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Abstract  

 
In comparison to Scheffè’s canonical polynomial models (S-models), the Kronecker models (K-

models) for mixture experiments are symmetric, compact in notation, and based on the Kronecker 

algebra of vectors and matrices. Further, there is a corresponding transition from S-models to K-

models in the form of model re-parameterization. In the literature, it has been recommended to use 

second-degree K-models in practice compared to the widely used second-degree S-models 

especially when the moment matrix is of an ill-conditioning type. The motivation of the present 

article is to discriminate between K-models and S-models in terms of the model-robust D- and A-

optimality criteria. These optimality criteria are discussed when there is uncertainty in selecting an 

appropriate model out of two rival models for a mixture experiment.  
 

Keywords and Phrases: Canonical polynomial model, Kronecker model, Mixture experiment, 

Ill-conditioning, D-optimality, A-optimality.    
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1. Introduction 
 

The optimal design for a mixture experiment continues to receive significant attention from many 

scholars in the statistical literature. Recently, several articles have been published on this particular 

topic e.g., Pal et al. (2023), Pal and Mandal (2021), Panda (2021), Panda and Sahoo (2022a, 

2022b, 2024). 
 

In a mixture experiment having q number of mixture components, a response to a mixture is a 

function of the relative proportion, ix , of each of the components only. Here the response of 

interest does not depend upon the absolute amount of the components. The proportion of each of 

the q components must satisfy both a summation constraint and a non-negativity constraint:  

 qixi ...,,2,1,0 =
 
and

=

=
q

i

ix
1

1 . 

As a result, the experimental region is a −− )1(q dimensional simplex given by  
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To analyze mixture data, several models have been introduced in the literature e.g. Scheffè’s 

canonical polynomial model (S-model), Becker’s model, Kronecker model (K-model), etc. Among 

the several mixture models discussed in the literature, S-models are the most widely used models 

for analyzing data related to mixture experiments. The expected responses of the first- and second-

degree canonical polynomial models are of the following form:    

i
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where 
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12 :
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q RS →−f , ))(,(),...,,( 121
→=  qjijiq xxxxx xx  

with qm =1 and =2m 2

1Cq+
. Here the unknown parameter vectors 

q

q R= ),...,( 21 θ

and ),...,,,...( 1121
= − qqq β 2

1Cq

R
+

 respectively where 
nR  denote the n-dimensional 

Euclidean space. The information matrix of a design  for models given by Equations (1.1) and 

(1.2) is as follows 

 )()()()(

1

xxfxfM  di

S

ii

q

= 
−

for i = 1, 2. 

The information matrix contains the amount of information that the design  contains about the 

unknown parameters associated with the model of interest.  
 

Draper and Pukelsheim (1998) proposed a new form of model of mixture experiments known as 

the K-model for mixture experiments as an alternative to the canonical polynomial models. The 

model form of the first-degree is the same as that of the Equation (1.1) and the second-degree K- 

model is of the following form:    
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where 
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12 : q

q RS →−f , qjijiq xxxxx ,...,2,1,21 )(),...,,( ==→= xxx
 

     Ordered lexicographically
 

and with 
2

),...,,( 1211

q

qq R= μ is the vector of unknown parameters. Here we assume 

that the observations are uncorrelated and have common unknown finite variance
2 . These latter 
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models have some special features as compared to the former models such as: (a) K-models are 

based on the Kronecker algebra of vectors and matrices; (b) they are symmetric, and (c) involve 

compact notation. The use of ridge analysis becomes simple if an experimenter utilizes the K-

model instead of the S-model see Draper and Pukelsheim (2000). The objective of reducing the 

maximum eigenvalue of the information matrix can be achieved by using the second-degree K 

model for mixture experiments as compared to that of Scheffé’s quadratic polynomial model or 

any other quadratic mixture model. Additionally, the same model can be used in practice for 

shrinking the ill-conditioning. For further details, one can refer to the work of Prescott et al. 

(2002).   
 

The main focus of this article lies in the discussion of model robust designs. In the design and 

analysis of the experiment, generally, an experimenter assumes the model for analyzing the data 

with a belief that the assumed model shall be roughly close to the true model. However, if the 

model chosen is not an adequate one then the optimal design obtained for the assumed model 

provides considerably biased information about the true response. In this sense, the design can be 

considered as a bad design i.e. it is no more a model robust design. In the literature, three 

important characteristics are cited for a model to be considered a good model-robust design. These 

characteristics are: (i) allow the experimenter to fit the assumed model, (ii) detect the model 

inadequacy when the model fitted one is not an appropriate approximation to the true model, and 

(iii) reasonable efficient inferences can be made based on the assumed model when it is an 

appropriate one.  
 

Further, in an experiment, an experimenter frequently requires the detection of model inadequacy 

in the design of an experiment that is again highly dependent upon the true response.   However, in 

general, the true model is unknown often. Thus, the assumed model can perceive the model 

inadequacy if it occurs, whenever the design points are located at representative locations of the 

true model. On the other hand, the design may not even detect the model inadequacy, if the design 

points are badly located. Hence, it can be concluded that the best way to identify the model 

inadequacy can be made when the true model is known. This leads to the fact that the selection of 

a model robust design depends on the selection of the optimality criterion as well as the true and 

assumed model. For further details, one can refer to the work by Stigler (1971), Studden (1982), 

Chang and Notz (1996), Mandal et al. (2015), Ai et al. (2023), etc.  In this backdrop, Huang et al. 

(2009) obtained model-robust D- and A-optimal designs when there is uncertainty in choosing an 

appropriate model out of two given rival models with a mixture experiment i.e. Scheffè’s 

canonical polynomial models given by Equations (1.1) and (1.2). In the present work, we wish to 

extend the idea of model robust D- and A-optimality of Huang et al. (2009) to K- Models. The 

basic motivation of this article is to discriminate between S-models and K-models in terms of 

model robust D- and A-optimality. This model distinction also makes sense since there is a 

corresponding transition from S-models to K-models in the form of model re-parameterization. 
 

The rest of the paper is organized as follows. Section 2 gives the preliminaries. In Section 3, we 

discuss the main result. Finally, we conclude with some discussion and conclusions in Section 4.   

     

2. Preliminaries  
 

Draper and Pukelshiem (1999) and Draper et al. (2000) obtained complete class results for first- 

and second-degree K-models for the Kiefer ordering based on elementary centroid designs. The 

advantage of the complete class results is that any design not of a mixture of the elementary 

centroid designs can be further improved upon by using a suitable combination of the elementary 
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centroid designs. In this aspect, we restrict our consideration to weighted centroid designs defined 

below, see Klein (2004b).  

Definition 2.1. Let us denote the canonical unit vectors in 
qR by

1e , …, qe and set jiij eee =

for qji ...,,2,1, = . The canonical unit vectors in 









2

q

R  are denoted by ijE with qji 1 in 

lexicographic order. For 2q and }...,,2,1{ qj , the jth elementary centroid design j is the 

uniform distribution on the centroids of depth j , that is, on all points taking the form 

 1

1
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e with qkkk j  ...1 21 .  

A weighted centroid design with a weight vector ),...,,( 21
= qα is a convex combination 
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j
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jj

1

1,0  . Let the set of all weighted centroid designs is 

denoted by W . 
 

We use the following two lemmas from Klein (2004a) for deriving our main results.  

Lemma 2.1. Let 
q

q R= )1...,,1,1(1 .  Define qIU =1 , 
2

1 CqIW = and
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Then any matrix C )H,( 11nSym can be uniquely represented as =C 2211 UU  + with 

coefficients 1 , 2  R . Similarly, any matrix C )H,( 22nSym is of the form  

𝑪 = (
𝜔3𝑼1 + 𝜔4𝑼2 𝜔5𝑽1

′ + 𝜔6𝑽21
′

𝜔5𝑽1 + 𝜔6𝑽2 𝜔7𝑾1 + 𝜔8𝑾2 + 𝜔9𝑾3
)  

with unique coefficients 3 ,…, 9  R . Here )(qSym  and )( 2cSym q
represents the set of 

symmetric matrices of order q  and 2cq
 respectively. Note that 𝑽2 = 𝟎 , 𝑾2 = 𝑾3 = 𝟎 for

2=q , and 𝑾3 = 𝟎 for 3=q . For the definition of )H,( iinSym for i = 1, 2, one can refer to 

the work of Huang et al. (2009), and Klein (2004a). The following Lemma provides a 

multiplication table for the above-mentioned matrices.    
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Lemma 2.2. For any 2q , the matrices 1U  , 2U , 1V , 2V , 1W , 2W , and 𝑾3  satisfy the 

following equations: 

(i) 
21

2

2 )2()1( UUU −+−= qq ,       

21221 )2( UVVVV −== q  

2111 )1( UUVV +−= q ,     

22

2

12

1

22 UUVV CC qq −− +=  

(ii) 2121 2VVUV += , 

2122 )3()2( VVUV −+−= qq , 

2112 2)2( VVVW +−= q ,    

2122 )3(2)2( VVVW −+−= qq , 

213 )3( VVW −= q ,    

22

3

12

2

23 VVVW CC qq −− +=  

(iii) 2111 2 WWVV += ,    

321221 2WWVVVV +== , 

32122 )4()3()2( WWWVV −+−+−= qqq ,  

321

2

2 4)2()2(2 WWWW +−+−= qq , 

321

2

3
2

4

2

3

2

2
WWWW 






 −
+







 −
+







 −
=

qqq
, 

322332 )4(2)3( WWWWWW −+−== qq . 

 

Next, we focus on the design problem for the K-models especially when the maximum number of 

unknown parameters is estimable. In this regard, Klein (2004b) discussed that the full parameter 

vector 
2qRμ is not estimable and thus a maximum parameter subsystem μK can be defined 

such that the span of the regression range }:)({ 1−= qSfS xx . He further defined the 

canonical maximum parameter subsystem which is as follows:   
 

Let us denote the canonical unit vectors in 
qR by 1e , …, qe and set jiij eee = for

qji ...,,2,1, = . The canonical unit vectors in 
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In this case, the span set of S shall be equal to the range set of K , and the maximum parameter 

subsystem has the form which is as follows:   
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μK   for all 
2qRμ .                          (2.2) 

Our investigation on model robust optimality is based on the first- and maximum-parameter 

subsystem of the second-degree K model given by Equations (1.1) and (2.2) respectively. The 

information matrices for the model Equation (1.1) based on elementary centroid designs 
1 and 2  

(see Klein, 2004b) are as follows:  
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and for model Equation (2.2) based on the same are  
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8𝑞
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1

8𝑞(𝑞−1)
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1

4𝑞(𝑞−1)
𝑽1

′

1

4𝑞(𝑞−1)
𝑽1

1

2𝑞(𝑞−1)
𝑾1

).   

In the next section, we provide the main results of the article i.e., to obtain model robust D- and A-

optimal designs for the K-models.  

 

3. Main Results 
 

3.1 Model Robust D-optimal Designs 
 

The re-parameterization from S-models to K-models through a linear transformation is already 

discussed in Section 1. The D-criterion is invariant under the linear re-parameterization of the 

space of regression polynomials see Gaftke (1981). Therefore, the model-robust D-optimal designs 

of K-models remain identical to that of S-models.    
 

Next, we derive the model robust A-optimal designs of the K-models.  

 

3.2 Model Robust A-optimal Designs  

Let 
A

1 and 
A

2  are the A-optimal designs of the first K-model and maximum parameter 

subsystem of the second-degree K-model respectively. Then 11  =A
 and 22112  +=A

with weights  
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33)1(2
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=
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qqq
  

[see pg. 124, Klein (2004b)]. The model-robust A-criterion is defined as a convex combination of 

the A-criteria in the first- and second-degree K-models  
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Let us further define a bijective function )~(~ rrr → from [0, 1] to itself by setting 

 
r = =)~(rr ]1,0[

)()~1()(~
)(~

2

1

21

1

1

1

1

1 
−+ −−

−

AA

A

trrtrr

trr





MM

M
  

                                 
(3.1) 

then we may rewrite )(Φ~ ξA

r in the following form 

 
)(

~
~ ξA

r = ( ))()1()(
)(

~1

)(

~
1

2

1

1

2

1

21

1

1

ξtrrξtrr
ξtr

r

ξtr

r
AA

−−

−−
−+









 −
+ MM

MM
.  

We have )( 1

1

1

Aξtr −
M = 

2q  and )( 2

1

2

Aξtr −
M = ( )+)(8 1q ( )( )212 )1(24  −+ qqCq

. 

Thus eliminating the standardizing constants, we may write )(
~

~ ξA

 as  

 
)(ξA

r = )()1()( 1

2

1

1 ξtrrξtrr −− −+ MM  with ]1,0[r .                                        (3.2) 

Now our design criterion is given by minimizing Equation (3.2) which is equivalent to )(
~

~ ξ
A

r . 

For given ]1,0[r , a design 
A
ξ  with )(2

AξM ∈ )( 2mPD is called model-robust A-optimal 

if and only if it satisfies  

 
= )( AA

r ξ min )(∈)(∈)( 22 mPDwithA

r ξMξξ  . 

We restrict our consideration to the class W of weighted centroid designs following Lemma 4.1 of 

Huang et al. (2009). Due to complete class results for K-models, this lemma also holds for K-

models. The lemma is as follows: 

Lemma 3.1. The set W  from Definition 2.1 is an essentially complete class of designs relative to 

the model-robust A-criterion
A

r , r  [0, 1], defined in Equation (3.2). Then a design 
A

r  with 

)(2

A

rξM )( 2mPD (for given r  [0, 1]) is model-robust A-optimal if and only if  
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for all qj 1 .       

To obtain model-robust A-optimal designs, we consider designs that are convex combinations of 

the two optimal designs in the first- and second-degree model, and among these designs, we find 

that design which minimizes the Equation (3.2). 

Definition 3.1.  Let the set A  be defined as 

 ]}1,0[,)1({ 21 −+== 
AA

A . 

The set A  is a subset of W . 
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Lemma 3.2. For a given prior ]1,0[r , there doesn’t exist a unique weight ]1,[ A

r  such 

that the design 
A
r

ξ  is model-robust A-optimal design among all designs in A , where 

)1,0[ . 

Proof: For the elementary centroid designs 𝜼𝟏and  𝜼𝟐 we have  
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Next, using the multiplication table from Lemma 2.2, we get  
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The detailed derivation of Equation (3.5) is mentioned in Appendix A.I.  Similarly, using the 

multiplication table from Lemma 2.2 we can find  
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The detailed derivation of Equation (3.6) is mentioned in Appendix A. II.  Next using the principle 

of maxima and minima we set 0)( = 
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 for all

]1,[  where )1,0( . Figure 1 gives the behavior of the weight 
A

rr )~( as a function of r~ . 

Here the weight 
A

rr )~( is found as the numerical solution of Equation (3.7).  From Figure 1, it is 

seen that 
A

rr )~(  is not a one-to-one function of r~ , hence 
A

rr )~( cannot be a unique weight for 

different values of the prior.            
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Figure 1. The A-optimal weight 
A

rr )~(  as a function of r~  [0, 1] 

Lemma 3.3. For a given ]1,0[p , the design AA
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Lemma 3.2) is not a model-robust A-optimal design.
  

Proof: The necessary and sufficient conditions of model robust A-optimality follow from Lemma 
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Using the multiplication table in Lemma 2.2, we obtain the following quantities 
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with 1s , 1t , 2a , 2b , 2c , 2d , 2e , 2f , and 2g as mentioned in the proof of Lemma 3.2 and 

Appendix A.II. As 011 − ts , hence the term j,1N is decreasing in j. Next to prove j,2N  is 

decreasing in j, we evaluate  
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Again, we have  
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  (3.9) 

Substituting
A

p = , a numerical solution of 
)()(

)(

12

2





−
=p  from Equation (3.7) in 

Equations (3.8), and (3.9), it can be checked that the R.H.S of both Equations (3.8) and (3.9) are 

not equal. Hence, the equality of model robust A-optimality does not hold. This completes the 

proof. 

 

4. Discussion and Conclusions 
 

The current work discusses the aspect of the model robust A-optimality criterion for the K-models. 

From the above discussion, it is seen that the support points of the simplex centroid designs are D- 

and A-optimal designs for both K- and S-models (first- and second-degree models) with 

appropriate weights assigned to these points. Further, it is observed that an appropriately defined 

convex combination of these D-optimal designs is model-robust D-optimal designs for both K- and 

S-models. However, in the case of the model-robust A-optimality criterion, it holds only for the S-

models and not for the K-models. Thus, it can be concluded that, for K-models, the A-optimal 

designs may not be able to detect the model inadequacy at the support points whereas the A-

optimal designs could be able to detect the model inadequacy at the same support points for the S-

models. This can be attributed to the fact of re-parameterization from S-models to K-models 

through a linear transformation i.e. the design points of the A-optimal designs are badly located 

w.r.t model-robust A-optimality concerning the K-models.  
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Appendix A 

A. I. Derivation of  )(2
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Using Equation (3.3), we get the inverse of the matrix )(1 ξM  as  
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Subsequently, using the multiplication table from Lemma 2.2 for the matrix and after performing 

some little algebra we get  
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A. II. Derivation of  )(2

2 ξM
−

 

Next, we obtain the inverse matrix )(2
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−

M using the formula of inverse for partitioned matrices 

i.e. for a non-singular matrix 
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1−−=  provided D  is a non-singular matrix [see Rao and Bhimasankaram 

(2000)]. 

 

Using Equation (A2) for the matrix given in Equation (3.4) we get the following 
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