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Abstract

We develop appropriate Bayesian procedures to draw inference about the
parameters under a multivariate normal model based on synthetic data. We
consider two standard forms of synthetic data, generated under plug in sampling
method and posterior predictive sampling method. In addition to point estimates
of the mean vector and dispersion matrix, Bayesian credible sets for the mean
vector and the generalized variance are also provided under both the scenarios.
The analysis in the case when some (partial) features are sensitive and need to
be hidden is also briefly indicated.
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1 Introduction

In this paper we present the Bayesian approach for analysis of singly imputed synthetic data

generated from a multivariate normal population with both mean vector and covariance matrix

unknown. Assume the original confidential data are

X = (x1, . . . ,xn) ∼ iid ∼ Np(µ,Σ) (1)

where n > p, and define x̄ = 1
n

∑n
i=1 xi (sample mean) andW = S x/(n−1) (sample variance)

where S x =
∑n

i=1(xi−x̄)(xi−x̄)′ is the sample Wishart matrix, to be the unbiased estimates

of µ and Σ respectively. We know that x̄ ∼ Np(µ,Σ/n), S x ∼ Wp(Σ, n−1), x̄ is independent
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of S x and (x̄,W ) are jointly sufficient for (µ,Σ) when the original data are observed. Our

analysis is essentially a sequel to the paper by Klein and Sinha (2016) in which the authors

studied the problem of drawing inference about multivariate normal mean vector and dispersion

matrix based on the above two types of synthetic data under the frequentist paradigm.

The organization of the paper is as follows. In Section 2 we discuss the Plug-in Sampling

Method while the Posterior Predictive Sampling Method is studied in Section 3. In both

the cases Bayes estimators of µ and Σ as well as Bayesian credible sets for µ and |Σ| are
derived. Section 4 is devoted to a simulation study under p = 10, level of credibility 0.95%,

n = 1000, 10000 and various choices of δ, the hyper parameter in the prior distribution. Details

appear in Tables 1-6. Our recommendation is to use δ = 10 under PIS and δ = 20 and α = 2

under PPS, where α is a parameter in the vague prior in this case. The last Section 5 deals

with the case when only a part of the data is sensitive and needs to be hidden. Two methods

of data analysis are suggested: Method I uses sufficient statistics based only on the sensitive

part to impute this part while Method II uses the entire data for imputation purposes. For

some standard results on Wishart distribution which will be used throughout this paper, we

refer to Anderson (2003) and Muirhead (1982). Some additional relevant references in this

context are Klein and Sinha (2013), Klein, Zylstra and Sinha (2019) and Moura et al. (2021).

2 Plug In Sampling method

The singly imputed synthetic data, denoted by Y = (y1, . . . ,yn), are obtained by drawing

Y = (y1, . . . ,yn)|X ∼ iid ∼ Np (x̄,W ) (2)

Define ȳ = 1
n

∑n
i=1 yi (sample mean based on Y ) and S y =

∑n
i=1(yi − ȳ)(yi − ȳ)′ (sample

Wishart matrix based on Y ). Clearly ȳ ∼ Np(x̄, n
−1W ), S y ∼ Wp(W , n − 1). It follows

from Lemma 1 in Klein and Sinha (2016) that (ȳ,S y) are jointly sufficient for (µ,Σ). Also,

conditionally given X, ȳ is independent of S y, because ȳ is independent of yi − ȳ as

Cov(ȳ,yi − ȳ) = 0 ∀ i = 1, . . . , n. The following discussion follows from the elucidation

in Klein and Sinha (2016).

2.1 Likelihood of (µ,Σ)

The conditional joint pdf of (ȳ,S y), given (x̄,W ), is given by

f(ȳ,S y | x̄,W )

=f(ȳ | x̄,W )f(S y |W )

∝ |W |−1/2
exp

[
−n

2
(ȳ − x̄)′W−1(ȳ − x̄)

]
× |S y|(n−p−2)/2

|W |(n−1)/2
exp

[
−1

2
tr(S yW

−1)

]

=
|S y|(n−p−2)/2

|W |n/2
exp

[
−n

2
(ȳ − x̄)′W−1(ȳ − x̄)− 1

2
tr(S yW

−1)

]
(3)
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A similar calculation yields the joint pdf of (x̄,W ) as

f(x̄,W |µ,Σ) ∝ |W |(n−p−2)/2

|Σ|n/2
exp

[
−n

2
(x̄− µ)′Σ−1(x̄− µ)− n− 1

2
tr(WΣ−1)

]
(4)

We now combine the terms involving x̄ from the two exponents as

(ȳ − x̄)′W−1(ȳ − x̄) + (x̄− µ)′Σ−1(x̄− µ)

=
{
x̄− [W−1 +Σ−1]−1[W−1ȳ +Σ−1µ]

}′ {
W−1 +Σ−1

}{
x̄− [W−1 +Σ−1]−1[W−1ȳ +Σ−1µ]

}
−
{
W−1ȳ +Σ−1µ

}′ {
W−1 +Σ−1

}−1 {
W−1ȳ +Σ−1µ

}
+ ȳ′W−1ȳ + µ′Σ−1µ

=
{
x̄− [W−1 +Σ−1]−1[W−1ȳ +Σ−1µ]

}′ {
W−1 +Σ−1

}{
x̄− [W−1 +Σ−1]−1[W−1ȳ +Σ−1µ]

}
+ (ȳ − µ)

′
(Σ+W )

−1
(ȳ − µ)

where the simplification is due to Klein and Sinha (2016). Now integrating out x̄ from the

product of the above two pdfs, we arrive at the following result. S++
n below stands for the set

of p× p positive definite matrices.

Theorem 1. The joint pdf of (ȳ,S y) is given by

fµ,Σ (ȳ,S y) ∝
∫
S++
n

|S y|
n−p−2

2 |Σ+W |−
1
2

|Σ|
n−1
2 |W |

p+1
2

e−
1
2 [n(ȳ−µ)′(Σ+W )−1(ȳ−µ)+tr(S yW

−1)+(n−1) tr(WΣ−1)] dW

2.2 Posterior distributions of µ and Σ

We choose the non-informative joint prior: π(µ,Σ) ∝ |Σ|−
δ
2 on the parameters. The posterior

distribution can be computed by multiplying the expression inside the above integral in

Theorem 1, denoted by h(ȳ,S y,W |µ,Σ), with the prior and the product splits up into

exactly three parts corresponding to the three conditional posterior distributions, given W .

Recall W = S x/(n− 1).

h(ȳ,S y,W |µ,Σ)π(µ,Σ)

∝
(
|Σ+W |−

1
2 e−

1
2 [n(ȳ−µ)′(Σ+W )−1(ȳ−µ)]

)( |W |
n−p+δ−2

2

|Σ|
(n−p+δ−2)+p+1

2

e−
1
2 [tr((n−1)WΣ−1)]

)
(

|S y|
n−p+δ−2

2

|W |
(n−p+δ−2)+p+1

2

e−
1
2 [tr(S yW

−1)]

)
which concedes that the posterior sampling will be done sequentially in the following manner:

W |S y, ȳ ∼ W−1
p (S y, n− p+ δ − 2) (5)

Σ |W , ȳ,S y ∼ W−1
p ((n− 1)W , n− p+ δ − 2) (6)

µ |Σ,W , ȳ,S y ∼ Np

(
ȳ,

1

n
(Σ+W )

)
(7)
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We can reformulate the above posterior distributions as:

S y
−1/2WS y

−1/2 ∼ W−1
p (Ip, n− p+ δ − 2) (8)

W−1/2ΣW−1/2 ∼ W−1
p ((n− 1)Ip, n− p+ δ − 2) (9)

µ |Σ,W , ȳ ∼ Np

(
ȳ,

1

n
(Σ+W )

)
(10)

which has the benefit that S y
−1/2WS y

−1/2 is independent of W−1/2ΣW−1/2 and their

posterior distributions are unconditional. The posterior distributions are proper as long as

n > max{p, 2p− δ + 1}.

2.3 Bayes Estimators of µ and Σ

µ̂BAYES = E(µ | ȳ,S y) = EWEΣE(µ | ȳ,Σ,W ) = EWEΣE(ȳ) = ȳ

Σ̂BAYES = E(Σ | ȳ,S y) = EWE(Σ |S y,W ) = EW

(
(n−1)W

(n−2p+δ−3) |S y

)
=

(n− 1)S y

(n− 2p+ δ − 3)2

|̂Σ|BAYES = E (|Σ| | ȳ,S y) = EWE (|Σ| |S y,W ) = EW

(
|W |E

(∣∣∣W−1/2ΣW−1/2
∣∣∣) |S y

)
=

 p∏
j=1

n− 1

n− p+ δ − j − 3

E (|W | |S y) =

 p∏
j=1

n− 1

(n− p+ δ − j − 3)2

 |S y|

provided n > max{p, 2p− δ + 5}, and we use the results: If S ∼ W−1
p (Σ, ν) then

E (S) = (ν − p− 1)−1Σ if ν > p+ 1 (11)

E (|S|) = |Σ|
p∏

j=1

(ν − j − 1)−1 if ν > p+ 3 (12)

2.4 Credible Sets for |Σ| and µ

We see that Σ−1 |W ∼ Wp

(
W−1/(n− 1), n− p+ δ − 2

)
, so∣∣Σ−1

∣∣∣∣W−1/(n− 1)
∣∣ ∼ p∏

i=1

ui, where ui ∼ χ2
n−p+δ−i−1 independently for i = 1, . . . , p

which also shows that the quantity on the left hand side of the above relation is independent

of W . Here we use the following result: If S ∼ Wp(Σ, n) then

|S|
|Σ|

∼
p∏

i=1

ti, where ti ∼ χ2
n−i+1 independently for i = 1, . . . , p (13)
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Thus using the above result similarly as before, we can get∣∣W−1
∣∣∣∣S −1

y

∣∣ ∼
p∏

j=1

vj , where vj ∼ χ2
n−p+δ−j−1 independently for j = 1, . . . , p

So we can define a pivot for the generalized variance |Σ| as N :=
∣∣ΣS −1

y

∣∣ where
N−1 ∼

∏p
i=1 ui

(n− 1)p

p∏
j=1

vj

where ui’s and vj ’s are as above and they are all pairwise independent. A (1−γ) level credible

set for |Σ| based on N is

[an,p,δ;γ |S y| , bn,p,δ;γ |S y|]

where an,p,δ;γ and bn,p,δ;γ are any two constants that satisfy 1−γ = P (an,p,δ;γ ≤ N ≤ bn,p,δ;γ).

The length of the credible interval is |S y| (bn,p,δ;γ − an,p,δ;γ).

Next we define the pivot for µ as

T 2 := n(µ− ȳ)′S −1
y (µ− ȳ)

We will prove that T 2 is a pivot and derive a sampling scheme in what follows. We notice that

√
nS −1/2

y (µ− ȳ) |Σ,W ∼ Np(0,A)

whereA = S −1/2
y W 1/2(W−1/2ΣW−1/2+Ip)W

1/2S −1/2
y , which is obviously defined through

the parameters (Σ,W ). If we can prove that the distribution of A is free of (Σ,W ), then

by using the fact that if Z ∼ Np(0,A) then Z ′Z ∼
∑p

i=1 λiχ
2
1i where λ1, . . . , λp are the

eigenvalues of A and χ2
1i are independent χ2

1 variables, we can conclude that T 2 is a pivot.

Taking Z =
√
nS −1/2

y (µ− ȳ), B = S −1/2
y WS −1/2

y it finally follows that:

a) the conditional distribution of T 2 |A is
∑p

i=1 λiχ
2
1i where λ1, . . . , λp are the roots of |A− λIp| = 0

such thatA |B d
= W−1

p ((n− 1)B, n− p+ δ − 2)+B by (9) andB ∼ W−1
p (Ip, n− p+ δ − 2)

by (8); and

b) the unconditional distribution of T 2 is obtained by averaging over the joint distribution of

the roots λ1, . . . , λp.

We have shown that T 2 is a pivotal quantity, and therefore a (1 − γ) credible ellipsoid for µ

based on T 2 is given by {
µ : T 2 ≤ cn,p,δ;γ

}
where cn,p,δ;γ satisfies 1− γ = P (T 2 ≤ cn,p,δ;γ). From the above discussion, it follows that the

cut-off point cn,p,δ;γ can be obtained by simulating the distribution of T 2 as follows.

1. Generate B ∼ W−1
p (Ip, n− p+ δ − 2).
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2. Generate A |B ∼ W−1
p ((n− 1)B, n− p+ δ − 2) +B.

3. Generate λ1, . . . , λp, the roots of |A− λIp| = 0.

4. Generate T 2=
∑p

i=1 λiχ
2
1i where χ2

1i are independent χ2
1 variables.

The volume of the credible ellipsoid is given by

Vµ(Y ) =
πp/2

Γ
(
p
2 + 1

) (cn,p,δ;γ/n)p/2 |S y|1/2

3 Posterior Predictive Sampling method

We return to the setup of the last section. Under the posterior predictive sampling method,

starting with a vague prior π(µ,Σ) ∝ |Σ|−α/2
, the joint (imputed) posterior distribution of µ

and Σ, given X, can be represented as

Σ |X ∼ W−1
p ((n− 1)W , n− p+ α− 2)

µ |Σ,X ∼ Np

(
x̄, n−1Σ

) (14)

We assume throughout that n + α > 2p + 1We now draw (µ,Σ) from the above posterior,

resulting in (µ∗,Σ∗), and then draw a random sample Y = (y1, . . . ,yn) as iid fromNp(µ
∗,Σ∗),

which form the singly imputed synthetic data that are released. Define ȳ = 1
n

∑n
i=1 yi (sample

mean based on Y ) and S y =
∑n

i=1(yi − ȳ)(yi − ȳ)′ (sample Wishart matrix based on Y )

which are jointly sufficient for (µ,Σ) by Lemma 1 in Klein and Sinha (2016). Proceeding as

in Theorem 1, we have the following result. A proof of Theorem 2 appears in Appendix A.

Theorem 2. The joint pdf of ȳ and S y is obtained by integrating out Σ∗ from the joint pdf

of (ȳ,S y,Σ
∗) given by

f(ȳ,S y,Σ
∗) ∝ e−

1
2 [n(ȳ−µ)′(Σ+2Σ∗)−1(ȳ−µ)+tr(S yΣ

∗−1)] |Σ+ 2Σ∗|−
1
2 |Σ|

n−p+α−2
2

|Σ+Σ∗|−
2n−p+α−3

2 |Σ∗|−( p+1
2 +α) |S y|

n−p−2
2

3.1 Posterior distributions of µ and Σ

We choose the same prior π(µ,Σ) ∝ |Σ|−
δ
2 as before and attempt to compute the posterior

distribution as before by multiplying the expression inside the above integral in Theorem 2,

denoted by h(ȳ,S y,W |µ,Σ), with the prior and the product should split up into exactly

three parts corresponding to the three conditional posterior distributions.

h(ȳ,S y,W |µ,Σ)π(µ,Σ) ∝
(
|Σ+ 2Σ∗|−

1
2 e−

1
2 [n(ȳ−µ)′(Σ+2Σ∗)−1(ȳ−µ)]

)
×
(
|Σ|

n−p+α−δ−2
2 |Σ+Σ∗|−

2n−p+α−3
2 |Σ∗|−( p+1

2 +α)
e−

1
2 [tr(S yΣ

∗−1)]
)

(15)
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We see that the part involving µ separates out nicely in front and thus its posterior distribution,

conditional on Σ and Σ∗, is obvious. We will now work with the part inside the second

parenthesis involving just the determinants below.

|Σ|
n−p+α−δ−2

2 |Σ+Σ∗|−
2n−p+α−3

2 |Σ∗|−( p+1
2 +α)

=
∣∣∣Σ∗−1/2

ΣΣ∗−1/2
∣∣∣n−p+α−δ−2

2
∣∣∣Ip +Σ∗−1/2

ΣΣ∗−1/2
∣∣∣− 2n−p+α−3

2 |Σ∗|−(n+p+δ
2 +α)

(16)

Next we combine equations (15) and (16) and multiply by the Jacobian of the transformation

Σ 7→ Σ∗−1/2
ΣΣ∗−1/2

which is |Σ∗|p to get

h(ȳ,S y,W |µ,Σ)π(µ,Σ)

∝
(
|Σ+ 2Σ∗|−

1
2 e−

1
2 [n(ȳ−µ)′(Σ+2Σ∗)−1(ȳ−µ)]

)
(∣∣∣Σ∗−1/2

ΣΣ∗−1/2
∣∣∣n−p+α−δ−2

2
∣∣∣Ip +Σ∗−1/2

ΣΣ∗−1/2
∣∣∣− 2n−p+α−3

2

)
(
|Σ∗|−(n−p+δ

2 +α)
e−

1
2 [tr(S yΣ

∗−1)]
)

which indicates that the posterior sampling will be done sequentially in the following:

Σ∗ |S y ∼ W−1
p (S y, n− 2p+ δ − 1 + 2α) (17)

Σ∗−1/2
ΣΣ∗−1/2 ∼ BII

p

(
n+ α− δ − 1

2
,
n− p+ δ − 2

2

)
(18)

µ |Σ,Σ∗, ȳ ∼ Np

(
ȳ,

1

n
(Σ+ 2Σ∗)

)
(19)

where BII
p (a, b) denotes the matrix variate beta type II distribution as described in Muirhead

(1982). We can reformulate the above posterior distributions as:

S −1/2
y Σ∗S −1/2

y ∼ W−1
p (Ip, n− 2p+ δ − 1 + 2α) (20)

Σ∗−1/2
ΣΣ∗−1/2 ∼ BII

p

(
n+ α− δ − 1

2
,
n− p+ δ − 2

2

)
(21)

µ |Σ,Σ∗, ȳ ∼ Np

(
ȳ,

1

n
(Σ+ 2Σ∗)

)
(22)

which has the benefit that S −1/2
y Σ∗S −1/2

y is independent ofΣ∗−1/2
ΣΣ∗−1/2

and its posterior

distribution is unconditional. The posterior distributions are proper as long as n > max{p, 2p−
α+ 1, 3p− δ, p− α+ δ, 2p− δ + 1− 2α}.

3.2 Bayes Estimators of µ and Σ

µ̂BAYES = E(µ | ȳ,S y) = EΣ∗EΣE(µ | ȳ,Σ,Σ∗) = EΣ∗EΣE(ȳ) = ȳ



8 International Journal of Statistical Sciences, Vol. 23(2), 2023

Finding Σ̂BAYES seems very difficult.

|̂Σ|BAYES = E (|Σ| | ȳ,S y) = EΣ∗E (|Σ| |S y,Σ
∗)

=EΣ∗

(
|Σ∗|E

(∣∣∣Σ∗−1/2ΣΣ∗−1/2
∣∣∣) |S y

)
=

(
p∏

j=1

n+ α− δ − j

n− p+ δ − j − 3

)
E (|Σ∗| |S y)

=

(
p∏

j=1

n+ α− δ − j

(n− p+ δ − j − 3)(n− 2p+ δ + 2α− j − 2)

)
|S y|

provided that n > max(p, p−α+ δ, 2p+3− δ, 3p+2− δ+2α). We use (12) and the following

result for the above derivation: If V ∼ BII
p (a, b) then

E (|V |) =
p∏

j=1

a− 1
2 (j − 1)

b− 1
2 (j + 1)

if a >
p− 1

2
, b >

p+ 1

2
. (23)

3.3 Credible Sets for |Σ| and µ

Let C = Σ∗−1/2
ΣΣ∗−1/2

. Then by (21), we have C−1 ∼ BII
p

(
n−p+δ−3

2 , n+α−δ
2

)
. Also by

(13) we can get,∣∣∣Σ∗−1
∣∣∣∣∣S −1

y

∣∣ ∼
p∏

i=1

vj , where vj ∼ χ2
n−2p+δ+2α−j independently for j = 1, . . . , p

We can define a pivot for |Σ| in the same manner as in the last section to be N :=
∣∣ΣS −1

y

∣∣
where

N−1 ∼ |M |
p∏

j=1

vj

where vj ’s are defined as above, M ∼ BII
p

(
n−p+δ−3

2 , n+α−δ
2

)
and M is independent of vj , ∀j.

Since the distribution of N is free of (Σ,Σ∗) we conclude that it is a pivot. A (1 − γ) level

credible set for |Σ| is
[an,p,α,δ;γ |S y| , bn,p,α,δ;γ |S y|]

where an,p,α,δ;γ and bn,p,α,δ;γ are any two constants that satisfy 1 − γ = P (an,p,α,δ;γ ≤ N ≤
bn,p,α,δ;γ). The length of the credible interval is |S y| (bn,p,α,δ;γ − an,p,α,δ;γ).

Next we define the pivot similarly as in the last section for µ as

T 2 := n(µ− ȳ)′S −1
y (µ− ȳ)

We will prove that T 2 is a pivot and derive a sampling scheme in what follows. We notice that

√
nS −1/2

y (µ− ȳ) |Σ,Σ∗ ∼ Np(0,A)

where A = S −1/2
y Σ∗1/2(Σ∗−1/2

ΣΣ∗−1/2
+ 2Ip)Σ

∗1/2S −1/2
y , which is obviously defined

through the parameters (Σ,Σ∗). If we can prove that the distribution of A is free of (Σ,Σ∗),
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then by using the fact that if Z ∼ Np(0,A) then Z ′Z ∼
∑p

i=1 λiχ
2
1i where λ1, . . . , λp are the

eigenvalues of A and χ2
1i are independent χ2

1 variables, we can conclude that T 2 is a pivot.

Taking Z =
√
nS −1/2

y (µ− ȳ), B = S −1/2
y Σ∗S −1/2

y it finally follows that:

(a) the conditional distribution of T 2 |A is
∑p

i=1 λiχ
2
1i where λ1, . . . , λp are the roots of |A− λIp| = 0

such that B ∼ W−1
p (Ip, n− 2p+ δ + 2α− 1) by (20) and

A |B d
= GBII

p

(
n+ α− δ

2
,
n− p+ δ − 3

2
;B,O

)
+ 2B

where GBII
p (a, b;Ω,Ψ) denotes the generalized matrix variate beta type II distribution as

described in [7]. The above derivation follows from (21) and the result: If V ∼ BII
p (a, b),

Ap×p is a constant, non-singular matrix then AV A′ ∼ GBII
p (a, b;AA′,O).

(b) the unconditional distribution of T 2 is obtained by averaging over the joint distribution of

the roots λ1, . . . , λp.

We have shown that T 2 is a pivotal quantity, and therefore a (1 − γ) credible ellipsoid for µ

based on T 2 is given by {
µ : T 2 ≤ cn,p,α,δ;γ

}
where cn,p,α,δ;γ satisfies 1− γ = P (T 2 ≤ cn,p,α,δ;γ). From the above discussion, it follows that

the cut-off point cn,p,α,δ;γ can be obtained by simulating the distribution of T 2 as follows.

1. Generate B ∼ W−1
p (Ip, n− 2p+ δ + 2α− 1).

2. Generate A |B ∼ GBII
p

(
n+α−δ

2 , n−p+δ−3
2 ;B,O

)
+ 2B.

3. Generate λ1, . . . , λp, the roots of |A− λIp| = 0.

4. Generate T 2=
∑p

i=1 λiχ
2
1i where χ2

1i are independent χ2
1 variables.

The volume of the credible ellipsoid is given by

Vµ(Y ) =
πp/2

Γ
(
p
2 + 1

) (cn,p,α,δ;γ/n)p/2 |S y|1/2

4 Simulation Studies

To conduct the simulation, the population distribution is taken to be the multivariate normal

model (1) with

p = 10, µ = 0.1×
(
1 2 . . . 10

)′
, Σ = 0.25Ip + 0.75Jp, (24)

where Ip is the p × p dimensional identity matrix and Jp is the p × p matrix of 1’s. Based

on Monte Carlo simulation with 104 iterations, we compute an estimate of the coverage

probability, the volume or length (as appropriate) of the respective credible sets and the Bayes

estimators of µ and |Σ|, where in all cases, the level of credibility is set at 0.95.
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In both PIS and PPS cases, increasing δ increases the coverage of |Σ| before it drops off, the

effect hastened for small values of n. We thus see the reverse-sigmoid shape of the curve in all

situations, it is wider in the PIS case, and the curve seems to shift to the right with increasing

α in the PPS case. So the best choice of δ to ensure maximum coverage of |Σ| would increase

with increasing α, in the PPS case.

For µ, we see that increasing δ slightly increases the coverage before decreasing steadily, albeit

at a much slower pace than that of |Σ|.
The size of the credible sets of both quantities shrink with either increasing n or δ. Asymptotically

the results conform to our expectations, with the inference worsening for higher δ, quicker for

|Σ| than µ. The better inference we get off the PIS method than the PPS method attests to

the trade-off between data utility and data privacy.

The recommendation is to use δ = 10 in the PIS case, PPS case with α = 2 and δ = 20 in the

PPS case with α = 50.

Table 1: Inference for µ and |Σ| for SI PIS MVN data with n = 1000

|Σ| µ
avg est avg est

δ cvg len cvg vol
0.2 0.8093 3.0625e-05 0.9531 1.0384e-09
0.5 0.8125 3.0607e-05 0.9552 1.0399e-09
0.8 0.8319 3.0254e-05 0.9595 1.1277e-09
1 0.8294 3.0172e-05 0.9581 1.0437e-09
2 0.8661 2.9942e-05 0.9572 1.0776e-09
3 0.8755 2.8962e-05 0.9501 1.0287e-09
4 0.8874 2.7952e-05 0.9533 1.0288e-09
5 0.9108 2.7679e-05 0.9542 1.0313e-09
10 0.9517 2.4692e-05 0.9494 9.6189e-10
20 0.8491 2.0096e-05 0.95 9.0293e-10
30 0.5135 1.6400e-05 0.9396 8.0198e-10
50 0.0303 1.1083e-05 0.9297 6.9183e-10
100 0 4.1404e-06 0.8979 4.9770e-10
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Table 2: Inference for µ and |Σ| for SI PIS MVN data with n = 10000

|Σ| µ
avg est avg est

δ cvg len cvg vol
0.2 0.9353 7.5066e-06 0.9475 9.0069e-15
0.5 0.9347 7.4725e-06 0.9494 9.2580e-15
0.8 0.9379 7.4664e-06 0.947 9.1447e-15
1 0.9386 7.4609e-06 0.9491 8.9631e-15
2 0.9408 7.5066e-06 0.9516 9.4023e-15
3 0.9464 7.5633e-06 0.9505 9.4476e-15
4 0.9401 7.3873e-06 0.9492 9.0631e-15
5 0.9483 7.4442e-06 0.9462 8.7338e-15
10 0.9477 7.3689e-06 0.9478 9.3546e-15
20 0.9422 7.3092e-06 0.9442 8.9443e-15
30 0.9136 7.1060e-06 0.9532 9.6100e-15
50 0.7604 6.7308e-06 0.9519 9.2865e-15
100 0.1918 6.1571e-06 0.9465 8.3714e-15

Table 3: Inference for µ and |Σ| for SI PPS MVN data with α = 2, n = 1000

|Σ| µ
avg est avg est

δ cvg len cvg vol
0.2 0.8259 4.0296e-05 0.9552 1.0947e-09
0.5 0.8561 4.0295e-05 0.9523 1.0695e-09
0.8 0.8521 4.0643e-05 0.9571 1.0774e-09
1 0.8745 4.0285e-05 0.9588 1.0814e-09
2 0.8862 3.8019e-05 0.9586 1.0862e-09
3 0.9157 3.7622e-05 0.9591 1.1022e-09
4 0.9444 3.6284e-05 0.9542 1.0461e-09
5 0.9556 3.5436e-05 0.9502 1.0046e-09
10 0.9864 3.0662e-05 0.9536 1.0498e-09
20 0.7985 2.2145e-05 0.9472 9.0976e-10
30 0.2629 1.6346e-05 0.9381 7.8479e-10
50 0.0001 8.8689e-06 0.9298 6.6995e-10
100 0 1.9857e-06 0.8784 3.9465e-10
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Table 4: Inference for µ and |Σ| for SI PPS MVN data with α = 2, n = 10000

|Σ| µ
avg est avg est

δ cvg len cvg vol
0.2 0.974 9.4585e-06 0.9481 9.0549e-15
0.5 0.9722 9.2176e-06 0.955 9.4496e-15
0.8 0.975 9.2989e-06 0.949 9.3798e-15
1 0.9729 9.3212e-06 0.9552 9.8925e-15
2 0.9728 9.0660e-06 0.9522 9.6263e-15
3 0.9799 9.1529e-06 0.9477 8.8715e-15
4 0.9789 9.2158e-06 0.9569 9.8428e-15
5 0.9813 9.2459e-06 0.9541 1.0064e-14
10 0.9835 8.9542e-06 0.9494 8.8645e-15
20 0.9672 8.6689e-06 0.9489 8.7975e-15
30 0.924 8.4805e-06 0.9502 9.0701e-15
50 0.7123 8.1242e-06 0.9449 8.5905e-15
100 0.0291 6.8814e-06 0.9431 8.3882e-15

Table 5: Inference for µ and |Σ| for SI PPS MVN data with α = 50, n = 1000

|Σ| µ
avg est avg est

δ cvg len cvg vol
0.2 0.0742 6.4298e-05 0.961 1.1587e-09
0.5 0.0841 6.3811e-05 0.9641 1.3207e-09
0.8 0.0826 6.4185e-05 0.9616 1.2371e-09
1 0.1073 6.3435e-05 0.9596 1.2032e-09
2 0.1248 6.1302e-05 0.9654 1.2527e-09
3 0.1657 6.0413e-05 0.9601 1.2380e-09
4 0.1925 5.8477e-05 0.9541 1.1280e-09
5 0.2418 5.7401e-05 0.9602 1.1985e-09
10 0.5246 4.7836e-05 0.9598 1.1788e-09
20 0.9323 3.5425e-05 0.953 1.0537e-09
30 0.963 2.6544e-05 0.948 9.4866e-10
50 0.1188 1.4721e-05 0.9335 7.2119e-10
100 0 3.2798e-06 0.9007 4.6731e-10
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Table 6: Inference for µ and |Σ| for SI PPS MVN data with α = 50, n = 10000

|Σ| µ
avg est avg est

δ cvg len cvg vol

0.2 0.8845 9.7714e-06 0.9542 9.4786e-15

0.5 0.8776 9.7090e-06 0.9532 9.3734e-15

0.8 0.8921 9.7755e-06 0.9502 9.3442e-15

1 0.8949 9.6187e-06 0.9463 9.0667e-15

2 0.9002 9.7131e-06 0.9549 1.0231e-14

3 0.9110 9.7131e-06 0.9534 9.7385e-15

4 0.9151 9.6263e-06 0.9501 9.2920e-15

5 0.9147 9.5988e-06 0.9495 9.5697e-15

10 0.9489 9.4674e-06 0.9532 9.2661e-15

20 0.981 9.3402e-06 0.9496 9.1140e-15

30 0.9822 8.9777e-06 0.951 9.4796e-15

50 0.897 8.4004e-06 0.9466 8.8161e-15

100 0.1373 7.2256e-06 0.9427 8.1619e-15

5 Partially Sensitive Data

In this section we deal with the case when only a part of the data is sensitive and hence

needs to be hidden. Assume without any loss of generality that the first r components of x

are sensitive. Two methods of data analysis are suggested: Method I uses sufficient statistics

based only on the sensitive part to impute this part while Method II uses the entire data for

imputation purposes.

Method I: Using only estimates of sensitive part to impute synthetic
data

Plug-In Sampling

Let us now assume, referring to (1), that (x1, . . . ,xr) is sensitive and the rest (xr+1, . . . ,xn)

is not. The sufficient statistics for the sensitive part, assuming r > p, is given by

x̄r =
1

r

r∑
i=1

xi ∼ Np

(
µ,

Σ

r

)

W (r) =
1

r − 1

r∑
i=1

(xi − x̄r)(xi − x̄r)
′ ∼ Wp(Σ, r − 1)

r − 1
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and the sufficient statistics for the non-sensitive part, assuming n− r > p, is given by

x̄n−r =
1

n− r

n∑
i=r+1

xi ∼ Np

(
µ,

Σ

n− r

)

W (n−r) =
1

n− r − 1

n∑
i=r+1

(xi − x̄n−r)(xi − x̄n−r)
′ ∼ Wp(Σ, n− r − 1)

n− r − 1

We will impute the synthetic counterparts to the sensitive data using only the sufficient

statistics for the sensitive part so as to ensure the imputed data is independent of the non-

sensitive data. Thus we generate

y1, . . . ,yr ∼ iid ∼ Np

(
x̄r,W

(r)
)

so that the released data is (y1, . . . ,yr,xr+1, . . . ,xn). Since (x̄r,W
(r), x̄n−r,W

(n−r)) is

the sufficient statistics of the original data, so by Lemma 1 of Klein and Sinha (2016),

(ȳr,W
(r)
y , x̄n−r,W

(n−r)) is the sufficient statistics for the released data where

ȳr =
1

r

r∑
i=1

yi, ȳr | x̄r,W
(r) ∼ Np

(
x̄r,

W (r)

r

)

W (r)
y =

1

r − 1

r∑
i=1

(yi − ȳr)(yi − ȳr)
′, W (r)

y |W (r) ∼ Wp(W
(r), r − 1)

r − 1

We can then compute the likelihood of the released data and multiply it with our regular prior

π(µ,Σ) ∝ |Σ|
δ
2 to find the following posterior distributions

µ |Σ, ȳr,W
(r), x̄n−r

∼Np

[(
r
(
Σ+W (r)

)−1

+ (n− r)Σ−1

)−1 (
r(Σ+W (r))−1ȳr + (n− r)Σ−1x̄n−r

)
,

(
r
(
Σ+W (r)

)−1

+ (n− r)Σ−1

)−1
]

(25)

Σ,W (r) | ȳr,W
(r)
y , x̄n−r,W

(n−r)

∝ exp

[
−r(n− r)

2
(ȳr − x̄n−r)

′(nΣ+ (n− r)W (r))−1(ȳr − x̄n−r)

]
∣∣∣nΣ+ (n− r)W (r)

∣∣∣− 1
2
∣∣∣W (r)

∣∣∣− p+1
2 |Σ|−

n+δ−2
2

exp

[
−1

2
tr(Σ−1((n− r − 1)W (n−r) + (r − 1)W (r)))

]
exp

[
−r − 1

2
tr(W (r)−1

W (r)
y )

]
(26)
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We point out that the distributions ofΣ and the latent matrixW (r) are inextricably entangled,

which requires further investigation!

Posterior Predictive Sampling

Assuming r > max{p, 2p− α+ 1}, we generate a posterior draw (µ∗
r ,Σ

∗
r) from

Σ |W (r) ∼ W−1
p

(
(r − 1)W (r), r − p+ α− 2

)
µ | x̄r,Σ ∼ Np

(
x̄r,

Σ

r

)
so that the released data is (y1, . . . ,yr,xr+1, . . . ,xn) where yi ∼ iid ∼ Np(µ

∗
r ,Σ

∗
r) for

i = 1, . . . , r. Thus the sufficient statistics for released data is (ȳr,W
(r)
y , x̄n−r,W

(n−r)), the

quantities are defined as in the preceding page, whose distributions are as follows

ȳr |µ∗
r ,Σ

∗
r ∼ Np

(
µ∗

r ,
Σ∗

r

r

)
; W (r)

y |Σ∗
r ∼ Wp(Σ

∗
r , r − 1)

r − 1

x̄n−r |µ,Σ ∼ Np

(
µ,

Σ

r

)
; W (n−r) |Σ ∼ Wp(Σ, n− r − 1)

n− r − 1

where the last two quantities need the assumption n − r > p for their distributions to be

defined. Then the likelihood of the released data is computed as (h(·) below stands for a

generic notation for the pdf)∫
h(ȳr |µ∗

r ,Σ
∗
r)h(W

(r)
y |Σ∗

r)h(µ
∗
r | x̄r,Σ)h(Σ∗

r |W
(r))h(x̄r |µ,Σ)h(W (r) |Σ)

h(x̄n−r |µ,Σ)h(W (n−r) |Σ) dµ∗
r dΣ

∗
r dx̄r dW

(r)

We integrate out µ∗
r , x̄r, W

(r) one by one from the above likelihood and then multiply with

our usual prior π(µ,Σ) ∝ |Σ|
δ
2 to obtain the following posterior distributions

µ |Σ,Σ∗
r , ȳr, x̄n−r

∼Np

[(
r (Σ+ 2Σ∗

r)
−1

+ (n− r)Σ−1
)−1 (

r (Σ+ 2Σ∗
r)

−1
ȳr + (n− r)Σ−1x̄n−r

)
,(

r (Σ+ 2Σ∗
r)

−1
+ (n− r)Σ−1

)−1
]

(27)

Σ,Σ∗
r | ȳr,W

(r)
y , x̄n−r,W

(n−r)

∝ exp

[
−r(n− r)

2
(ȳr − x̄n−r)

′(nΣ+ 2(n− r)Σ∗
r)

−1(ȳr − x̄n−r)

]
|nΣ+ 2(n− r)Σ∗

r |
− 1

2 |Σ∗
r |

2r−2p−4
2 |Σ+Σ∗

r |
− 2r−p+α−3

2 |Σ|−
n−2r+p−α+δ+1

2

exp

[
−n− r − 1

2
tr(Σ−1W (n−r))

]
exp

[
−r − 1

2
tr(Σ∗

r
−1

W (r)
y )

]
(28)
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We can check that the results of this section match the case when all responses are sensitive,

those obtained in Sections 2 and 3, by suppressing the quantities x̄n−r,W
(n−r); replacing

W (r)
y =

S y

n− 1
, ȳr = ȳ, r = n and W (r)

y = W (in the PIS case), Σ∗
r = Σ∗ (in the PPS case).

Method II: Using whole data estimates to impute synthetic data

Plug-In Sampling

In this method, the released data is (y1, . . . ,yr,xr+1, . . . ,xn) where y1, . . . ,yr ∼ iid ∼
Np (x̄,W ). Then the portion of the likelihood of the released data required to calculate

the posterior distributions is computed as∫ ( r∏
i=1

h(yi | x̄,W )

)
h(x̄ |µ,Σ)h(W |Σ) dx̄ dW

We integrate out x̄ from the above likelihood and then multiply with our usual prior π(µ,Σ) ∝
|Σ|

δ
2 to obtain the following posterior distributions

W (r)
y

−1/2
WW (r)

y

−1/2
∼ W−1

p ((r − 1)Ip, r − p+ δ − 2) (29)

W−1/2ΣW−1/2 ∼ W−1
p ((n− 1)Ip, n− p+ δ − 2) (30)

µ |Σ,W , ȳr ∼ Np

(
ȳr,

Σ

n
+

W

r

)
(31)

where W (r)
y =

∑r
i=1(yi − ȳr)(yi − ȳr)

′, which is equivalent to S y when r = n. The

distributions are proper as long as n > p, r > 2p− δ + 1.

Posterior Predictive Sampling

We draw (µ∗,Σ∗) from (14) so that the released data is (y1, . . . ,yr,xr+1, . . . ,xn) where

yi ∼ iid ∼ Np(µ
∗,Σ∗) for i = 1, . . . , r. Then the portion of the likelihood of the released data

required to calculate the posterior distributions is computed as∫ ( r∏
i=1

h(yi |µ∗,Σ∗)

)
h(µ∗ | x̄,Σ)h(Σ∗ |W )h(x̄ |µ,Σ)h(W |Σ) dµ∗ dΣ∗ dx̄ dW

We integrate out µ∗, x̄, W one by one from the above likelihood and then multiply with our

usual prior π(µ,Σ) ∝ |Σ|
δ
2 to obtain the following posterior distributions

S −1/2
y,r Σ∗S −1/2

y,r ∼ W−1
p (Ip, r − 2p+ δ − 1) (32)

Σ∗−1/2
ΣΣ∗−1/2 ∼ BII

p

(
n+ α− δ − 1

2
,
n− p+ δ − 2

2

)
(33)

µ |Σ,Σ∗, ȳr ∼ Np

(
ȳr,

1

n

(
Σ+

(
1 +

n

r

)
Σ∗
))

(34)
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where S y,r =
∑r

i=1(yi− ȳr)(yi− ȳr)
′, which is equivalent to S y when r = n. The conditions

for existence are r > 3p− δ, n > max{p, 2p−α+1, p−α+ δ, 2p− δ+1}. All the conditions for

existence throughout this work can also be expressed as inequalities for δ, since once we have

the data at hand, that would enable us to choose a proper value of δ to get the best inference.

Appendix A

Proof of Theorem 2

Under the setup of Section 2, Klein and Sinha (2015a) proved the following result (Theorem

2.1) in their paper.

Theorem 2.1

The joint pdf of z̄ and Sz is obtained by integrating out Σ∗ from the joint pdf of (z̄,Sz,Σ
∗)

given by

f(z̄,Sz,Σ
∗) ∝ exp

[
−1

2
(n(z̄ − µ)′(Σ + 2Σ∗)−1(z̄ − µ) + trSz(Σ

∗)−1)

]
× |Σ−1 +

1

2
(Σ∗)−1|− 1

2 × |Σ|−n
2 × |Σ∗|−

2n+α−1
2 × |Σ−1 + (Σ∗)−1|−

2n+α−p−3
2 × |Sz|

n−p−2
2 .

The equivalence of our Theorem 2 with their Theorem 2.1 follows from the following observations.

Write Σ = ΓDδΓ
′ and Σ∗ = ΓDλΓ

′ where Γ is non-singular and Dδ and Dλ are diagonal

matrices. We show that

|Σ+ 2Σ∗|−
1
2 |Σ|

n−p+α−2
2 |Σ+Σ∗|−

2n−p+α−3
2 |Σ∗|−( p+1

2 +α) ≈ (35)∣∣∣∣Σ−1 +
1

2
(Σ∗)−1

∣∣∣∣− 1
2

|Σ|−
n
2 |Σ∗|−( 2n+α−1

2 ) ∣∣Σ−1 + (Σ∗)−1
∣∣−( 2n+α−p

2 )

A direct computation leads to LHS of equation (1) as

[
|ΓΓ′|−(n+p+1

2 ) ]{ p∏
i=1

(δi + 2λi)
}− 1

2
{ p∏

i=1

δi
}−n−p+α−2

2
{ p∏

i=1

λi

}−( p+1
2 +α){ p∏

i=1

δi + λi

}−( 2n−p+α−3
2 )

(36)

Likewise, the RHS of equation (35) simplifies to

[
|ΓΓ′|−(n+p+1

2 ) ]{ p∏
i=1

(
2λi + δi
δiλi

)
}− 1

2
{ p∏

i=1

δi
}−n

2
{ p∏

i=1

λi

}−( 2n+α−1
2 ){ p∏

i=1

λi + δi
λiδi

}−( 2n+α−p−3
2 )

2p/2 (37)

The proof follows upon simplifying equation (37) and comparing to (36).
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