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Abstract 

The Poisson regression model is a well-known technique for modelling count data. However, it is 

necessary to satisfy the overdispersion assumption in order to fit the Poisson regression model. 

Due to the overdispersion problem in the Poisson regression model, standard errors might be 

underestimated, which may lead to a highly misleading inference. There are several tests in the 

literature to check the presence of overdispersion in the Poisson model. In this study, we apply a 

regression-based t test to identify the overdispersion. The simulation study and real data example 

clearly show that the overdispersion in the Poisson model is caused by the existence of outliers. 
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1. Introduction 
 

The Poisson regression model has received great attention in which the dependent variable defines 

the number of occurrences of some rare event. In many fields, such as biomedical science (Du et al. 

2012), social science (Moksony and Hegedűs 2014), Metallurgical and Materials Engineering 

(Ajibade et al. 2019) and environmental science (Tobías et al. 2001), which involve count 

variables, Poisson regression is widely used. The Poisson regression model is one of the members 

of the family of generalized linear models (Hoffman 2004; Agresti 2012). The model has an 

equidispersion property in which the mean is equal to the variance. In many cases, however, the 

assumption of equidispersion does not hold, and the variance exceeds the mean. In the statistical 

literature, this is known as overdispersion (Agresti 2012). 
 

Overdispersion is a common problem with count data and is the source of several other problems 

in analyzing count data (Hardin and  Hilbe 2014, Hilbe, 2014). Moksony and Hegedűs (2014) 

stated that regression coefficients remain unbiased in the presence of overdispersion. However, the 

standard errors are underestimated, and hence the confidence intervals become unduly narrow, and 
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significance tests provide overly optimistic results. Therefore, it is important to identify the 

sources of overdispersion and to know the method to address the overdispersion problem. 

Overdispersion may arise from different sources, such as extra population-heterogeneity, omission 

of key predictors, zero inflation, and so on (King 1989; Osgood 2000). The objective of this study 

is to investigate other sources of overdispersion in the analysis of count data. 

It is now evident that outliers may arise in almost all types of data (Sukmak and Thongkam 2013; 

Sleabi et al.  2015; Rana et al. 2015, 2018). Thus, it is not uncommon that outliers may arise in 

count data. Overdispersion may arise due to outliers in count data other than population-

heterogeneity, omission of key predictors, and zero inflation. Both simulated data and real-life data 

are used in this study to support this argument. 
 

This article is organized as follows- First, in Section 1, we reviewed the literature related to 

overdispersion in the Poisson regression model. The mathematical model of Poisson regression, 

the outlier detection in the Poisson regression model by residual analysis, and the testing procedure 

for overdispersion is described in Section 2. The next two sections discuss the results of the 

simulation study and real-world data analysis, followed by a conclusion in the final section. 
 
 

2. Materials and Methods 
 

The Poisson Regression Model 

Suppose the random variable Y follows Poisson distribution with mean µ. Assume that the mean 

and the variance of Y are equal and observations are independent. Then the Poisson regression 

model is expressed as  

                                     

                  
      

 

         (1) 

In the simple linear regression model, it is in the form of         . This model takes any real 

values; however, count data can only take on nonnegative values.  The solution to overcome this 

problem is to use log-linear model. 
 

Next, we take logs in the form of             and assume that the transformed mean follows a 

linear model        . Therefore, we consider a generalized linear model with log-link. We can 

combine these two steps and then express in log-linear model as              and obtain a 

multiplicative model for the mean itself                 
 

Now the following normal equation, obtained by partially differentiating the log-likelihood 

function with respect to the model parameters, can be solved to estimate the parameters. 

∑       

 

   

       ̂          
          (2) 

 

Outlier diagnostic in the Poisson regression 
 

Examining residuals is a primary approach for identifying the overall differences between the data 

and model, which helps to detect the outliers in the data. Observations that are not accommodated 

by the model are called outliers. Different types of residuals, such as Pearson residuals, 

Standardized Pearson residuals (or studentized Pearson residuals), Deviance residuals, 

Standardized deviance residuals have been used in the literature to detect the outliers (Mccullagh 

and Nelder 1989).Consider the raw residuals of Poisson regression,        ̂  , then the Pearson 

residuals can be written as  
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√ ̂ ̂ 

           (3) 

where   ̂ is a dispersion parameter.  

The Standardized Pearson residuals divide the Pearson residuals by the leverage factor √      . 

Where     is the     diagonal element of the leverage matrix, H                     and V is 

the diagonal matrix whose main diagonal contains the values    . Thus, the formula of 

Standardized Pearson residuals becomes. 

    
  

√      
                             (4) 

The Deviance residuals (McCullagh and Nelder, 1989) can be expressed as  

              √ {    (
  

 ̂ 

)      } 
         (5) 

Like the Standardized Pearson residuals, the standardized deviance residuals divide the deviance 

residuals by the leverage factor √       as given below.  

    
  

√      
               

          (6) 

A large residual value (|   |   ) indicates the existence of outliers. 
 

Test for Over dispersion in Poisson Regression Model 
 

To test the overdispersion, a score test can be used (Dean and Lawless1989, Hilbe and Hardin 

2014). However, Cameron and Trivedi (1990) proposed a regression based t test and found that the 

score test for the Poisson distribution is equivalent to the optimal regression-based t test.  
 

Cameron and Trivedi (1990, 2005) considered the null hypothesis,  
 

               
 

The exact alternative hypothesis can be written as  
 

                       
 

where, g(.) be a specified function. The over-dispersion or under-dispersion tests depends on 

whether   is different from zero. Specializing to H0, the t-test statistic for   = 0 is given by- 

       

      [ ̂  ̂ ̂ ̂ ̂]
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where  ̂  is a consistent estimator of  ,  ̂  and    have i-th entries  ̂  ̂   and      ̂  
     

respectively,  ̂  is a diagonal matrix with i-th diagonal entry  ̂  such that  ̂  is a consistent 

estimator of   and          is the weight of the weighted least-square estimate.  
 

Under H0, the asymptotic distribution of Tw is standard normal which can be used for either one-

sided or two-sided tests of overdispersion (   ) or/and underdispersion (   ). 
 

Simulation Study 
 

A simulation study is carried out to investigate the source of over-dispersion problem in fitting the 

Poisson regression model. We consider the single and two predicators Poisson regression model to 

conduct the Monte Carlo simulation. For the single predicator Poisson regression model, the 
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predictor variable X is generated from the uniform distribution, i.e., X ~ Uniform (0, 1.5). The 

expected count of response variable Y is then generated by 
 

                         (8) 

Thus, the random count of the response variable Y is then generated from the Poisson distribution 

with parameter µ. Like the single predicator Poisson regression model, the two-predictor model is 

generated in the same way, except that the expected count of response variable Y is generated by 

 

                          (9) 
 

where    ~ Uniform (0, 1.5), and    ~ Uniform (0, 1.5).  
 

In the next step, we insert different percentages of outliers, such as 5%, 10%, and 20%, in the Y 

values. Outliers are generated randomly by replacing some data points with the maximum value of 

Y. In the final stage, over-dispersion is identified by using the Cameron and Trivedi (2005) t-test 

(or z-test) through the AER package in R (Cameron and Trivedi 1990, 2005) for different sample 

sizes n = 30, 60, 100, and 200. The experiment is repeated 5,000 times in order to calculate the 

over-dispersion identification rate in the single and two predictors Poisson regression model. 
 

Table 1: Identification of over-dispersion rate with single predictor Poisson regression model 
 

 

Sample Size 

Different percentages of outlier 

No outlier 5% 10% 20% 

30 0.012 0.135 0.380 0.820 

60 0.019 0.320 0.853 0.996 

100 0.027 0.737 0.992 1.000 

200 0.026 0.992 1.000 1.000 
 

It is observed from Table 1 that when there is no unusual observation in the data set, the 

identification of over-dispersion is only 1.2% for sample size n = 30 over 5,000 simulations. The 

percentage of over-dispersion identification increases slightly with the increase in sample sizes. 

However, when 5% contamination arises in the simulated data, identification of over-dispersion 

increases by more than 12% for sample size n = 30, and the rate of identification increases 

radically with the increase in sample size. An almost 100% over-dispersion rate is observed when 

the sample size is 200. Again, in the case of 10% contamination, the identification of over-

dispersion increases from 13.50% to 38.08% for sample size n = 30, and a more than 80% 

identification rate is observed when the percentage (20%) of contamination is increased for the 

same sample size. About a 100% identification rate is observed for sample sizes greater than 100 

and greater than 60 in cases of 10% and 20% contaminated data, respectively. 
 

Table 2: Identification of over-dispersion rate with two predictors Poisson regression model 
 

Sample Size Different percentages of outlier 

No outlier 5% 10% 20% 

30 0.008 0.161 0.554 0.969 

60 0.016 0.418 0.961 1.000 

100 0.018 0.870 0.999 1.000 

200 0.026 0.999 1.000 1.000 
 

The percentage of overdispersion identification in case two predictors Poisson regression model 

with different sample sizes and different percentages of outliers is presented in Table 2. For sample 
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size n =30, the overdispersion identification rate is only 0.8% when no outlier is present in the 

dataset. The rate of identification increases to 16.1% when only a 5% outlier is inserted in the data 

set. The overdispersion identification rate increases to 55.4% in the case of  10% outlier, and a 

maximum (more than 95%) rate of identification is observed when  20% outlier is inserted for the 

same sample size (n= 30). When the sample size increases to 60, 1.6% over-dispersion 

identification rate is observed with no outlier situation, and the rate of identification increases to 

41.8% when only 5% outlier is present in the data. For the same sample size, a more than 95% 

overdispersion detection rate is observed when 10 % or more than 10% of the outlier is inserted in 

the simulated data set. Again, the detection rate of the overdispersion increases slightly (1.6% to 

1.8%) when the sample size increases from 60 to 100 with no inserted outliers. On the other hand, 

more than 85% over-dispersion identification rates are observed in cases of 5% or more than 5% 

outlier for the same sample sizes.  For sample size n = 200, the identification of overdispersion rate 

is only 2.6% over 5,000 simulations in the no-outlier case, but almost 100% over-dispersion 

detection rate is observed in the case of any percentage of outliers in the data. 
 

Real-life Data Example 
 

In this section, we use low birth weight (LBW) data taken from Hosmer and Lemeshow (2000). 

The data consisted of 189 observations with 10 variables. The response variable is the number of 

physician visits in the 1st trimester which is count in nature.  Therefore, the Poisson regression 

model is appropriate for describing this data. We consider the variables birth weight (1= low birth 

weight baby; 0=normal weight), hypertension (1=history of hypertension; 0 =no hypertension), 

weight (lbs) at last menstrual period: 80-250 lbs, age of mother: 14-45 as predictors in this model.  

 

 
Figure 1 Detection of outlier in low birth weight (lbw) data 

 

Pearson residuals and standardized Pearson residuals are used to identify outliers in   low birth 

weight (lbw) data. From Figure 1, it is clearly observed that six observations exceed the cut-off 
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point of Pearson residuals and standardized Pearson residuals. Therefore, outliers exist in low birth 

weight (lbw) data.  

Table 3: Result of t-test for overdispersion in low birth weight (lbw) data 

Case t-test p-value Decision 

Original data 

(with outliers) 
2.4545 0.007 Overdispersion 

Modified data 

(after removing the outliers) 
0.5598 0.288 Equidispersion 

 

Table 3 represents the dispersion test for low birth weight (lbw) data in the Poisson regression 

model. First, we apply the Cameron and Trivedi (2005) t-test to the original low birth weight (lbw) 

data. Based on the p-value (p<0.01), we decide that overdispersion exists in the Poisson regression 

model when outliers are present in the data. However, when the t-test is applied to modified low 

birth weight (lbw) data, i.e., the data after removing the outliers from the original data, then the 

Poisson regression model follows the equidispersion assumption. Therefore, we conclude from the 

real dataset that outliers are an issue for the overdispersion problem in the Poisson regression 

model. 

 

3. Conclusion  
 

In this paper, we investigated whether outliers are a cause of the overdispersion problem in the 

Poisson regression model. The results of the simulation study show that when there is no outlier in 

the data set, the identification of the overdispersion rate is very small for different sample sizes. 

However, when contamination of outliers arises in the data set, the identification rate of 

overdispersion increases dramatically, and the rate of identification also increases with the increase 

in sample size for both the single predictor and two predictors Poisson regression models. It 

becomes clearer from the analysis of real-life data that outliers cause overdispersion. Therefore, it 

is concluded that outliers are another source of overdispersion in the Poisson regression model. 

Finally, we recommend identifying the source of overdispersion in the Poisson regression model. 

If the overdispersion problem arises as a result of outliers, we need to treat the outliers first instead 

of applying alternative methods for solving this problem. As for the treatment of outliers, we may 

remove the outliers from the data or apply other suitable methods.  
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