™) data users
are able to obtain valid inference for the unknown parameter Q(@) (scalar or vector) us-
ing standard statistical methods in conjunction with easily applicable multiple imputation
combining formulas as explained in Section f.4] Indeed, an advantage of this approach
is the ability to attain e-differential privacy, while enabling data users to obtain valid in-
ference using easily applied multiple imputation combining formulas. The data user does
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not need to apply complicated or specialized inferential methodology to account for the
noise mechanism, which, as discussed by |Rubin (1993)), is an advantage of using multiple
imputation. In fact, upon observing x*() ... x*(™) the data user does not even require
knowledge about the noise infusion mechanism in Result [3] to obtain valid inference using
the multiple imputation combining formulas; for example, the data user does not require
the values of ¢, L, and U to analyze z*D . 2*(™) The most complicated part of the
proposed methodology is generating the imputed values of *(), ..., &*(™) and generating
these values would be the job of the data producer, and not the data user. Furthermore,
algorithms for generating these imputed values are provided in Section [4-3]

Throughout we have worked under the assumption that the original data X, prior to
collection, are known to be independent and identically distributed (iid) from a distribution
within the parametric family F = {f(z|0) : @ € ®}, and it is only the parameter 6 that
is unknown and must be estimated from the data. We mention two comments regarding
this parametric modeling assumption.

1. As discussed in Remark {4} the imputation procedures (Algorithms and [3) make use
of the knowledge that the original data are iid from a distribution within F, but do not
make explicit use of X, to generate the imputed values. Because the parametric family F
is known in advance of data collection, and these Algorithms make use of Z, but not X,
we are able to conclude that (z*(), ..., 2*(™)) is conditionally independent of X, given
Z. Therefore Result |1| implies that the conditional distribution of (w*(l), .. .,m*(m)),
given X, satisfies e-differential privacy. However, if the parametric family F was not
known a priori, but instead the imputer used X to model the parametric family F,
and then applied the imputation procedures of Section [£.3] using F; then such a use
of X to inform about F, could cause (:c*(l), o ,m*(m)) and X, to be conditionally
dependent, given Z. If (2*(V) ... 2*(™)) and X are conditionally dependent, given Z,
then Result [T]no longer applies, and we cannot conclude that the conditional distribution
of (1:*(1), e w*(m)), given X, satisfies e-differential privacy.

2. In practice there is, of course, the possibility that the parametric family F is mis-
specified by the imputer and/or the data analyst. Such misspecification can lead to
invalid inference, and we refer to Meng (1994)) and Robins and Wang| (2000) for further
discussion.

The two points above indicate the role of the parametric modeling assumption in this paper.
As future research one could study ways of relaxing the parametric assumption, perhaps
through semi-parametric or non-parametric modeling approaches. Under the proposed
methodology, one could also study the effects of model selection on differential privacy,
and the effects of model misspecification on inference.

We are thankful to an anonymous reviewer who pointed out that it would be of interest
to evaluate the possibility of a loss of accuracy of inference resulting from the proposed
multiple imputation-based data analysis, as compared with approaches that analyze the
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sanitized data directly. As future work one could also take up this research problem. With
respect to asymptotic comparisons,|Wang and Robins| (1998)) provide asymptotic theory for
parametric multiple imputation procedures, and Robins and Wang (2000) provide further
asymptotic theory for imputation estimators.
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Table 1: Simulation results under N(u = 0,02 = 1) with m = 10.

Parameter of interest is u

Parameter of interest is o

2

RMSE Bias SD SD Cvg EL | RMSE  Bias SD SD Cvg EL

n L U €| x10® x10®> x10®> x10? %  x10% | x10%2  x10®> x10> x10? % x10?
1000 -3 3 1| 2325 -0.13 23.25 2251 94.04 100.62 | 139.02 98.82 97.78 98.81 98.64 445.62
2| 1198 0.63 11.97 11.97 9524 5269 | 50.26 34.58 36.48 42.85 97.96 192.55

3 860 0.15 860 862 94.60 37.35| 28.28 14.66 24.19 26.80 97.24 119.81

41 697 -013 697 6.94 9528 2962 | 2021  7.24 18.87 19.70 96.08  87.49

5 580 -0.01 580 595 95.64 25.02| 1561  4.25 15.02 15.59 96.44  68.67

6 538 -0.01 538 533 9448 22.14| 12.96  2.56 1270 1281 9520 55.83

1000 -4 4 1| 2880 0.51 28.80 28.31 94.92 127.04 | 149.38 110.59 100.43 108.01 98.60 487.20
2| 1547 -0.33 1547 15.10 94.76 66.99 | 66.72 49.78  44.42 54.47 98.36 245.11

3| 1095 0.19 1095 10.67 95.12 46.76 | 38.89 24.93 29.85 35.23 97.80 158.04

4 871 0.02 871 854 9448 37.00| 27.90 15.03 23.50 26.40 96.80 117.98

5 728 0.09 7.28 7.21 9476 30.84 | 21.04  7.98 1947 20.85 95.96 92.74

6 6.41 0.08 6.41 6.36 95.04 26.93| 17.02 505 16.25 17.23 96.72  76.21

5000 -3 3 1 9.92 021 992 9.69 94.96 43.44 | 64.58 42.11 48.97 38.74 90.44 174.94
2 532 -0.03 532 528 9580 23.35| 2210  9.05 20.17 20.19 95.24  91.00

3 3.85 -0.07 385 3.80 94.64 1652 | 1322  3.38 12.78 12.81 9540 57.49

4 317 -009 317 3.08 9436 13.15 935 1.31 926  9.12 9548  40.63

5 2.68 0.06 2.68 2.65 94.48 11.14 729 099  7.22 7.7 95.00 31.68

6 243 -0.05 243 239 9456  9.92 589  0.43 588  5.84 95.08 25.51

5000 -4 4 1| 1271 -0.08 1271 1221 94.00 54.87 | 85.91 5843 62.98 46.32 87.12 209.21
2 6.64 0.16 6.64 6.61 9544 29.41 | 31.91 17.23 26.86 25.80 93.72 116.39

3| 477 010 477 472 95.00 20.78 | 1820  6.13 17.13 17.53 95.84 78.91

41 379 006 378 3.79 95.00 1647 | 13.07  3.01 1272 1278 95.76  57.36

5 320 -0.08 3.19 3.20 9492 13.71| 10.12  1.58 10.00  9.90 95.24  44.21

6 2.86 -0.05 286 2.83 94.92 12.00 820 1.35 809  7.95 9520 35.27
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Table 3: Simulation results under N(u = 0,02 = 1) with m = 50.

Parameter of interest is u

Parameter of interest is o

2

RMSE Bias SD SD Cvg EL | RMSE Bias SD SD  Cvg EL

n L U €| x10® x10®> x10®> x10? %  x10% | x10%2  x10® x10> x10? % x10?
1000 -3 3 1| 2216 028 22.16 2234 95.88 89.61 | 123.52 99.72 72.89 110.56 100.00 444.16
2| 11.71 0.14 11.70 11.74 94.80 46.98 | 47.70 34.59 32.84 43.27 99.40 173.71

3 831 -0.06 831 839 9532 3346 | 2650 14.16 22.40 26.52  98.20 106.40

41 674 004 674 6.80 9512 27.05| 1870  6.79 1742 1937 96.88  77.61

5 596 -0.08 596 5.87 94.80 23.30 | 14.85  4.04 1429 1521 96.64  60.87

6 524 -0.16 524 5.27 95.60 20.84 | 1249  3.03 12.12 12.68 96.44  50.65

1000 -4 4 1| 2832 -040 2832 28.03 94.72 11250 | 144.26 114.81 87.36 127.46 100.00 512.07
2| 1451 032 14.51 14.94 9564 59.87 | 64.66 50.59 40.26 56.05 99.44 225.08

3| 1048 0.35 1047 10.52 94.88 42.07 | 37.13 24.70 27.73  34.95 98.44 140.28

4 813 -0.15 813 840 9540 3351 | 25.25 13.53 21.32 25.83 97.92 103.61

5 715 012 715 711 94.76 2829 | 20.48  8.67 1856  20.47 97.12  82.02

6 6.29 -0.07 629 626 9532 2487 | 16.10 531 1520 16.85 96.84 67.45

5000 -3 3 1 949 0.14 949 959 95.28 38.46 | 58.66 42.99 39.90 47.28 97.68 190.00
2 529 -0.00 529 514 9444 2057 | 20.78  9.13 18.67 20.63 96.48 82.88

3 3.72 -0.12 3.72  3.72 95.08 14.85| 12.92  3.20 1251 12.85 94.92 51.58

41 3.00 -009 300 3.02 9512 12.02 9.03 1.46 891  9.09 9532  36.45

5 256  0.04 256 261 9544 10.34 700 079 695  7.03 9540 28.15

6 235 0.06 235 234 9520 @ 9.26 568  0.37 5.67 574 96.08 22.93

5000 -4 4 1| 1239 0.33 12.38 1229 94.60 49.34 | 78.65 59.90 50.97 58.62 97.72 23558
2 6.45 0.02 6.45 6.57 95.92 26.33 | 29.88 17.47 24.23 27.66 97.08 111.11

3| 466 011 466 466 95.36 18.66 | 17.07  6.04 1596 17.63 97.20  70.82

4| 368 012 3.68 371 9516 14.81 | 1245  3.12 12.06 12.64 96.04 50.72

5 314 006 3.14 3.16 9532 1259 9.61 1.84 943 975 9528  39.12

6 2.81 -0.02 2.81 279 94.68 11.09 773 1.00 7.67  7.85 9548  31.45
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