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Abstract

With reference to a Gauss-Markov Model, Analysis of Covariance (ANCOVA) is a standard exercise in the
study of differential treatment effects in the presence of covariates. Again in the presence of ‘Neighbor
Effects’, we carry out necessary data analysis in a routine manner. In this paper we present a review of this
area of research, encompassing both covariates’ effects and neighbor effects.
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1 Introduction

During our undergraduate/post-graduate studies, in a course in Linear Models, we are
told about ANOVA in considerable details, with illustrative examples encompassing
One-way and Two-way classified data. As an extension, we are also told about AN-
COVA which deals with non-stochastic covariates, also known as regressors. This is a
routine extension of ANOVA.

Neighbor effects, on the other hand, is a concept/term/key word less discussed in text
books and it is more confined to research-level expositions. The concept of neigh-
bor designs was introduced by Rees (1967) in the experiment of serology when the
blocks are circular in nature, such that the first plot and the last plot in a block are
appearing as neighbors. Azais et al (1993) constructed a series of neighbor-balanced
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designs incomplete blocks and also mentioned about the analysis of different models
with one-sided, two-sided neighbor effects. Meitei (1996) gives a method of construc-
tion of incomplete block neighbor design in which number of blocks is not a multiple
of number of treatments. Jaggi et al (2018) described some construction methods of
circular neighbor balanced and also circular partially neighbor balanced block designs
for estimation of direct and neighbor effects of the treatments. Kunert (1984), Monod
(1992), Bailey (2003), Jaggi et al (2007), Varghese et al (2014), Sapam et al (2019a,
2019b), Sapam and Sinha (2020) are also some related references of neighbor designs.

Troya (1982a, 1982b) introduced the concept of Optimal Covariates Designs (OCDs)
and presented optimality results in the context of Completely Randimized Designs
(CRDs). Optimal covariate designs are the designs which provide optimal or most
efficient estimation of the covariates’ effects in terms of the parameters in an assumed
linear model. Inspired by Troya’s formulation of optimality problems involving co-
variates effects, Das et al (2003) provided some combinatorial solutions which served
as a modest beginning of the Monograph titled ‘Optimal Covariate Designs’ by Das
et al (2015). Sapam et al (2021) worked on a linear ANCOVA model with the key
reference of the mentioned Monograph to study its analysis - with special emphasis on
the question of estimability of the regression coefficient(s) involving the covariates in
the presence of neighbor effects under Randomized Block Designs (RBDs), balanced
incomplete block design and latin square design set ups.

Sapam et al (2021) focused on OCDs incorporating the neighbor effects in four di-
rections viz., left-sided, right-sided, top-sided and bottom-sided in the assumed linear
model in different RBD set ups. Sinha and Dutta (2017) worked on three different
seasons of Latin Square Designs (LSDs) of order four without any neighbor effects.
Dutta et al (2014), Shah and Sinha (1989) are also related references on optimal de-
signs.

The standard ANOVA-based analysis models of RBD without covariates as well as
neighbor effects is given by Type 1 and by Type 2, RBD with covariates are shown
below:
Type 1 model: yij = µ+ αi + τj + eij
Type 2 model: yij = µ+ αi + τj + βxij + eij

Next, by Type 3 model, RBD without covariates in the presence of neighbor effects
[two-sided] and by Type 4 model, RBD with covariates and neighbor effects are as
follows:
Type 3 model: yij = µ+ αi + τj + LN(i−1) +RN(i+1) + eij
Type 4 model: yij = µ+ αi + τj + βxij + LN(i−1) +RN(i+1) + eij

where LN(i−1) + RN(i+1) are left and right-sided neighbor effects of the treatment i,
assuming the blocks are circular.



Sapam, Sinha and Meitei: Study of Covariates’ Effects . . . 67

1.1 Covariates’ Designs

We start with a block design as an illustration. We assume the existence of a non-
stochastic yet quantitative covariate (X) attached to each experimental unit. Specifi-
cally, the model assumes the form:

yij = µ+ αi + τj + βxij + eij (1)

where yij is the observation in the experimental unit corresponding to i-th block and
j-th treatment; µ is the general mean effect; αi is the i-th block effect; τj is the j-th
treatment effect; β is the regression parameter and xij is the covariate value attached
to the experimental unit labeled (i, j) associated with the linear effects parameter β
and eij is the random error effect .
In general terms, for any number of covariates and any experimental design set- up,
it transpires that var(β̂) ≥ σ2/

∑

xi,j
2. Without any loss of generality, we can argue

that −1 ≤ xi,j ≤ 1, for all covariate values.

This takes the variance bound to σ2/n, where n is the total number of observations.
We need to examine the case of ‘equality’ and that too, for each of the covariates and
there again, we need to attain ‘equality’ simultaneously for all the covariates parame-
ters’ estimates, in case there are more covariates in the experimental set-up.

The literature, henceforth, is vast and varied. Das et al (2015) gives an account of
extensive studies in this area of research, prior to introduction of neighbor effects.

As and when the neighbor effects were introduced to account for the situations wherein
the mean models are distorted by such effects, researchers got involved in the study
of optimal estimation of covariates’ parameters. It transpires that existential results
are not necessarily available even in case of nicely behaving block design layouts.
Below we discuss some such available results in both senses (existential/non-existential).

1.2 Some review of literature in the context of OCDs

Optimal covariate designs are widely discussed in literature. Dutta et al (2009) con-
structed OCDs in different series of PBIBDs through various method of construction
viz., singular group divisible design, semi regular group divisible design and regular
group divisible design, latin square and triangular design. Further, the model (1)
mentioned above may be rewritten as

(Y, µ1N +X1α+X2τ + Zβ, σ2I) (2)

and the necessary and sufficient condition for optimality under the model is given by



68 International Journal of Statistical Sciences, Vol. 24(1), 2024

Z
′

X1 = 0, Z
′

X2 = 0 and Z
′

Z = nI (3)

The optimality conditions in (3) may be expressed, equivalently, in terms of W-
matrices introduced in Das et al (2003). W-matrices connect the incident matrices
of the treatments across the blocks, row/column effects etc with the covariates’ values,
assumed to be +/- 1. We omit the details which ensure the properties displayed below:

C1: Each W -matrix has all treatment sums equal to zero.
C2: Each W -matrix has all row/block sums equal to zero.
C3: The grand total of all the entries in the Hadamard product of any two distinct
W-matrices reduces to zero.

These three conditions play a very important role in the construction of optimal co-
variate designs under different complete/ incomplete block design set-ups without any
neighbor effects. The monograph of Das et al (2015) shows in detail. Hore et al (2014)
proposed a new algorithm for optimal or near optimal allocation where there is large
number of experimental units and several covariates. Sinha et al (2014) discussed the
formulation of problem of allocation of one controllable covariate in the context of
an experiment involving several treatments. Sinha and Rao (2019) also initiated a
study involving the issues of optimal allocation of covariate values in the context of
2n-factorial experiments. Dutta and Sinha (2017a,b) provide in two parts, optimality
results regarding nearly optimal covariate designs under an ANCOVA model with the
examples of CRD, RBD.

OCDs incorporating the neighbor effects whether, one-sided, two-sided or four sided
seems to be rare in the literature. We have studied the OCDs in the presence of neigh-
bor effects in Sapam et al (2021). The monograph by Das et al (2015), have covered
in vast under the Type 2 model. Sapam et al (2019a, 2019b, 2020) provided under
Type 3 model with different design set-ups. We focus for current research is centered
around Type 4.

Specifically, if we are dealing with an RBD involving b blocks and v treatments and
if there are k covariates (X(1),X(2), ...,X(k)), we will attain ‘equality’ in the variance
bound simultaneously for all the covariates if and only if the following conditions are
met :

(i)
∑

j xu;(i,j) = 0, 1≤i≤b;
(ii)

∑

i xu;(i,j) = 0, 1≤j≤v;
(iii)

∑

1≤i≤b

∑

1≤j≤v xu;(i,j) xu∗;(i,j) = nI(u, u∗), 1 ≤ u, u∗ ≤ k;

where, in the above, I(.,.) is the usual indicator function and n = bv, xu;(i,j) is the
covariate values attached to the u-th experimental unit labeled in the ith block and
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jth treatment associated with the linear effects parameter β.

The following two additional conditions (iv)-(v) are also necessary for optimality in-
corporating the neighbor effects [two-sided] in the model.
(iv) sum of x- values in the positions of all the left-neighbors of a given treatment is
zero and that holds for each treatment;
(v) sum of x- values in the positions of all the right-neighbors of a given treatment is
zero and that holds for each treatment.

Below we discuss some such available results from Sapam and Sinha (GJSDS, accepted
paper) through examples in both senses (existential/non-existential).

In an RBD with v=b=4, there are (4!)4 choices of design layouts - though plenty of
them are ‘permutation invariant’ in subsets. We considered one subset of them viz.,
4!=24 RBDs starting with the first three blocks in the natural order of the treatments
i.e., treatment-levels 1, 2, 3, 4. Then only the last row [i.e., 4th row] is made to
be composed of a permutation of the treatment levels 1, 2, 3, 4 resulting 4! = 24
distinct design layouts. We have checked the existence and non-existence ofX-matrices
satisfying the conditions (i)-(iv) laid down above. We claim that there are two distinct
design layouts among these 24 choices whoseX-matrices are in opposite directions. For
one of them, we can construct an X-matrix satisfying all the conditions. For another,
we argue that there does not exist any such X-matrix satisfying all the conditions laid
down above.

Table 1: RBD (v=b=4)

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

For the choice of RBD (v=b=4) in Table 1 we argue that there exist X-matrix satis-
fying all the four conditions (i)-(iv) given above, one such X- matrix is shown in the
Table 2.

Whereas for the choice of RBD (v=b=4) shown in Table 3, we argue that there does
not exist any underlying X-matrix satisfying all the four conditions mentioned above.
Having understood the existence/non-existence results in the particular frameworks
of selected values of b and v, the general case: RBD (b = 2p, v = 2q, p and q being
positive integers).
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Table 2: RBD (v=b=4)

1 -1 1 -1

-1 1 -1 1

1 -1 1 -1

-1 1 -1 1

Table 3: RBD (v=b=4)

1 2 3 4

1 2 3 4

1 2 3 4

2 1 3 4

Towards the non-existence result, we start with the RBD(b, v) design layout as

Db×v =















1 2 3 · · · v
1 2 3 · · · v
...

...
. . .

...
1 2 3 · · · v
2 1 3 · · · v















Further, let

Xb×v =
[

((xij))
]

be the usual matrix of associated covariate-values.

And towards existence result, as in the particular cases, we may start with the stan-
dard RBD for treatment allocations in the natural order for each block and follow the
allocations of the x-values as +1’s and −1’s alternately as are shown in the particular
cases.

In matrix notation, in this case, the solution matrix is represented as the matrix prod-
uct H2 ⊗ Jp×q which is a succession of the Hadamard matrix of order 2 i.e., of H2

matrix in every row and column covering the matrix J of order p× q.
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H2 ⊗ Jp×q =















H2 H2 · · · H2

H2 H2 · · · H2
...

...
. . .

...
H2 H2 · · · H2

H2 H2 · · · H2















This study was meant to examine robustness [with respect to presence of neighbor
effects] of optimal covariates designs in RBD set-ups.

Sapam et al (2021) examined that the existence of ‘optimal covariates designs’ in the
presence of neighbor-effects under the design set -ups (i) RBD (b = v = 4), (ii) BIBD
(b =v = 7, r = k = 4, λ= 2) and (iii) LSD of order 4. The model adopted is linear in
the general mean, block - effects / row-column effects, treatment effects and circularly
located neighbor- effects. The presence of covariates makes the analysis complicated
unless their effects are optimally and orthogonally estimated. This study shows that
at times we are in a position to achieve this by suitably allocating the covariates val-
ues in the experimental units. Even though the experimental set-ups are simple, the
results are non-trivial and worth noting.

Further, Sapam and Sinha (accepted in SSCA) studied four non isomorphic LSDs viz.,
S1, S2, S3, S4 of order four with and without neighbor effects and summarized that in
the absence of neighbor effects, for each of the designs S1, S2, S3 and S4 of LSD of
order 4, we can find out all the possible (six) optimal X-matrices. On the other hand,
in all the four LSDs, these optimal matrices fail to be optimal when we incorporate
the four sided neighbor effects. Only for the designs S1 and S2 all the six optimal
X-matrices continue to be so even in the presence of neighbor effects. The other two
LSDs S3 and S4 has no X-matrix.
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