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Abstract 

 
Life expectancy is a key measure of a country's overall health, socioeconomic development, and 

quality of life. The main objective of the study is to identify key factors influencing life 

expectancy using ‘Cleaned-Life-Exp’ standardized data from the World Health Organization 

(WHO) and to compare the performances of life expectancy prediction using various machine 

learning algorithms. The key influencing features on life expectancy are selected using Boruta and 

Regularized Random Forest (RRF) algorithms. Eight machine learning models such as Linear 

Regression (LR), Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-

Nearest Neighbor (KNN), Gradient Boosting (GB), XGBoost (XGB), and Neural Network (NN) 

are evaluated for predictive performance of life expectancy. Evaluation metrics such as the 

coefficient of determination (R
2
), root mean square error (RMSE), and mean absolute error (MAE) 

are applied to evaluate the performance of the models. Boruta and Regularized Random Forest 

(RRF) algorithms identified the same 20 significant predictors, including Income Composition of 

Resources, HIV/AIDS, Adult Mortality, and Schooling, as the most influential features. Among 

the eight machine learning models evaluated, Random Forest achieves the highest performance (R
2 

= 0.969, RMSE = 0.179, MAE = 0.116), highlighting the superiority of ensemble methods. 

Support Vector Machine (SVM) performs well, while Decision Tree and KNN show moderate 

performance. Linear Regression and Neural Networks have the lowest predictive performances. 

This study will help to provide a better predictive framework using machine learning models, 

which can guide policymakers in improving life expectancy prediction.  

Keywords: Life expectancy, Boruta algorithm, Regularized Random Forest algorithm, Linear 

Regression, Decision Tree, Random Forest, Support Vector Machine, K-Nearest Neighbor, 

Gradient Boosting, XGBoost, and Neural Network (NN). 
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1. Introduction 

Life expectancy is a key measure of a country's overall health, socioeconomic development, and 

quality of life. It demonstrates the effectiveness of healthcare systems, public policies, and 

individual health behaviors. Predicting life expectancy is a critical area of research that combines 

data from various fields, including healthcare, economics, and environmental studies, to estimate 
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the average number of years an individual or population is expected to live [1]. Several factors, 

such as genetics, lifestyle choices, healthcare quality, socioeconomic conditions, and 

environmental factors, influence the prediction of life expectancy [2]. In recent years, 

advancements in machine learning and statistical modeling have allowed researchers to develop 

more accurate and nuanced predictions, enabling better public health planning and policy 

formulation [3]. By analyzing trends and identifying patterns within large datasets, these predictive 

models can help anticipate changes in life expectancy due to evolving healthcare practices, 

lifestyle shifts, or environmental conditions, offering valuable insights into the future well-being of 

populations. 
 

Over the past decades, researchers have increasingly turned to data-driven approaches to 

understand the factors influencing life expectancy and to predict it accurately. Machine learning 

(ML) models, with their ability to uncover complex relationships in data, have emerged as 

powerful tools in this domain [4]. The World Health Organization (WHO) provides 

comprehensive data that captures various variables impacting life expectancy, including healthcare 

expenditure, immunization rates, and socioeconomic indices [5]. These variables present an 

opportunity to delve into the intricate relationships governing life expectancy and to uncover 

actionable insights through data-driven methodologies. Machine learning has become a robust 

analytical tool capable of handling complex, non-linear relationships and high-dimensional 

datasets. By leveraging machine learning techniques, this study aims to predict life expectancy and 

identify the important factors from a rich dataset of global health indicators [6]. This approach 

facilitates accurate prediction and highlights key variables that can guide interventions to enhance 

public health outcomes [7]. This research is motivated by the need to harness advanced 

computational techniques to address pressing global health challenges. By utilizing various 

machine learning techniques, the study seeks to advance the understanding of factors affecting life 

expectancy [8] and provide a robust predictive framework to inform policy-making and resource 

allocation [9]. Existing studies on life expectancy prediction often neglect feature selection, 

leading to the inclusion of irrelevant variables, which affects model performance and 

interpretability. Applying feature selection methods like Boruta or Regularized Random Forest 

(RRF) can enhance model accuracy, efficiency, and interpretability by identifying key predictors 

of life expectancy. Most studies focus on a single or limited set of ML algorithms (e.g., linear 

regression, Random Forest) without evaluating advanced techniques like SVM, XGBoost, or 

Neural Networks. A comprehensive comparison of multiple ML models can help identify the most 

suitable approach for life expectancy prediction [10]. The objectives of the study are to identify 

key factors influencing life expectancy using standardized World Health Organization (WHO) data 

and to compare the performances of life expectancy prediction using various machine learning 

algorithms. The workflow diagram of the study process is presented in Figure 1. 
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Figure 1: Proposed study process diagram 

 

The rest of the paper is organized as follows: Section 2 explains the materials and methods, 

including the data source, variables, feature selection techniques, and machine learning models. 

Section 3 details the results and provides a discussion. Section 4 presents the study's conclusion 

along with potential future extensions. 
 
 

2. Materials and Methods 
2.1 Data Source and Study Variables 
 

The completeness and accuracy of the data are critical to the outcome of this research. The data 

utilized in this study was sourced from the World Health Organization's (WHO) Global Health 

Observatory (GHO) data repository, which monitors health indicators and associated factors for 

nations all over the world. The United Nations was the source of the relevant economic data. This 

study concentrates on the health-related variables that are most representative and essential to 

comprehending life expectancy out of the wide range of accessible variables. Data from 193 

countries are included in the dataset, which has been painstakingly combined into a single file with 

2,938 rows and 22 columns that reflect 20 predictive variables. Economic, social, mortality, and 

immunization-related factors were the four primary categories into which the variables were 

divided. By creating a comprehensive dataset with no missing values and using data from 193 

countries over numerous years, this study aims to close these gaps. In addition to important 

vaccinations like Hepatitis B, Polio, and Diphtheria, this dataset includes variables like GDP, 

education, and health spending. By determining the most important life expectancy predictors, this 

method enables nations to rank the treatments that have the best chance of enhancing the health 

and longevity of their citizens [11].   
 

2.2 Statistical Analysis 
 

Some graphical representations (e.g., histogram) and measures of central tendency, dispersion, 

skewness, and kurtosis are employed to investigate the characteristics of the variables. The 

relationship between all the variables is measured using Pearson’s correlation coefficient, and the 

resulting correlation matrix is then displayed as a heatmap using the R corrplot tool. 
 



 

 

 

 

 

 

 

 

58                                       International Journal of Statistical Sciences, Vol. 25(1), 2025 

 

 

2.3  Features Selection 
 

Feature selection is crucial in regression and classification to improve model accuracy by 

excluding irrelevant predictors. 
 

2.3.1 Boruta Algorithm 
 

The Boruta algorithm, based on Random Forest, is a notable method of feature selection [12]. It 

uses shadow features and random duplicates of the original variables to build decision trees. 

Feature relevance is assessed by the reduction in model performance caused by shadow features. 

Z-scores are calculated by dividing the mean accuracy loss by its standard deviation, helping 

identify essential predictors. The Z-score is regarded as the key metric in the Boruta method. As a 

result, the set of shadow attribute importance is utilized as a guide to determine how important 

original attributes are. Next, the highest significance of shadow characteristics is compared with 

the significance of original features [13]. The step-by-step procedure of the Boruta algorithm is 

given in [14]. 
 

2.3.2 Regularized Random Forest (RRF) Method 
 

The RRF method is an advanced feature selection approach that enhances traditional random 

forests by incorporating regularization to promote sparse models [15]. Let gain(Xj) represent the 

evaluation metric for a given feature Xj. Define F as the set of features previously used for splits in 

a tree model. The modified measure is defined as: 

gainR(Xj) = {
λ. gain(Xj)            Xj ∉ F

gain(Xi)             Xj ∈ F       
 , 

where λ ∈ [0, 1] is referred to as a regularization parameter. A lower value of λ imposes a higher 

penalty on features that are not part of F. The use of gainR(. ) to determine the splitting feature at 

each tree node is known as the tree regularization framework. Further details can be found in 

[15,16]. 
 

2.4  Machine Learning Techniques 
2.4.1 Linear Regression 
 

Linear Regression is a supervised machine learning technique to predict continuous target 

variables. It establishes a mathematical relationship between a dependent variable y (also known as 

the response) and one or more independent variables X (also known as predictors or explanatory 

variables) through a linear equation [17]. 
 

2.4.2 Decision Tree 
 

A decision tree is a supervised learning method that can be applied for both regression and 

classification tasks. A decision tree is a supervised learning technique for classification and 

regression problems. This framework, similar to a flowchart, is used to make decisions or 

predictions. It includes nodes that indicate decisions or attribute tests, branches that show how 

these choices turned out, and leaf nodes that provide the results or forecasts. Each internal node 

signifies a condition applied to an attribute, every branch represents a possible outcome of that 

condition, and each leaf node corresponds to either a specific class label or a numerical value. The 

root node stands for the complete dataset, and the primary choice that needs to be created is for 

inside nodes to show judgments or attribute tests. There are one or more branches on each internal 

node; branches show the result of a test or choice that leads to a different node, and leaf nodes 
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stand for the ultimate judgment or forecast. At these nodes, no more splits take place. The step-

wise description of the decision tree is given in [18]. 
 

2.4.3 Random Forest 
 

Random Forest is an ensemble learning method that constructs multiple decision trees and 

aggregates their outputs to enhance prediction accuracy and stability. As a supervised machine 

learning algorithm, it can be applied to both classification and regression problems [19]. It 

employs bootstrap sampling, where multiple subsets of the original dataset are created through 

random sampling with replacement. A random subset of features is chosen at each split to reduce 

the correlation among trees instead of using all available features [20]. Each decision tree is then 

developed based on a predefined splitting criterion. 

Gini impurity, G = 1 − ∑ (pi)
2n

i=1   for classification and  MSE =
1

n
∑ (yi − ŷi)

2n
i=1  for regression. 

 

Then, for classification, it takes a majority vote of the predictions from all trees, and for regression, 

it computes the average of predictions from all trees as  ŷRF =
1

T
∑ ŷt

T
t=1 ,  where T is the total 

number of trees and ŷt is the prediction from the tree t. 
 

A graphical representation of the random forest is available in [21]. 
 

2.4.4 Support Vector Machine  
 

The Support Vector Machine (SVM) identifies the optimal hyperplane that provides the greatest 

separation between data points of various classes in the feature space [22]. Mathematically, the 

equation for a linear hyperplane is expressed as wTx + b = 0, where w denotes the weight vector 

(which is perpendicular to the hyperplane), b is the bias term, and x represents the input feature 

vector. The distance between the data point xi and the decision boundary is determined using the 

following formula [23] 

di =
wTxi + b

||w||
, 

where ||w|| is the weight vector w′s Euclidean distance norm. The normal vector w for the linear 

classifier has the following Euclidean norm: 

ŷ = {1:       wTx + b ≥ 0
0:       wTx + b < 0

 

We can optimize the hard margin linear SVM classifier as: 

minimize
w,b

1

2
||w||

2
 subject to:  yi(wTxi + b) ≥ 1  for i = 1, 2, … , m. 

For the soft margin linear SVM classifier, we can optimize it as:  

minimize
w,b

1

2
||w||

2
+ C ∑ ξi

m

i=1

  subject to:  yi(wTxi + b) ≥ 1 − ξi and ξi ≥ 0,

for i = 1, 2, … , m. 
For dual problems, we can optimize it as: 

maximize
α

1

2
∑ ∑ αiαjtitjK(xi, xj)

m

j=1

m

i=1

− ∑ αi

m

i=1

 , 

where ∑ αi  denotes the sum of all Lagrange multipliers, K(xi, xj)  is the kernel function that 

calculates the degree of similarity between two samples xi and xj ,  and αi  is the Lagrange 
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multiplier related to the ith training sample. The support vectors are the training samples with 

𝑖 > 0, and the decision boundary is provided by: 

w = ∑ αitiK(xi, x)

m

i=1

+ b   and   ti(wTxi − b) = 1 ⇒ b = wTxi − ti .  

A visual depiction of the SVM can be found in [24].  
 

2.4.5 K-Nearest Neighbor  
 

The K-Nearest Neighbor (KNN) algorithm is a straightforward, non-parametric, supervised, and 

instance-based machine learning technique for classification and regression. It determines the class 

or value of a given data point by analyzing the k nearest neighbors within the feature space [25]. 
 

2.4.6 Gradient Boosting 
 

Gradient Boosting is a robust supervised machine learning technique applicable to both regression 

and classification problems. It constructs an ensemble of weak learners, typically decision trees, in 

a stepwise fashion, with each successive model reducing the errors of the previous one by 

optimizing a loss function [26]. It includes the following steps [26,27,28]: 

i. Assume that X and Y are the input and target, respectively, with N samples. Finding the 

function f(x) that converts the input characteristics X to the target variables y is our aim. 

It is the total of trees, or boosted trees. The difference between the actual and anticipated 

variables is known as the loss function, L(f) = ∑ L(yi, f(xi)).N
i=1  

ii. We want to minimize the loss function L(f) with respect to f as f̂0(x) = argminf L(f) =

argmin
f

∑ L(yi, f(xi)).N
i=1  If this algorithm is in M stages then to improve the fm, it adds 

some new estimator as hm having 1 ≤ m ≤ M  and  ŷi = Fm+1(xi) = Fm(xi) + hm(xi). 
iii. For M stage gradient boosting, the steepest Descent finds hm = −ρmgm  where ρm  is 

constant and known as step length and gm  is the gradient of loss function L(f)  and 

gim = − [
∂L(yi,f(xi))

∂f(xi)
]

f(xi)=fm−1(xi)
. 

iv. The gradient similarity for M trees: 

fm(x) = fm−1(x) + (argmin
hmϵH

[∑ L(yi, fm−1(xi) + hm(xi))

N

i=1

]) (x)  and 

        the current solution will be  fm = fm−1 − ρmgm .  Here the notations such as 

Fm(x), hm(x), gm(x), etc., represent the models, weak learners, and gradients, 

respectively. 
 

A flowchart of Gradient Boosting can be found in [29]. 
 

2.4.7 Extreme Gradient Boosting (XGBoost) 
 

XGBoost is a powerful and scalable machine learning algorithm that enhances the Gradient 

Boosting framework for improved efficiency [30]. It introduces several enhancements, such as 

regularization, efficient computation, and advanced optimization techniques, to improve 

performance and reduce overfitting [31].  
 

2.4.8 Neural Network  
 

Neural Networks (NNs) are supervised machine learning algorithms inspired by the structure and 

activities of the human brain [32]. They are designed to approximate complex functions and are 



 

 

 

 

 

 

 

Das, Uddin and Karim: Predicting Life Expectancy using Machine Learning...              61 

 

 

used for classification, regression, and deep learning applications. Neural Networks consist of 

layers of interconnected nodes (neurons), where each neuron processes inputs and produces an 

output passed to the next layer [33]. Here, the input layer receives the input features 

X (e. g. , x1, x2, … , xp), hidden layers contain neurons that transform inputs using weights, biases, 

and activation functions, and finally, the output layer produces the final prediction ŷ (classification 

or regression). The parameters, weights (w) control the influence of each input on the neuron, and 

bias (b) shift the activation function to allow better fitting of the data. The common activation 

functions are [34]:  

sigmoid: ϕ(z) =
1

1 + e−z
, 

ReLU: ϕ(z) = max(0, z), 

Tanh: ϕ(z) =
ez − e−z

ez + e−z
,  

and 

softmax: ϕ(zk) =
ezk

∑ ezjK
j=1

 (used for classifiation). 
 

 

2.5 Model evaluation metrics 
 
 

The following evaluation matrices are applied here. 
 

2.5.1 Coefficient of Determination (𝐑𝟐) 
 

The coefficient of determination, or R2, assesses the accuracy of a model's predictions in relation 

to the actual data. It shows the proportion of variation in the dependent variable that the 

independent variables can explain. The values of R2  range from 0 to 1, with values near 1 

suggesting that the model fits well and explains most of the variance. Mathematically, R2  is 

calculated as [35]: 

 

R2 = 1 − 
∑ (yi − ŷi)

2n
i=1

∑ (yi − y̅)2n
i=1

 

 

2.5.2 Root Mean Square Error (RMSE)  
 

RMSE quantifies the standard deviation of the residuals (prediction errors), assessing the 

difference between predicted and actual values. A lower RMSE suggests better performance of the 

model. The formula for RMSE is as follows [36]: 
 

RMSE = √
1

n
∑(yi − ŷi)

2 

n

i=1

 

 

2.5.3 Mean Absolute Error (MAE) 
 

MAE means the average of the absolute differences between the predicted and actual values. It 

assesses the size of prediction errors without accounting for their direction. Smaller MAE values 

suggest superior model performance. MAE is calculated by the formula [37]: 
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MAE =  
1

n
∑|yi − ŷi|

n

i=1

 

where, for R2, RMSE, and MAE, n is the total number of observations, yi is the actual value of the 

target variable for the ith observations, ŷi is the predictive value of the target variable for the i-the 

observations and y̅ is the mean of the actual values of the target variable.  

 

3. Results and Discussion 
3.1 Preliminary Data Analysis 
 

Table 1 summarizes the descriptive statistics of the variables, all standardized for comparability. 

The mean values are close to zero, and the standard deviations are approximately one, confirming 

successful normalization. The skewness values indicate that Population (17.880), Infant deaths 

(9.777), and Measles (9.432) exhibit high positive skewness, while Polio (-2.074) and Diphtheria 

(-2.048) show left-skewed (negatively skewed) distributions. Kurtosis values highlight heavy-

tailed distributions, particularly in Population (378.495) and Infant deaths (115.760). Variables 

such as Year (-1.215) and BMI (-1.302) show low kurtosis, suggesting flatter distributions. These 

distributional characteristics imply that extreme values may impact predictive modeling. The 

presence of heavy tails in variables like Under-five deaths (109.487) and HIV/AIDS (34.805) 

suggests potential data irregularities. Normality assumptions may not hold for variables with 

extreme deviations, requiring alternative statistical methods. Identifying skewed and heavy-tailed 

distributions helps in selecting appropriate machine learning models. Proper handling of non-

normal distributions ensures more reliable predictions. The presence of high kurtosis in mortality-

related variables suggests potential health disparities. Socioeconomic factors may contribute to the 

observed variation in Life Expectancy. Accounting for such statistical properties enhances model 

interpretability and generalization.  
 

Table 1: Summary statistics for all variables in the data set 
Variable Name Min. Max. Mean Med. SD Skew. Kurt. 
Year -1.629 1.622 0.000 0.104 1.000 -0.006 -1.215 
Status -0.459 2.177 0.000 -0.459 1.000 1.716 0.947 
Life expectancy -3.458 2.077 0.0001 0.302 0.999 -0.639 -0.236 
Adult Mortality -1.318 4.492 -0.0004 -0.167 0.998 1.175 1.752 
Infant deaths -0.257 15.010 0.000 -0.232 1.000 9.777 115.760 
Alcohol -1.767 3.274 -0.019 -0.240 0.986 0.613 -0.722 
Percentage expenditure -0.371 9.429 0.000 -0.339 1.000 4.647 26.506 
Hepatitis B -3.189 0.806 -0.107 0.312 1.008 -1.604 1.639 
Measles -0.211 18.296 0.000 -0.209 1.000 9.432 114.582 
BMI -1.862 2.444 -0.012 0.233 1.002 -0.202 -1.302 
Under five deaths -0.262 15.322 0.000 -0.237 1.000 9.485 109.487 
Polio -3.396 0.702 -0.005 0.446 1.000 -2.074 3.687 
Total expenditure -2.229 4.669 -0.003 -0.067 0.967 0.637 1.392 
Diphtheria -3.387 0.703 -0.005 0.450 1.000 -2.048 3.465 
HIV / AIDS -0.323 9.624 0.000 -0.323 1.000 5.391 34.805 
GDP -0.828 7.828 -0.059 -0.393 0.933 3.519 14.997 
Population -0.479 21.002 -0.010 -0.162 0.885 17.880 378.495 
Thinness 1-19 years -1.072 0.547 0.009 -0.326 0.998 1.681 3.878 
Thinness 5-9 years -1.058 5.264 0.008 -0.326 0.998 1.749 4.274 
Income composition of 
resources 

-2.976 1.704 -0.009 0.225 1.002 -1.079 1.180 

Schooling -3.571 2.593 -0.004 0.091 1.008 -0.567 0.684 
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The following Figure 2 shows the histogram of our dependent variable ‘Life expectancy’. From 

the histogram, we observe that the distribution of ‘Life expectancy’ is slightly negatively skewed 

and platykurtic as the majority of the data points are concentrated toward the right side of the 

distribution and is flatter compared to a normal distribution. 

 
Figure 2: Histogram of the dependent variable Life expectancy (standardized) 

 

3.2 Correlation Measure 
 

The following Figure 3 represents the correlation plot of all the variables in the dataset and also the 

correlation plot of the dependent variable ‘Life expectancy’ with the corresponding variable. From 

the two plots, we observed that the correlation between ‘Under-five deaths’ and ‘Infant deaths’ is 

the highest (0.996), i.e. they are almost perfectly positively correlated. Also, we see that the value 

of correlation between ‘GDP’ and ‘Percentage expenditure’ is 0.899, i.e., they are very strongly 

positively related. The relationship between ‘Year’ and ‘Status’ is the lowest (-0.002), i.e., poorly 

negatively correlated. 
 

From Figure 4, we observe that the correlation coefficient between the dependent variable ‘Life 

expectancy’ and ‘Schooling’ is the highest (0.768), i.e., they are strongly positively related to each 

other; and with ‘Adult Mortality’ is -0.697, which indicates the relationship between ‘Life 

expectancy’ and ‘Adult Mortality’ is negatively related. Finally, the value correlation coefficient 

between the two variables ‘Life expectancy’ and ‘Population’ is the lowest (-0.028), i.e., they have 

a poor negative relationship. 
 

[Here, we abbreviated some variables name with large explanation in short form as A.Mortality = 

Adult Mortality, I.deaths = Infant deaths, P.expenditure = Percentage expenditure, U5.deaths = 

Under-five deaths, T.expenditure = Total expenditure, Thinness1 = Thinness 1-19 years, 

Thinness2 = Thinness 5-9 years, Income = Income composition of resources] 
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Figure 3: Correlation plot of all variables in the dataset 

 

 
 

Figure 4: Correlation plot between dependent and corresponding to all other variables 
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3.3 Features Selection 
 

From the following Figure 5, we see that the Boruta algorithm identified 20 significant features 

influencing the dependent variable ‘Life expectancy’. Variables such as HIV/AIDS, Adult 

Mortality, Income Composition of Resources, Alcohol, Total expenditure, and Thinness 5-9 years 

are observed to have high importance scores, indicating a strong influence on ‘Life expectancy’. 

Features like GDP, Population, Polio, and Hepatitis-B show moderate levels of importance. These 

variables also contribute meaningfully to the model. Variables such as Under-five deaths and 

Status were assigned lower importance, suggesting minimal relevance for predicting ‘Life 

expectancy’.  

 
 

Figure 5: Feature selection by Boruta algorithm 

 

Also, Figure 6 shows that the Regularized Random Forest (RRF) algorithm identified 20 

significant features based on their contribution to model accuracy. The most influential predictors 

include Income Composition of Resources, HIV/AIDS, Adult Mortality, and Schooling, which 

exhibit the highest mean decrease in accuracy. Other important features like BMI, Thinness 

indicators, and Under-five deaths were also selected. So, all the 20 features contribute 

meaningfully more or less to predicting ‘Life expectancy’. 



 

 

 

 

 

 

 

 

66                                       International Journal of Statistical Sciences, Vol. 25(1), 2025 

 

 

 
Figure 6: Feature selection by Regularized Random Forest (RRF) algorithm 

 

3.4 Model Performance 
 

At first, the dataset is divided into two parts: 80% as the training set and 20% as the testing set. 

Then, the models are trained based on the training set, and their performances are assessed based 

on the testing set. The following Table 2 shows the performance of eight machine learning models. 

Here, we find that Random Forest performs best with the highest R2 = 0.969 and lowest RMSE =
0.179 and MAE = 0.116. XGBoost and Gradient Boost show strong performance ( R2 ≈  0.96). 
That is, the proportion of variation of the dependent variable (Life expectancy) is about 97% 

explained by the independent variables (features) in the model. SVM performs well but is slightly 

lower than ensemble methods. Decision Tree and KNN have moderate performance. Linear 

Regression and Neural Networks show the lowest performance in predicting life expectancy. 

Finally, we conclude that Random Forest, XGBoost, and Gradient Boosting are the most accurate 

models for predicting Life expectancy, as they demonstrate the highest R2 values and the lowest 

errors.  

Table 2: Performance of eight machine learning models 

Model Name R2 RMSE MAE 

Linear Regression 0.842 0.403 0.298 

Decision Tree 0.930 0.268 0.183 

Random Forest 0.969 0.179 0.116 

Support Vector Machine (SVM) 0.946 0.234 0.163 

K-nearest neighbor (KNN) 0.926 0.277 0.175 

Gradient Boosting 0.959 0.203 0.146 

XGBoost 0.961 0.202 0.147 

Neural Network 0.907 0.309 0.229 
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The following Figure 7 represents the bar chart that visually compares the performance of eight 

machine learning models for predicting Life expectancy using three metrics 

R2, RMSE, and MAE. We see that Random Forest is the most accurate model, followed closely by 

XGBoost and Gradient Boosting. Linear Regression and Neural Networks have the lowest 

predictive accuracy. That is, the results highlight that ensemble methods are the most effective for 

predicting Life Expectancy with higher R2 and lower errors. 

 

 
Figure 7: Comparison of performance of eight machine learning models 

 

4. Conclusion and Future Research 
 

This study successfully predicted Life expectancy using machine learning algorithms and 

identified key influencing factors based on the ‘Cleaned-Life-Exp’ standardized dataset sourced 

from the World Health Organization (WHO) databases. Feature selection methods (Boruta and 

RRF) identified 20 significant predictors, with variables such as HIV/AIDS, Adult Mortality, 

Income Composition of Resources, and Schooling being the most influential. Among the eight 

models evaluated, Random Forest achieves the highest performance ( R2 =  0.969 , RMSE =
 0.179, MAE =  0.116) , followed closely by XGBoost and Gradient Boosting (R2 ≈  0.96), 
highlighting the superiority of ensemble methods. Support Vector Machine (SVM) performs well, 

while Decision Tree and KNN perform moderately. Linear Regression and Neural Networks have 

the lowest performance. So, this study provides an accurate predictive framework using machine 

learning models, which can guide policymakers in improving public health outcomes. Future 

research can focus on exploring deep learning models, integrating interpretability techniques like 

SHAP, and developing region-specific or real-time predictive frameworks. Instead of evaluating 

the machine learning models on a single training-test split, a future extension of the method would 

be to apply any cross-validation approaches that average the results across multiple folds, leading 

to a more stable and accurate estimate of the model's performances. Also, further investigations 

incorporating additional quality of life and environmental variables into the prediction model 
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would be useful. These advancements will further refine predictions and provide actionable 

insights to guide global public health strategies and resource allocation. 
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