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Abstract 
 

In a mixture experiment, the measured response is assumed to depend only on the relative 

proportions of ingredients or components present in the mixture. Scheffe´ (1958) first systematically 

considered this problem, and introduced different models and suitable designs. Optimum designs for 

the estimation of parameters in various mixture models are available in the literature. However, in a 

mixture experiment, interest is likely to be more on the optimum mixing proportions of the 

ingredients being used. In this exposition, we take the readers on a journey through the optimum 

designs developed for estimating the optimum mixture combination as accurately as possible under 

various mixture models. 
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1. Introduction 
 

Mixture experiments are commonly observed in chemical, pharmaceutical and food industries, as 

well as in other industrial segments, like agriculture, biomedical, horticulture, to name a few. Here 

the response depends on the proportions 𝑥1, 𝑥2, … , 𝑥𝑞  of the q ingredients/components in the 

mixture, and these proportions satisfy the conditions: 

 𝑥𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑞,      ∑ 𝑥𝑖
𝑞
𝑖=1 = 1.       

The experimental region containing the q components may be geometrically represented by the 

interior and boundaries (vertices, edges, faces, etc) of a regular (q - 1)-dimensional simplex. The 

vertices represent mixtures consisting of single components and the interior points denote 

combinations of all the components.  
 

Scheffe´ (1958) introduced models in canonical forms of degrees one to three to represent the 

response function. Of these, the most commonly used model is the quadratic model given by 

 
𝒙
= ∑ 𝛽𝑖𝑥𝑖 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑞
𝑖,𝑗=1
𝑖<𝑗

𝑞
𝑖=1 .             (1.1) 

Scheffe´ (1958, 1963) also introduced the simplex lattice designs and the simplex centroid designs 

appropriate in such situations. Several authors investigated the problem of identifying optimal 

https://doi.org/10.3329/ijss.v24i1.71866
mailto:manishapal2@gmail.com


 

 

 

 

 

 

 

 

2                                            International Journal of Statistical Sciences, Vol. 24(1), 2024 

 

 

designs for estimation of the parameters of Scheffe´s mixture models. Noteworthy are the works of 

Kiefer (1961), Farell et al. (1967), Atwood (1969), Galil and Kiefer (1977), Liu and Neudecker 

(1997), to name a few. Later, other models were also introduced, like the log-contrast model by 

Aitchison and Bacon-Schone (1984) and the additive quadratic mixture model proposed by Darroch 

and Waller (1985). Optimum designs for parameter estimation of these models have also been 

addressed (cf. Chan, 1992; Chan et al., 1998; Chan and Guan, 2001; Huang and Huang, 2009a, 

2009b). 
 

Though estimation of the optimum mixture combination is of great importance to the experimenter, 

optimal designs for the same were addressed as late as in 2006!  It may be noted that the problem 

has been addressed for quantitative multi-factor experiment for the first time by Box and Wilson 

(1951), followed by a number of contributions in the area [cf. Mandal (1982), Silvey (1980), 

Chatterjee and Mandal (1981), Mandal (1986), Mandal and Heiligers (1992), Fedorov and Müller 

(1997), Cheng et al. (2001), Melas et al. (2003)]. However, the difference in mixture experiment and 

the ordinary response surface problem is owing to the constraint ∑ 𝑥𝑖
𝑞
𝑖=1 = 1. In this paper we 

discuss the development of the methodology associated with the problem. In Sections 2- 4., we bring 

forward optimal designs under different mixture models. We concentrate only on the cases where 

the mixing proportions are not subject to any constraint other than the natural ones. 
 

2. Optimum Design for Optimum Mixture under Scheffé’s Quadratic Mixture 

Model 
 

Pal and Mandal (2006) were the first to study optimum design for estimating the optimum mixture 

combination that maximizes the mean response in Scheffé’s quadratic mixture model (1.1). They 

assumed the response function to be concave and that there exists a finite maximum in the interior 

of the experimental region 

             = {𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑞)′|𝑥𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑞,      ∑ 𝑥𝑖
𝑞
𝑖=1 = 1}.                                    (2.1) 

Because of the constraint ∑ 𝑥𝑖
𝑞
𝑖=1 = 1, the model (1.1) can be re-written as  

              
𝒙
= ∑ 𝛽𝑖𝑖𝑥𝑖

2 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗
𝑞
𝑖,𝑗=1
𝑖<𝑗

𝑞
𝑖=1 = 𝒙′𝐵𝒙,                                                                  (2.2) 

where 𝐵 = ((1 + 𝛿𝑖𝑗)𝛽𝑖𝑗/2), with 𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗, and 𝛿𝑖𝑗 = 0 if 𝑖 ≠ 𝑗. 

The optimum mixture combination 𝒙 = 𝜸 = (𝛾1, 𝛾2, … , 𝛾𝑞)′,say, is given by  

                                       = 𝛿−1𝐵−1𝟏𝑞, 

where 𝟏𝑞 is a unit vector of order 𝑞 × 1, and 𝛿 = 𝟏𝑞′𝐵
−1𝟏𝑞 . 

Based on a continuous design , if 𝛽̂𝑖𝑗
′ s be the estimates of the unknown parameters 𝛽𝑖𝑗

′ s, a plugged-

in estimate of   is obtained as  ̂ = 𝛿̂−1𝐵̂−1𝟏𝑞 , with large sample dispersion matrix  

𝐴( )𝑀()−1𝐴( )′, where 𝑀() is the information (moment) matrix of  for estimating 𝛽𝑖𝑗
′ s, and  

 A() = (
𝜕

𝜕𝛽11
,
𝜕

𝜕𝛽22
, … ,

𝜕

𝜕𝛽𝑞𝑞
,
𝜕

𝜕𝛽12
, … . ,

𝜕

𝜕𝛽𝑞−1,𝑞
). 

After some algebraic manipulation, interestingly the elements of A() are expressible as linear 

functions of 𝛾𝑖s as given below:   
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𝐴(𝜸) =

[
 
 
 
 
 
 
 

−2(𝑞 − 1)𝛾1        2𝛾2            …       𝛾1 − (𝑞 − 1)𝛾2      ….            𝛾𝑞−1 + 𝛾𝑞
           2𝛾1      − 2(𝑞 − 1)𝛾2   …     𝛾1 − (𝑞 − 1)𝛾2      ….            𝛾𝑞−1 + 𝛾𝑞
           2𝛾1              2𝛾2             ….     𝛾1 + 𝛾2                  …        𝛾𝑞−1 + 𝛾𝑞
………… ..   ………………………   ………………………….  ………… .

                   2𝛾1              2𝛾2            ….     𝛾1 + 𝛾2             …     𝛾𝑞−1 − 2(𝑞 − 1)𝛾𝑞
                  2𝛾1              2𝛾2            ….     𝛾1 + 𝛾2             …     𝛾𝑞 − 2(𝑞 − 1)𝛾𝑞−1

 

 

]
 
 
 
 
 
 
 

 

Now any measure of accuracy for estimating   depends on the dispersion matrix 𝐴( )𝑀()−1𝐴( )′, 

and, in view of the expression of A() above, it is quite evident that it will be a function of the 

unknown parameters ij’s through i’s!  

Pal and Mandal (2006) pursued a pseudo-Bayesian approach to resolve the matter. Since the 

elements of the dispersion matrix come out to be quadratic functions of i’s, without considering any 

prior distribution of  , they assumed that the apriori second order moments of i’s  are known. 

Further, they argued that under the condition that nothing is known about the relative influence of 

the different components on the response, one can take  (𝛾𝑖
2) to be same across all i’s and also the 

product moments  (ij) to be equal for all 𝑖 < 𝑗, that is,  

                                 (𝛾𝑖
2) = v, for 𝑖 = 1(1)𝑞,  (ij) = w, for 𝑖 = 1(1)𝑞, 𝑖 < 𝑗,                     (2.3) 

where, because of the restriction 𝜸′𝟏𝑞 = 1,   v and w are related through the equation 𝑞𝑣 +

2 (
𝑞
2
)𝑤 = 1,with 𝑣, 𝑤 > 0 and

1

𝑞2
< 𝑣 <

1

𝑞
. 

 

2.1 Trace Criterion 
 

Because of the restriction 𝜸′𝟏𝑞 = 1, the dispersion matrix 𝐴( )𝑀()−1𝐴( )′comes out to be a 

singular matrix. Pal and Mandal (2006), therefore, took the criterion for comparison of designs as 

the expectation of the trace of the dispersion matrix with respect to the prior: 
 

   () = Trace  [𝐴( )𝑀()−1𝐴( )′] = Trace [𝑀()−1   𝐴( )′𝐴( )       (2.4) 
 

This is a linear optimality criterion (cf. Fedorov, 1971), and the optimal design minimizes  . Making 

use of the invariance property of the problem, and using the result of Draper and Pukelsheim (1999), 

they restricted to the class of weighted centroid designs (WCDs) to find the optimal design. 
 

Pal and Mandal (2006) derived the optimal designs for the cases of two- and three-component 

mixtures, which came out as: 

(a) For q =2, the optimal design is 


𝑜𝑝𝑡
= {

(1.0)        (0,1)             (
1

2
,
1

2
)

         𝛼                𝛼               (1 − 𝛼)
}, 

where 𝛼 =
√𝑠

√𝑠+√𝑡
, 𝑠 = 2(4𝑣 − 1) +

1

2
, 𝑡 = 2(4𝑣 − 1), v being given by (2.3). 

This is a (2,2) – simplex lattice design 
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(b) For q =3, the optimal design has support points at (1.0,0), (0,1,0), (0,0,1) , each with 

mass    𝛼1 /3,  (
1

2
,
1

2
, 0) , (

1

2
, 0,

1

2
),   (0,

1

2
,
1

2
),  each with mass    𝛼2 /3,  and (

1

3
,
1

3
,
1

3
)  with mass 

(1 − 𝛼1 − 𝛼2), where 𝛼1 and 𝛼2 are functions of v, but cannot be obtained in closed form.  
 

The following table extracted from Pal and Mandal (2006) shows the values of 𝛼1 and 𝛼2 for some 

given values of v: 

v    𝛼1   𝛼2 

0.12 

0.16 

0.20 

0.24 

0.30 

0.2565 

0.3285 

0.3492 

0.3589 

0.3670 

0.7434 

0.6715 

0.6508 

0.6411 

0.6330 

 

It is easy to note from the table that the mass of the support point (
1

3
,
1

3
,
1

3
) is almost zero. So, the 

authors conjectured that the optimum design for q = 3 is a (3, 2)-simplex lattice design. 

 

2.2 Use of Equivalence Theorem 
 

In a subsequent paper in 2007, Pal and Mandal ventured to confirm that the optimal designs are (q, 

2) - simplex lattice designs via Kiefer’s (1974) Equivalence Theorem.  For the problem considered, 

the Equivalence Theorem reduces to the following [after writing the model in the form 
𝒙
=

𝑓(𝒙)′𝜷]: 

A necessary and sufficient condition for a mixture design  to be trace-optimal is that 

         𝑓(𝒙)′𝑀−1()[  𝐴( )′𝐴( )𝑀−1()𝑓(𝒙) ≤ 𝑇𝑟𝑎𝑐𝑒[𝑀()−1   𝐴( )′𝐴( )         (2.5) 

for all x   where equality holds at the support points of .  

 

For easy algebraic manipulation, the authors wrote the quadratic model (2.2) as 

              
𝒙
= ∑ 𝜃𝑖𝑖𝑥𝑖(𝑥𝑖 −

1

2
) +  ∑ 𝜃𝑖𝑗𝑥𝑖𝑥𝑗

𝑞
𝑖,𝑗=1
𝑖<𝑗

𝑞
𝑖=1 ,                                                                (2.6) 

where the parameters  and   bear a relation of the form  = P , with 

             𝑃 = [
2𝐼𝑞      0

𝑅       𝐼
(
𝑞
2
)
] , 𝑅 =

[
 
 
 
 
 
 
 
 
1  1  0…0  0
1  0  1…0  0
…………… . .
1  0  0…0  1
0  1  1…0  0
…………… . .
0  1  0…0  1
…………… . .
0  0  0…1  1]

 
 
 
 
 
 
 
 

. 

This facilitates in finding the information matrix of a design  for estimating  using the information 

matrix of  for estimating . 
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Taking clue from their earlier paper, Pal and Mandal (2007) concentrated on the class of (q, 2)-

simplex lattice designs, and proved, using Equivalence Theorem, the following results for the cases 

of 3- and 4- component mixture models: 
 

Result 2.1: In a three-component mixture model, a (3,2)-simplex lattice design with total mass at 

the extreme points given by 𝛼 =
√11𝑣−10𝑤

√11𝑣−10𝑤+4√2𝑣−𝑤
 is optimal among all competing designs, for given 

prior moments v and w.  
 

Result 2.2: In a four-component mixture model, a (4,2)-simplex lattice design with total mass at the 

extreme points given by 𝛼 =
√𝑣−𝑤

√𝑣−𝑤+2√3𝑣−𝑤
 is optimal among all competing designs, for given prior 

moments v and w.  
 

2.3 Case of Unequal Prior Moments 
 

Mandal et al. (2008) relaxed the assumption of equality of the expectations of  𝛾𝑖
2’s and that of (ij)’s 

and took a more general assumption on the prior moments as follows: 

  (𝛾𝑖
2) = 𝑣𝑖, for 𝑖 = 1(1)𝑞,  (ij) =𝑤𝑖𝑗, for 𝑖 = 1(1)𝑞, 𝑖 < 𝑗,                          

where, because of the restriction 𝜸′𝟏𝑞 = 1,  𝑣𝑖 ′s and 𝑤𝑖𝑗 ′s,  satisfy  

 ∑ 𝑣𝑖
𝑞
𝑖=1 + ∑ 𝑤𝑖𝑗𝑖<𝑗 = 1.  

For the case of two-component mixture, they showed that for any arbitrary design  there exists a 

three point design  with support points (1,0), (0,1) and (a, 1 - a), 𝑎 ∈ (0,1), such that 𝑀() ≤

𝑀(), where 𝑀(. ) denotes the information matrix of a design for estimating . Hence, the optimal 

design will be a three-point design of the form as above. 
 

To obtain the trace criterion  (), Mandal et al. (2008) used an alternative representation of the 

response model following (2.6) for the sake of convenience: 

 
𝒙
= 𝜃11𝑥1(𝑥1 − 𝑎) + 𝜃22𝑥2(𝑥2 − (1 − 𝑎)) + 𝜃12𝑥1𝑥2. 

This leads to the relation β = L , where L = (
1-𝑎  0      0
0       𝑎     0
-𝑎   -(1-𝑎)    1 

), and the criterion function comes out 

to be 

                () = 𝑇𝑟𝑎𝑐𝑒[𝐿𝑀(; 𝜃)−1𝐿′ {𝐴( )′𝐴( )}] 
  = 𝑇𝑟𝑎𝑐𝑒[𝑀(; 𝜃)−1𝐺], 

where G = L  {𝐴( )′𝐴( )}𝐿 = (𝑔𝑖𝑗), say, has its elements as linear functions of the prior moments. 

For given a, the lower bound to  () is given by (∑ 𝑔𝑖𝑖
∗3

𝑖=1 (𝑎))2, where 

   𝑔11
∗ (𝑎) =

𝑔11

(1−𝑎)4
, 𝑔22

∗ (𝑎) =
𝑔22

𝑎4
, 𝑔33

∗ (𝑎) =
𝑔33

𝑎2(1−𝑎)2
, 

the expressions of 𝑔𝑖𝑖′s being 

𝑔11 = 8(1 − 𝑎)
2𝑣1 + 2𝑎

2(𝑣1 + 𝑣2 − 2𝑤12) − 8𝑎(1 − 𝑎)(𝑤12 − 𝑣1) 

         𝑔22 = 8𝑎
2𝑣1 + 2(1 − 𝑎)

2(𝑣1 + 𝑣2 − 2𝑤12) − 8𝑎(1 − 𝑎)(𝑤12 − 𝑣2) 

                    𝑔33 = 2(𝑣1 + 𝑣2 − 2𝑤12). 

The optimal value of a is obtained by minimizing (∑ 𝑔𝑖𝑖
∗ (𝑎)3

𝑖=1 )2, and the optimal masses at the 

support points (1,0), (0, 1) and (a, (1-a)) are obtained respectively as 
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  𝛼1 =
√𝑔11

∗

∑ 𝑔𝑖𝑖
∗3

𝑖=1

,   𝛼2 =
√𝑔22

∗

∑ 𝑔𝑖𝑖
∗3

𝑖=1

, and (1 − 𝛼1 − 𝛼2).   

In the case of three-component mixture, Mandal et al. (2008) considered the simplified situation 

where 𝑣1 = 𝑣2 and 𝑤13 = 𝑤23. This amounts to considering the first two components of the mixture 

as “exchangeable”. This, in turn, presupposes that the optimum mixture combination also enjoys the 

same property. Hence, it leads to the heuristic argument that it may be sufficient to search for the 

optimum design on the hyperplane manifested by the property of exchangeability between the first 

two components. As such, on such a plane, the quadratic response function based on three 

components reduces to a quadratic function on the third component. So, appealing to Liski et al. 

(2002), one can take an initial design with 𝑥3 taking the values 0, 1 and some a (0, 1). 
 

Further, for any design  , the authors showed that under the assumptions made, the criterion function 

 () is invariant with respect to the first two components. Also, as  () is convex with respect to 

the information matrix M (), the optimum design will be invariant with respect to the first two 

components. Hence, the authors defined a sub-class of designs D ={(𝑎, 𝛼, 𝒘)}, where a design 

(𝑎, 𝛼,𝒘) has the support points and masses as follows: 

 

𝑥1 𝑥2 𝑥3 Mass 

1 0 0 𝛼𝑤1 

0 1 0 𝛼𝑤1 

1/2 1/2 0 (1 − 2𝛼)𝑤1 

0 0 1 𝑤2 

a 0 1-a 𝑤3/2 

0 a 1-a 𝑤3/2 

 

Here, 𝛼 <
1

2
, 𝑎 ∈ (0,1), 𝑤𝑖 ≥ 0, 𝑖 = 1(1)3, ∑ 𝑤𝑖

3
𝑖=1 = 1. 

For a design  (𝑎, 𝛼,𝒘), let 𝑀()  denote the information matrix, and 𝑀()−1  

𝐴( )′𝐴( )}𝑀()−1 = (𝑏𝑖𝑗). Further, let  denote the value of the criterion function. Based on 

the Equivalence Theorem, the authors proved the following theorem which gives the sufficient 

conditions under which the design  is optimum within the class of all competing designs. 
 

Theorem 2.1: A set of sufficient conditions for a mixture design   (𝑎, 𝛼,𝒘) to be optimal within 

the entire class of competing designs is: 

 (i) 𝑏11 =  𝑏22 = 𝑏33 =   

 (ii) 2𝑏13 − 4𝑏11 < 0 

 (iii) 𝐴1 + 𝐴2 − 𝐴3 < 0 and 𝐴3
2 = 4𝐴1𝐴2 

 (iv) 𝑎 =
2𝐴1−𝐴3

2(𝐴1+𝐴2−𝐴3)
 

 (v) 𝑏34 + 𝑏56 − 𝑏16 − 𝑏35 < 0, 𝑏16 + 𝑏35 − 6𝑏11 < 0, 

where  𝐴1 = 3𝑏45 − 4𝑏11,,  𝐴2 = 2𝑏15 − 4𝑏11 , 𝐴3 = 2𝑏14 + 𝑏55 − 6𝑏11. 
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Extensive numerical computation showed that the optimal mixture design in the sub-class D satisfies 

all the conditions stated in Theorem 2.1. Thus, the authors conjectured that the optimal design in D 

is also optimal within the class of all competing designs. 

 

2.3 Deficiency Criterion 
 

For the Scheffe’s quadratic mixture model, Mandal and Pal (2008) used a modification of the 

deficiency criterion due to Chatterjee and Mandal (1981) as a measure for comparing the 

performance of competing designs for estimating the optimum mixing proportions. 
 

If ̂   be an estimate of the optimum mixture combination , and 
̂
 denotes the corresponding 

estimate of the maximum expected response, the deficiency in using ̂  as an estimate of  is given 

by 

  (, ̂) = 
𝜸
− 

̂
 = 𝛿−1 − 𝜸̂′𝐵𝜸̂,   

where 𝛿 = 𝟏𝑞′𝐵
−1𝟏𝑞 , and B is defined in (2.2). 

So, the mean deficiency is given by  

 E[ (, ̂)] = 𝛿−1 - E[𝜸̂′𝐵𝜸̂],  

which should be minimum, or E[𝜸̂′𝐵𝜸̂] maximum, for the optimal design. However, as E[𝜸̂′𝐵𝜸̂] 

depends on the unknown 𝜸 and the elements of B, Mandal and Pal (2008) assumed a prior on 𝜸 

given by (2.3), and a prior on B*= -B,  with   

 EB*| [B*] = 𝐷𝑖𝑎𝑔(𝑎1, 𝑎2, … , 𝑎𝑞) + 𝑏𝟏𝑞𝟏𝑞′, 

which is assumed to be independent of 𝜸. They considered minimization of 

  EE[𝜸̂′𝐵∗𝜸̂] = E[𝑇𝑟𝑎𝑐𝑒{𝐵∗𝐸(𝜸̂𝜸̂′)}],  

where E denotes the expectation with respect to the prior of 𝜸 and B. 

Noting that 𝐵∗𝐸(𝜸̂𝜸̂′)  can be expressed as 𝐵∗𝜸′𝜸 + 𝐵∗𝐴( )𝑀()−1𝐴( )′,  and that 𝐵∗𝜸′𝜸  is 

independent of the design, the authors modified the criterion function as  

                       ()  = Trace [E {𝐵∗𝐸(𝐴( )𝑀()−1𝐴( )′)}], 

which reduces to  () = 𝑇𝑟𝑎𝑐𝑒[𝑀()−1𝐺], where 𝐺 =E EB*| [𝐴( )′𝐵∗𝐴( )]. 
 

The authors showed that in the case of two- component mixture, the criterion function is invariant 

with respect to the two components, and the optimal design is a weighted centroid design as 

obtained using the trace optimality criterion in sub-section 2.1. It is noteworthy that the design 

does not depend on the choices of 𝑎1 and 𝑎2. 
 

In the case of three-component mixture, the authors considered two cases, viz., (i) all 𝑎𝑖 ′s 

equal, and (ii) 𝑎1 = 𝑎2. In the former case, the optimal design is a (3,2)-simplex lattice design 

as given by result 2.1. Thus, it does not depend on the common value of 𝑎𝑖′s. In case (ii), it is shown 

that the optimum design is necessarily invariant with respect to the first two components. Keeping 

this in mind, and the fact that in case (i), irrespective of the common value of 𝑎𝑖′s, the support 

points of the optimal design are at (1,0,0), (0,1,0), (0,0,1), (½, ½, 0), (½,0, ½), (0, ½,½,), Mandal 

and Pal (2008) restricted to the sub-class of designs D* having the same support points and with 

masses respectively 1, 2, 3, 12, 13, 23, where 1 = 2, 13= 23. Then, using the alternative 
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representation (2.6) of the response function, the optimal design in D* has been obtained to have the 

masses 

 𝛼𝑖 =
√𝑔𝑖𝑖

√∑ 𝑔𝑗𝑗
6
𝑗=1

, for 𝑖 = 1,3; 𝛼12 = 
√𝑔44

√∑ 𝑔𝑗𝑗
6
𝑗=1

 ,  𝛼13 = 
√𝑔55

√∑ 𝑔𝑗𝑗
6
𝑗=1

,  

where G = (𝑔𝑖𝑗), with 

 𝑔11 = 𝑔22 = 4𝑣(5𝑎1 + 𝑎3);   𝑔33 = 4𝑣(2𝑎1 + 4𝑎3); 

         𝑔44 = 2𝑣(5𝑎1 + 𝑎3) − 2𝑤(4𝑎1 − 𝑎3);   𝑔55 = (7𝑎1 + 5𝑎3) − 2𝑤(𝑎1 + 2𝑎3) = 𝑔66. 

Verification of the optimality of the above design in the whole class of competing designs using the 

Equivalence Theorem is algebraically intractable. Mandal and Pal (2008) examined the same 

numerically at several points of the experimental region, and showed that while equality holds at the 

support points, strict inequality (less-than type) prevails at other points. They conjectured that in the 

general case of q-component mixture, the optimal design is also likely to be a (q, 2) – simplex design, 

even for arbitrary 𝑎𝑖′s. 
 

3. Optimum Design for Optimum Mixture under Darroch-Waller Quadratic 

Mixture Model 
 

An additive quadratic mixture model was introduced by Darroch and Waller (1985) for the case of 

three-component model. They investigated the optimal design for the estimation of the model 

parameters. In the general case of q - component mixture, the model would be given by 

  
𝒙
= ∑ 𝛽𝑖𝑥𝑖 + ∑ 𝛽𝑖𝑖𝑥𝑖(1 − 𝑥𝑖)

𝑞
𝑖=1

𝑞
𝑖=1 .           (3.1) 

Scheffé’s quadratic mixture model and the above model are equivalent for q = 3. However, in the 

case of q = 2, the parameters of the Darroch-Waller model are not uniquely estimable. For q  4, 

(3.1) is a particular case of Scheffé’s model with the parameters being subject to a system of linear 

constraints. The additive model (3.1) is often found to fit data well. Optimal designs for estimation 

of the parameters for q  4 have been studied by Chan et al. (1998). 
 

Pal et al. (2017) attempted to find the optimal design for estimating the optimum mixture 

combination in model (3.1). To do so, they rewrote the model in the form 
𝒙
= 𝒙′𝐵𝒙, taking help of 

the natural constraint ∑ 𝑥𝑖
𝑞
𝑖=1 = 1, and assumed that B is negative definite. The optimal mixture 

combination maximizing the mean response then, as before, comes out to be   = 𝛿−1𝐵−1𝟏𝑞 , with 

the symbols having the same meaning. Then, proceeding as in Pal and Mandal (2006), and using the 

same argument for assuming  (𝛾𝑖
2) = v, for 𝑖 = 1(1)𝑞,  (ij) = w, for 𝑖 = 1(1)𝑞, 𝑖 < 𝑗, Pal et al. 

(2017) established the following theorem for finding an A-optimal design,  using the criterion 

function  () = Trace[𝑀()−1 𝐴( )′𝐴( ) where 𝐴( ) is defined as before: 
 

Theorem 3.1: The barycentres of the experimental region are the possible support points of the A-

optimal design. 
 

As a weighted centroid design (WCD) comprises of all the barycentres of the experimental region, 

the above theorem restricts the search for the optimum design within the sub-class of WCDs.  
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Suppose for a WCD , 𝑤𝑟
(𝑞)

 is the mass at each of the barycentres of depth (r – 1), 1 ≤ 𝑟 ≤ 𝑞. Let 


1,𝑖
(𝑞)

 denote a WCD with 𝑤𝑟
(𝑞)

 = 0 for all r 1, i, where i {2, 3,…, q}, and let 
1,𝑖,𝑗
(𝑞)

 denote a WCD 

with 𝑤𝑟
(𝑞)

 = 0 for all r 1, i, j , where i, j {2, 3,…, q}, 𝑖 < 𝑗. Pal et al. (2017) showed the within the 

sub-class of designs of the form 
1,𝑖
(𝑞), for 2 ≤ 𝑖 ≤ 𝑞, the optimal values of the masses are: 

 𝑤1
(𝑞)
= 𝑤10

(𝑞)
=

√𝑑1𝑖

√(
𝑞
1
)(√(

𝑞
1
)𝑑1𝑖+√(

𝑞
𝑖
)𝑑2𝑖)

, 𝑤𝑖
(𝑞)
= 𝑤𝑖0

(𝑞)
=

√𝑑2𝑖

√(
𝑞
𝑖
)(√(

𝑞
1
)𝑑1𝑖+√(

𝑞
𝑖
)𝑑2𝑖)

, 

where 𝑑1𝑖 = 𝑞
2(𝑞 − 1) +

4𝑖

𝑖−1
𝑞2(𝑞 − 1) (

1

𝑞
−
1

2
) + 4 (

𝑖

𝑖−1
)
2

𝑎𝑞 

           𝑑2𝑖 = [
4𝑖4𝑎

(𝑖−1)2
𝑞 −

4𝑖3

(𝑖−1)(𝑞−1)
𝑞(𝑎 − 𝑏 + 𝑏𝑞)] / (

𝑞 − 2
𝑖 − 1

) 

  𝑎 = 𝑞(𝑞 − 1)[𝑣 + (
1

4
−
1

𝑞
)], 𝑏 = 𝑞[𝑤 + (

1

4
−
1

𝑞
)]. 

They, thereafter, established the following results with the help of the Equivalence Theorem: 

Result 3.1: For q = 3, the design 
1,2
(3) with 𝑤1

(3)
= 𝑤10

(3)
  and 𝑤2

(3)
= 𝑤20

(3)
is A-optimal for v(

1

9
,
1

3
). 

Result 3.2: For q = 4, the design 
1,2
(4) with 𝑤1

(4)
= 𝑤10

(4)
  and 𝑤1

(4)
= 𝑤10

(4)
 is A-optimal provided v<

𝑣0, where 𝑣0 rounded off to seven places of decimal is 0.1975663. 

Through numerical computation, Pal et al (2017) showed that for q = 4 and v≥ 𝑣0 the optimal design 

belongs to the sub-class of designs 
1,2,3
(4)

, and that for q = 5 the optimal design belongs to the sub-

class of designs 
1,2,3
(5)

. 

The following table is an excerpt from Pal et al (2017) showing the optimal designs for q = 4, 5 for 

some values of v. 

q v (
𝑞
1
)𝑤1 (

𝑞
2
)𝑤2 (

𝑞
3
)𝑤3 

4 

 

 

 

0.08 

0.15 

0.20 

0.24 

0.2168 

0.3210 

0.3419 

0.3484 

0.7832 

0.6790 

0.6566 

0.6308 

0 

0 

0.0015 

0.0208 

5 0.06 

0.10 

0.16 

0.1999 

0.2502 

0.2710 

0.6403 

0.4184 

0.2392 

0.1598 

0.3314 

0.4898 

 

4. Optimum Design for Optimum Mixture Under Log Contrast Model 
 

Aitchison and Bacon-Shone (1984) proposed the quadratic log-contrast model given by 

  
𝒙
= ∑ 𝛽𝑖log (𝑥𝑖/𝑥𝑞) +  ∑ 𝛽𝑖𝑗 log (𝑥𝑖/𝑥𝑞)log (𝑥𝑖/𝑥𝑞)

𝑞−1
𝑖,𝑗=1
𝑖<𝑗

𝑞−1
𝑖=1 .                      (4.1) 

The advantage of the log-contrast model over other mixture models is that while in Scheffe’s model 

and Darroch-Waller model the mixing proportions 𝑥𝑖 ′s can be varied subject to the restriction 

∑ 𝑥𝑖
𝑞
𝑖=1 = 1,  in the log-contrast model 𝑧𝑖 = log (

𝑥𝑖

𝑥𝑞
)  can be varied independently. Further, the 

polynomial forms in 𝑧𝑖′s can be full in the sense of including all terms of appropriate degrees as 
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against Scheffe’s polynomial models which require the omission of certain terms to ensure 

identifiability. 
 

D-optimal design for parameter estimation in the log-contrast model has been studied by Chan 

(1992) under the experimental region   

      𝛿 = {(𝑥1, 𝑥2, … , 𝑥𝑞) ∈ rel. int.: 𝛿 ≤
𝑥𝑖

𝑥𝑞
≤
1

𝛿
, 𝑖 = 1(1)(𝑞 − 1)}, 𝛿 ∈ (0,1).       (4.2) 

 

Pal and Mandal (2012) ventured to investigate the optimum design for estimating the optimum 

mixture by restricting to the experimental region (4.2). They transformed the model in terms of 𝑡 =

−log(
𝑥𝑖

𝑥𝑞
), which takes the form 

  
𝒙
≡ 

𝒕
= 𝜃0 + ∑ 𝜃𝑖

𝑞−1
𝑖=1 𝑡𝑖 +∑ 𝜃𝑖𝑗𝑡𝑖𝑡𝑗

𝑞−1
𝑖,𝑗=1 =𝜃0 + ∑ 𝜃𝑖

𝑞−1
𝑖=1 𝑡𝑖 + 𝒕

′𝒕,               (4.3) 

where 𝜃0 = 𝛽0, 𝜃𝑖 = 𝛽𝑖(−log𝛿), 1 ≤ 𝑖 ≤ (𝑞 − 1),  𝜃𝑖𝑗 = 𝛽𝑖𝑗(log𝛿)
2, 1 ≤ 𝑖, 𝑗 ≤ (𝑞 − 1),  𝒕 =

(𝑡1, 𝑡2, … , 𝑡𝑞−1)′, and  = ((1 + 𝛿𝑖𝑗)𝜃𝑖𝑗/2), with 𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗, and 𝛿𝑖𝑗 = 0 if 𝑖 ≠ 𝑗. ).  

The experimental region for t, therefore, comes out to be  

       T= {𝒕 = (𝑡1, 𝑡2, … , 𝑡𝑞−1)′ ∈ [−1,1]
𝑞−1: 𝑡𝑖 − 𝑡𝑗 ∈ [−1,1], for 1 ≤ 𝑖, 𝑗 ≤ 𝑞 − 1}.  

 

It is assumed that  is negative definite, and that 
𝒕
 is maximized at an interior point of the 

experimental region T. Clearly, 
𝒕
 is maximized at  𝝆 =

1

2
−1𝜽, where 𝜽 = (𝜃1, 𝜃2, … , 𝜃𝑞−1), and, 

from the inverse transformation t → x, one can find the mixing proportions x = 𝜸 that maximizes 


𝒙
. 

 

As before, for a continuous design , the large sample dispersion matrix of the estimate 𝝆̂ of 𝝆 comes 

out to be 𝐴(𝝆 )𝑀()−1𝐴(𝝆)′, where 𝑀() is the information matrix of  and 𝐴(𝝆 ) is the matrix of 

partial derivatives of the components of 𝝆 with respect to the model parameters. The authors showed 

that 𝐴(𝝆 ) = −−1𝐴∗(𝝆 ), where the elements of 𝐴∗(𝝆 ) are constants (0 or ½) or linear functions 

of 𝝆, as given below: 

  𝐴∗(𝝆 ) =

[
 
 
 
 
 
 0  

1

2
   0…0   𝜌1   0 … 0  

𝜌2

2
   
𝜌3

2
…0

0  0   
1

2
…0    0   𝜌2…0  

𝜌1

2
   0… 0

…

0  0   0…0    0   0… 0  0   0…
𝜌𝑞−1

2

0  0   0…
1

2
    0   0 …𝜌𝑞−1  0   0…

𝜌𝑞−2

2 ]
 
 
 
 
 
 

. 

The D-optimality criterion selects the optimum design by minimizing Det. [𝐴(𝝆 )𝑀()−1𝐴(𝝆)′]. 

However, as the determinant depends on the unknown parameters of (4.3) through 𝝆,  Pal and 

Mandal (2012) took recourse to the pseudo-Bayesian approach of Pal and Mandal (2006) whereby, 

under the assumption of no information about the relative importance of the mixing  components, it 

is assumed that the prior moments  (𝛾𝑖
2) are all equal for 𝑖 = 1(1)𝑞, and  (ij) are all equal for 

𝑖, 𝑗 = 1(1)𝑞, 𝑖 < 𝑗. Because of the constraint ∑ 𝑥𝑖
𝑞
𝑖=1 = 1, this gives  (𝜌𝑖) = 0,  (𝜌𝑖

2) = v, for 𝑖 =

1(1)(𝑞 − 1), and  (ij) =w, for 𝑖, 𝑗 = 1(1)(𝑞 − 1), 𝑖 < 𝑗, where v (0, 1) w (-1, 1), and v > w. 

These prior moments are assumed to be known. Using this information, the D-optimum design is 

obtained by minimizing  
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  𝜑𝐷() = Det.{[𝐴(𝝆 )𝑀()−1𝐴(𝝆)′]}, 

or, by maximizing 𝜑𝐷
∗ () = −log𝜑𝐷(). 

 

Noting that 𝜑𝐷
∗ () has the properties of invariance and concavity, Pal and Mandal (2012) restricted 

to the sub-class D0 of invariant designs given by 

       D0 = {𝜏|𝜏 = 𝛼0𝜏0 + 𝛼1𝜏1 +⋯+ 𝛼𝑞−1𝜏𝑞−1, 0 ≤ 𝛼𝑖 ≤ 1, 𝑖 = 0(1)(𝑞 − 1), ∑ 𝛼𝑖
𝑞−1
𝑖=0 = 1}, 

where for each i, the design 𝜏𝑖 is given by 

         𝜏𝑖 = {𝒕 ↔ 1,1, . . . ,1⏞    
𝑖

, 0,0, . . . ,0⏞    
𝑞−𝑖−1

 , 𝒕 ↔ −1,−1, . . . , −1⏞        
𝑖

, 0,0, . . . ,0⏞    
𝑞−𝑖−1

},  

where 𝒕 ↔ 𝒓 means 𝒕 = 𝑃𝒓, P being some (𝑞 − 1) × (𝑞 − 1) permutation matrix, and the mass at 

each support point is 1/2 (
𝑞 − 1
𝑖
).  

The D-optimal design within D0 is then obtained by maximizing 𝜑𝐷
∗ (𝜏) with respect to 𝛼𝑖′s. subject 

to 0 ≤ 𝛼𝑖 ≤ 1, 𝑖 = 0(1)(𝑞 − 1), ∑ 𝛼𝑖
𝑞−1
𝑖=0 = 1.  The optimality or otherwise of the design thus 

obtained within the whole class of competing designs is verified using Kiefer’s Equivalence 

Theorem, which, in this case, reduces to the following [after writing the model in the form
𝒕
=

𝑓(𝒕)′𝜽] : 
 

A necessary and sufficient condition for a design  to be D-optimal is that 

     Trace E {𝐴∗(𝝆 )𝑀()−1𝑓(𝒕)𝑓′(𝒕)𝑀()−1𝐴∗(𝝆 )}(E  {𝐴∗(𝝆 )𝑀−1()𝐴∗(𝝆 )′})−1 ≤ 𝑞 − 1   

for all t  T where equality holds at the support points of .   
 

To find the optimal design in the experimental region , the authors used the notation x ~ (𝑘1, 𝑘2,…, 
𝑘𝑞) to define  

  𝑥 = 
(𝑘1,𝑘2,…,𝑘𝑞)′

||(𝑘1,𝑘2,…,𝑘𝑞)||
,  

where 𝛿 ≤
𝑘𝑖

𝑘𝑗
≤
1

𝛿
, 𝑖, 𝑗 = 1(1)𝑞, 𝛿ϵ(0,1),  and || || denotes the L1 norm, and the notation 

x
𝒒−𝟏
↔ (𝑘𝑃(1), 𝑘𝑃(2), … , 𝑘𝑃(𝑞−1),𝑘𝑞), for all permutation P of {1,2,…,q-1}. For example, if q = 3, x ~ 

(1,,1) means x = (
1

2+𝛿 
,
𝛿

2+𝛿 
,
1

2+𝛿 
), and x

𝟐
↔(1, , 1) means x{ x : x ~ (1,,1) or x ~ (,1,1)}. 

 

Then, the design 𝜏𝑖  on the experimental region T corresponds to the design 
𝑖
 on the experimental 

region , given by (2.1), where 

           
𝑖
= {𝒙

𝒒−𝟏
↔ 1,1, . . . ,1⏞    

𝑖

, 𝛿, 𝛿, . . . , 𝛿⏞      , 𝛿

𝑞−𝑖−1

 , 𝒙
𝒒−𝟏
↔ 𝛿, 𝛿, . . . , 𝛿⏞      

𝑖

, 1,1, . . . ,1⏞    , 1

𝑞−𝑖−1

}, 

and the mass at each support point is 1/2 (
𝑞 − 1
𝑖
).  

For the case of q = 2, the optimal design, therefore, assigns mass 𝛼/2 at each of the support points 

(
𝛿

1+𝛿 
,
1

1+𝛿 
) and (

1

1+𝛿 
,
𝛿

1+𝛿 
), and mass 1 -   at the centroid (1/2 ,1/2 ), where 𝛼 =  

√𝑣+1/4

√𝑣+√𝑣+1/4
. For q > 

2, owing to the presence of the apriori moments (v, w), the verification of the optimality of a design 

using Equivalence Theorem is rather involved. Pal and Mandal (2012) therefore, numerically 

checked the conditions of the theorem using innumerable points from the experimental region for q 
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= 3,4,5.  The tables below are taken from Pal and Mandal (2012), and show the optimal masses 

assigned to 𝜏𝑖 ′s for some combinations of (v, w), when q = 3,4,5:  

q =3 

 
 

q =4 

 
q =5 
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