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Abstract 

This study introduces the concept of inverse exponentiation in formulating calibration weights in 

stratified double sampling and proposes a more improved calibration estimator based on Koyuncu 

and Kadilar (2014) calibration estimator. The variance of the proposed logarithmic calibration 

estimator has been derived under large sample approximation. Calibration asymptotic optimum 

estimator (𝐶𝐴𝑂𝐸) and its approximate variance estimator are derived for the proposed logarithmic 

calibration estimator. Results of empirical study showed that the proposed logarithmic calibration 

estimator (�̅�𝑛𝑒𝑤
∗ ) performs better than the Koyuncu and Kadilar (2014) calibration estimator (�̅�𝑘𝑘

∗ ) 

with appreciable gains in efficiency. Also, simulation study for the comparison of the proposed 

logarithmic estimator with a Global estimator [Generalized Regression (GREG) estimator (�̅�𝐺𝑅𝐸𝐺
∗ )] 

proved the robustness of the proposed logarithmic calibration estimator and by extension the 

efficacy of inverse exponentiation in calibration weightings.  Analysis and evaluation are 

presented. 

Keywords and Phrases: Calibration constraint, large sample approximation, logarithmic 

estimator, optimality conditions, percentage relative efficiency.    

AMS Classification: 62D05, 62G05, 62H12. 
 

1. Introduction 
 

The integration of supplementary information holds significant importance in constructing 
efficient estimators for population parameter estimation and enhancing efficiency in diverse 
sampling designs. Exploring the knowledge of the supplementary variables, several authors have 

developed different estimation techniques for estimating the finite population mean of the study 

variable; [Cochran (1977),Singh and Tailor (2003), Gupta and Shabbir (2008), Sharma and Tailor 

(2010), Diana et al. (2011), Singh and Audu (2013), Shittu and Adepoju (2014), Lone and Tailor 

(2015);  Clement and Enang (2015), Clement (2016, 2017), Clement et al (2021), Inyang and 

Clement (2023)] among others, have worked on the estimation of population parameters using 

supplementary information. 
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Calibration estimation extensively explores the use of supplementary information to adjust the 

original design weights to improve the precision of survey estimates of population or 

subpopulation parameters. The calibration weights are chosen to minimize a given distance 

measure (or loss function) and these weights satisfy the constraints related supplementary variable 

information. The concept of calibration estimation was introduced by Deville and Sarndal (1992) 

and a wealth of research, featuring scholars like Wu and Sitter (2001), Arnab and Singh (2005), 

Kim et al. (2007), Sarndal (2007), Kim and Park (2010), Rao et al. (2012), Clement et al. (2014), 

Koyuncu and Kadilar (2016), Clement and Enang (2017), Clement (2021, 2022), Clement and 

Inyang (2020, 2021), Enang and Clement (2020), has delved into calibration estimation. 
 

Tracy et al. (2003) introduced the concept of calibration estimation to stratified double sampling 

using multi-parametric calibration weightings. Multi-parametric calibration weightings is the 

formulation of calibration constraints with respect to a given distance measure to obtain expression 

of calibration weights using information from two or more parameters of the same supplementary 

variable. Work in this aspect include among others, Tracy et al. (2003), Koyuncu and Kadilar 

(2016), Clement (2018), Clement (2020) and Clement and Etukudoh (2023).    
 

In the progression to improve calibration estimation, this paper based on Koyuncu and Kadilar 

(2014) calibration estimator, introduces a new improved calibration estimator for population mean 

in stratified double sampling with equal probability using the concept of inverse exponentiation. 

The choice is obvious, because inverse exponentiation reduces both the non-response bias and the 

sampling error, thereby increasing the efficiency of the proposed calibration estimator. 

 

2. Sample Design and Procedure 
 

In double sampling for stratification the population is stratified into 𝐻 strata such that the ℎ-th 

stratum consists of 𝑁ℎ  units and ∑ 𝑁ℎ
𝐻
ℎ=1 = 𝑁 , ∑ 𝑛ℎ

𝐻
ℎ=1 = 𝑛 .  From the 𝑁ℎ  units a preliminary 

large sample of 𝑛ℎ
′  units is drawn by the simple random sampling without replacement (SRSWOR) 

and the supplementary character 𝑥ℎ𝑖 is measured only. A subsample of 𝑛ℎ is then selected from the 

given preliminary large sample of 𝑛ℎ
′  units by SRSWOR and both the study variable 𝑦ℎ𝑖  and the 

supplementary variable 𝑥ℎ𝑖  are measured.  
 

Let �̅�ℎ
′ =

1

𝑛ℎ
′ ∑ 𝑥ℎ𝑖

𝑛ℎ
′

𝑖=1 , 𝑆ℎ𝑥
′2 =

1

𝑛ℎ
′ −1

∑ (𝑥ℎ𝑖 − �̅�ℎ
′ )

𝑛ℎ
′

𝑖=1 , denote the first phase sample mean and variance 

respectively for the supplementary variable. 
 

Similarly, let �̅�ℎ =
1

𝑛ℎ
∑ 𝑥ℎ𝑖

𝑛ℎ
𝑖=1 , 𝑆ℎ𝑥

2 =
1

𝑛ℎ−1
∑ (𝑥ℎ𝑖 − �̅�ℎ)2,

𝑛ℎ
𝑖=1  �̅�ℎ =

1

𝑛ℎ
∑ 𝑦ℎ𝑖

𝑛ℎ
𝑖=1 , and 

𝑆ℎ𝑦
2 =

1

𝑛ℎ−1
∑ (𝑦ℎ𝑖 − �̅�ℎ)2𝑛ℎ

𝑖=1   denote the second phase sample means and variances for the 

supplementary variable and study variable respectively.  
 

Let the relative errors be defined as follows:  

𝑒ℎ𝑦 = (
�̅�ℎ−�̅�ℎ

�̅�ℎ
) so that  �̅�ℎ = �̅�ℎ(1 + 𝑒ℎ𝑦) 

𝑒ℎ𝑥 = (
�̅�ℎ−�̅�ℎ

�̅�ℎ
) so that �̅�ℎ = �̅�ℎ(1 + 𝑒ℎ𝑥1) 

𝑒ℎ𝑥
′ = (

�̅�ℎ
′ −�̅�ℎ

�̅�ℎ
) so that �̅�ℎ

′ = �̅�ℎ(1 + 𝑒ℎ𝑥1
′ ) 

𝑒ℎ𝑠 = (
𝑠ℎ𝑥

2 −𝑆ℎ𝑥
2

𝑆ℎ𝑥
2 ), so that 𝑠ℎ𝑥

2 = 𝑆ℎ𝑥
2 (1 + 𝑒ℎ𝑠) 
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𝑒ℎ𝑠
′ = (

𝑠ℎ𝑥
′2 −𝑆ℎ𝑥

2

𝑆ℎ𝑥
2 ), so that 𝑠ℎ𝑥

′2 = 𝑆ℎ𝑥
2 (1 + 𝑒ℎ𝑠

′ ) 
 

Let the expected values of the relative errors be defined as follows: 

𝐸(𝑒ℎ𝑦) = 𝐸(𝑒ℎ𝑥) = (𝑒ℎ𝑠) = 𝐸(𝑒ℎ𝑥
′ ) = 𝐸(𝑒ℎ𝑠

′ ) = 0 

𝐸(𝑒ℎ𝑦
2 ) = 𝛾ℎ𝐶ℎ𝑦

2 , 𝐸(𝑒ℎ𝑥
2 ) = 𝛾ℎ𝐶ℎ𝑥

2 , 𝐸(𝑒ℎ𝑠
2 ) = 𝛾ℎ𝐶ℎ𝑠

2 ,  

𝐸(𝑒ℎ𝑥
′2 ) = 𝛾ℎ

′ 𝐶ℎ𝑥
2 , 𝐸(𝑒ℎ𝑠

′2 ) = 𝛾ℎ
′ 𝐶ℎ𝑠

2 ,  

𝐸(𝑒ℎ𝑦𝑒ℎ𝑥) = 𝛾ℎ𝜌ℎ𝑦𝑥𝐶ℎ𝑦𝐶ℎ𝑥, 𝐸(𝑒ℎ𝑦𝑒ℎ𝑠) = 𝛾ℎ𝜌ℎ𝑦𝑠𝐶ℎ𝑦𝐶ℎ𝑠,  

𝐸(𝑒ℎ𝑦𝑒ℎ𝑥
′ ) = 𝛾ℎ

′ 𝜌ℎ𝑦𝑥𝐶ℎ𝑦𝐶ℎ𝑥, 𝐸(𝑒ℎ𝑦𝑒ℎ𝑠
′ ) = 𝛾ℎ

′ 𝜌ℎ𝑦𝑠𝐶ℎ𝑦𝐶ℎ𝑠, 

𝐸(𝑒ℎ𝑥
′ 𝑒ℎ𝑥) = 𝛾ℎ

′ 𝐶ℎ𝑥
2 , 𝐸(𝑒ℎ𝑠

′ 𝑒ℎ𝑠) = 𝛾ℎ
′ 𝐶ℎ𝑠

2  

𝐸(𝑒ℎ𝑥
′ 𝑒ℎ𝑥𝑠) = 𝛾ℎ

′ 𝜌ℎ𝑥𝑠𝐶ℎ𝑥𝐶ℎ𝑠 𝐸(𝑒ℎ𝑠
′ 𝑒ℎ𝑥) = 𝛾ℎ

′ 𝜌ℎ𝑥𝑠𝐶ℎ𝑥𝐶ℎ𝑠 ,     

𝐸(𝑒ℎ𝑥
′ 𝑒ℎ𝑠

′ ) = 𝛾ℎ
′ 𝜌ℎ𝑥𝑠𝐶ℎ𝑥𝐶ℎ𝑠 , , 

𝐸(𝑒ℎ𝑥𝑒ℎ𝑠) = 𝛾ℎ𝜌ℎ𝑥𝑠𝐶ℎ𝑥𝐶ℎ𝑠,  
 

where 𝛾ℎ
′ = (

1

𝑛ℎ
′ −

1

𝑁ℎ
), 𝛾ℎ = (

1

𝑛ℎ
−

1

𝑁ℎ
) and 𝛾ℎ

∗ = 𝛾ℎ − 𝛾ℎ
′ = (

1

𝑛ℎ
−

1

𝑛ℎ
′ ) 

 

and the parameters are defined wherever they appear as the following: 

�̅�ℎ is the second phase sample stratum mean of the study variable 

�̅�ℎ is the second phase population stratum mean of the study variable 

�̅�ℎ
′  is the first phase sample stratum mean of the supplementary variable 

�̅�ℎ is the second phase sample stratum mean of the supplementary variable 

�̅�ℎ is the second phase population stratum mean of the supplementary variable 

𝑠ℎ𝑥
′2  is the first phase sample stratum variance of the supplementary variable 

𝑠ℎ𝑥
2  is the second phase sample stratum variance of the supplementary variable 

𝑆ℎ𝑥
2  is the second phase population stratum variance of the supplementary variable 

𝐶ℎ𝑥
2  is the coefficient of variation of the supplementary variable 

𝐶ℎ𝑦
2  is the coefficient of variation of the supplementary variable 

𝜌ℎ𝑥𝑦  is the correlation coefficient between the supplementary variable and the study variable. 

 𝜌ℎ𝑥𝑠    is the correlation coefficient between the mean and variance of the supplementary 

 variable. 

𝜌ℎ𝑦𝑠 is the correlation coefficient between the mean of the study variable and variance of the 

 supplementary variable. 
  

3. The Koyuncu and Kadilar (2014) calibration estimator 
 

Motivated by Tracy et al. (2003), Koyuncu and Kadilar (2014) proposed the following calibration 

estimator in stratified double sampling: 
 

 �̅�𝑘𝑘
∗ = ∑ ψ

ℎ
�̅�ℎ

𝐻
ℎ=1                                                                                                                                         (1) 

 

using the chi-square loss functions of the form: 

𝐿(, ψ
ℎ

, 𝑤ℎ) = ∑
(ψℎ−𝑤ℎ)

2

𝑤ℎ𝑞ℎ

𝐻
ℎ=1                                                                                                                      (2) 

 

and subject to the calibration constraints defined by: 
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∑ ψ
ℎ

�̅�ℎ
𝐻
ℎ=1 = ∑ 𝑤ℎ

𝐻
ℎ=1 �̅�ℎ

′                                                                                                                            (3) 

∑ ψ
ℎ

𝐻
ℎ=1 𝑠ℎ𝑥

2 = ∑ 𝑤ℎ
𝐻
ℎ=1 𝑠ℎ𝑥

′2                                                                                                                        (4) 

∑ ψ
ℎ

𝐻
ℎ=1 = ∑ 𝑤ℎ

𝐻
ℎ=1                                                                                                                                     (5) 

 

obtained the calibration weights 

ψ
ℎ

=   𝑤ℎ + 𝑤ℎ𝑞ℎ(𝜆11�̅�ℎ + 𝜆22𝑠ℎ𝑥
2 + 𝜆33)                                                                                                (6) 

 

Substituting (6) in [(3), (4), (5)] respectively and solving the resulting system of equations gives 

the values of the 𝜆𝑖𝑖𝑠. 
 

On substituting the  𝜆𝑖𝑖𝑠 in (6) and the resulting equation in (1); Koyuncu and Kadilar (2014) 

obtained their calibration regression estimator as: 

�̅�𝑘𝑘
∗ = �̅�𝑠𝑡 + Βℎ,11 ∑ 𝑤ℎ(�̅�ℎ

′ − �̅�ℎ)

𝐻

ℎ=1

+ Βℎ,22 ∑ 𝑤ℎ(𝑠ℎ𝑥
′2 − 𝑠ℎ𝑥

2 )

𝐻

ℎ=1

                                                          (7) 

 

where �̅�𝑠𝑡 = ∑ 𝑤ℎ�̅�ℎ
𝐻
ℎ=1  is the Horvitz-Thompson-type estimator; Βℎ,11 and Βℎ,22  are coefficients 

of regression and are given by 

Βℎ,11 =
𝑣22𝑣13 − 𝑣12𝑣23

𝑣11𝑣22 − 𝑣12
2  ,          Βℎ,22 =

𝑣11𝑣23 − 𝑣12𝑣13

𝑣22 − 𝑣12
2  

where 

𝑣11 = ∑ 𝑤ℎ�̅�ℎ
2𝐻

ℎ=1 , 𝑣12 = ∑ 𝑤ℎ�̅�ℎ
𝐻
ℎ=1 𝑠ℎ𝑥

2 , 𝑣13 = ∑ 𝑤ℎ�̅�ℎ�̅�ℎ
𝐻
ℎ=1 , 𝑣22 = ∑ 𝑤ℎ

𝐻
ℎ=1 𝑠ℎ𝑥

4             
 𝑣23 = ∑ 𝑤ℎ𝑠ℎ𝑥

2 �̅�ℎ
𝐻
ℎ=1 , [See Koyuncu and Kadilar (2014) for detail]  

 

3.1 Theoretical Variance Estimation  
 

This section derives the estimator of variance for the Koyuncu and Kadilar (2014) calibration 

estimator. Thus, expressing (7) in the relative error terms gives 

[�̅�𝑘𝑘
∗ − �̅�] = ∑ 𝑤ℎ[�̅�ℎ𝑒ℎ𝑦 + Βℎ,11�̅�ℎ𝑒ℎ𝑥

′

𝐻

ℎ=1

+ Βℎ,22𝑆ℎ𝑥
2 𝑒ℎ𝑠

′    

−Βℎ,11�̅�ℎ𝑒ℎ𝑥 − Βℎ,22𝑆ℎ𝑥
2 𝑒ℎ𝑠]                                                                                                                   (8) 

 

Squaring both sides of (8) gives 

[�̅�𝑘𝑘
∗ − �̅�]2 = ∑ 𝑤ℎ

2

𝐻

ℎ=1

[�̅�ℎ
2𝑒ℎ𝑦

2 + Βℎ,11
2 �̅�ℎ

2(𝑒ℎ𝑥
′2 + 𝑒ℎ𝑥

2 ) 

+Βℎ,22
2 𝑆ℎ𝑥

4 (𝑒ℎ𝑠
′2 + 𝑒ℎ𝑠

2 ) + 2�̅�ℎΒℎ,11�̅�ℎ𝑒ℎ𝑦𝑒ℎ𝑥
′ + 2�̅�ℎΒℎ,22𝑆ℎ𝑥

2 𝑒ℎ𝑦𝑒ℎ𝑠
′  

+2Βℎ,11Βℎ,22�̅�ℎ𝑆ℎ𝑥
2 (𝑒ℎ𝑥𝑒ℎ𝑠 + 𝑒ℎ𝑥

′ 𝑒ℎ𝑠
′ ) − 2Βℎ,11

2 �̅�ℎ
2𝑒ℎ𝑥

′ 𝑒ℎ𝑥 

−2Βℎ,22
2 𝑆ℎ𝑥

4 𝑒ℎ𝑠
′ 𝑒ℎ𝑠 − 2�̅�ℎΒℎ,11�̅�ℎ𝑒ℎ𝑦𝑒ℎ𝑥 − 2�̅�ℎΒℎ,22𝑆ℎ𝑥

2 𝑒ℎ𝑦𝑒ℎ𝑠 

−2Βℎ,11Βℎ,22�̅�ℎ𝑆ℎ𝑥
2 (𝑒ℎ𝑥𝑒ℎ𝑠

′ + 𝑒ℎ𝑥
′ 𝑒ℎ𝑠)]                                                                                                (9) 

 

Taking expectation of both sides of (9) gives 

�̂�[�̅�𝑘𝑘
∗ ] = ∑ 𝑤ℎ

2

𝐻

ℎ=1

�̅�ℎ
2𝛾ℎ𝐶ℎ𝑦

2 + (𝛾ℎ − 𝛾ℎ
′ ) ∑ 𝑤ℎ

2

𝐻

ℎ=1

[Βℎ,11
2 �̅�ℎ

2𝐶ℎ𝑥
2 − 2�̅�ℎΒℎ,11�̅�ℎ𝜌ℎ𝑦𝑥𝐶ℎ𝑦𝐶ℎ𝑥 

+Βℎ,22
2 𝑆2ℎ

4 𝐶ℎ𝑠
2 + 2Βℎ,22�̅�ℎ𝑆ℎ𝑥

2 𝜌ℎ𝑠𝑦𝐶ℎ𝑠𝐶ℎ𝑦 − 2𝐵ℎ,11Βℎ,22�̅�ℎ𝑆ℎ𝑥
2 𝜌ℎ𝑥𝑠𝐶ℎ𝑥𝐶ℎ𝑠]                               (10) 
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3.2 Optimality conditions 
 

This section deduces the optimality conditions that would guarantee optimum performance of the 

Koyuncu and Kadilar (2014) calibration estimator. 
 

Setting  
𝜕𝑉[�̅�𝑘𝑘

∗ ]

𝜕Βℎ,11
= 0 and  

𝜕𝑉[�̅�𝑘𝑘
∗ ]

𝜕Βℎ,22
= 0 respectively gives: 

Βℎ,11 =
�̅�ℎ𝜌ℎ𝑦𝑥𝐶ℎ𝑦𝐶ℎ𝑥 − Βℎ,22𝑆ℎ𝑥

2 𝜌ℎ𝑥𝑠𝐶ℎ𝑥𝐶ℎ𝑠

�̅�ℎ𝐶ℎ𝑥
2                                                                                   (11) 

Βℎ,22 =  
�̅�ℎ𝜌ℎ𝑦𝑠𝐶ℎ𝑦𝐶ℎ𝑠 − Βℎ,11�̅�ℎ𝜌ℎ𝑥𝑠𝐶ℎ𝑥𝐶ℎ𝑠

𝑆ℎ𝑥
2 𝐶ℎ𝑠

2                                                                                   (12) 

Substituting (11) in (12) or vice verse, gives the optimum values of Βℎ,11(𝑜𝑝𝑡) 

and Βℎ,22(𝑜𝑝𝑡) respectively as: 

Βℎ,11(𝑜𝑝𝑡)    =    
�̅�ℎ𝐶ℎ𝑦(𝜌ℎ𝑦𝑥 − 𝜌ℎ𝑦𝑠𝜌ℎ𝑥𝑠)

�̅�ℎ𝐶ℎ𝑥(1 − 𝜌ℎ𝑥𝑠
2 )

                                                                                       (13) 

Βℎ,22(𝑜𝑝𝑡)    =  
�̅�ℎ𝐶ℎ𝑦(𝜌ℎ𝑦𝑠 − 𝜌ℎ𝑦𝑥𝜌ℎ𝑥𝑠)

𝑆ℎ𝑥
2 𝐶ℎ𝑠(1 − 𝜌ℎ𝑥𝑠

2 )
                                                                                        (14) 

Substituting the value of  Βℎ,11(𝑜𝑝𝑡) in (13) and Βℎ,22(𝑜𝑝𝑡) in (14) for Βℎ.11  and Βℎ,22 in (7), 

gives the Koyuncu and Kadilar (2014) calibration asymptotically optimum estimator (CAOE) for 

population mean in stratified double sampling as: 
 

�̅�𝑘𝑘,𝑂𝑝𝑡
∗ = ∑ 𝑤ℎ�̅�ℎ

𝐻

ℎ=1

+
�̅�ℎ𝐶ℎ𝑦(𝜌ℎ𝑦𝑥 − 𝜌ℎ𝑦𝑠𝜌ℎ𝑥𝑠)

�̅�ℎ𝐶ℎ𝑥(1 − 𝜌ℎ𝑥𝑠
2 )

∑ 𝑤ℎ(�̅�ℎ
′ − �̅�ℎ)

𝐻

ℎ=1

 

+
�̅�ℎ𝐶ℎ𝑦(𝜌ℎ𝑦𝑠 − 𝜌ℎ𝑦𝑥𝜌ℎ𝑥𝑠)

𝑆ℎ𝑥
2 𝐶ℎ𝑠(1 − 𝜌ℎ𝑥𝑠

2 )
∑ 𝑤ℎ(𝑠ℎ𝑥

′2 − 𝑠ℎ𝑥
2 )

𝐻

ℎ=1

                                                                                 (15) 

Similarly, substituting the value of  Βℎ,11(𝑜𝑝𝑡)  in (13) and Βℎ,22(𝑜𝑝𝑡)  in (14) for Βℎ,11  and 

Βℎ,22 in (10), gives the variance of Koyuncu and Kadilar (2014) calibration asymptotically 

optimum estimator (𝐶𝐴𝑂𝐸)  �̅�𝑘𝑘,𝑜𝑝𝑡
∗  [or minimum variance of �̅�𝑘𝑘

∗ ] as:   
 

�̂�𝑜𝑝𝑡[�̅�𝑘𝑘
∗ ] = ∑ 𝑤ℎ

2𝛾ℎ�̅�ℎ
2𝐶ℎ𝑦

2𝐻
ℎ=1 + ∑ 𝑤ℎ

2�̅�ℎ
2𝐶ℎ𝑦

2𝐻
ℎ=1 (1 − 𝜌ℎ𝑥𝑠

2 )−2𝛾ℎ
∗ ×  

[(𝜌ℎ𝑦𝑥 − 𝜌ℎ𝑦𝑠𝜌ℎ𝑥𝑠)
2

+ (𝜌ℎ𝑠𝑦 − 𝜌ℎ𝑥𝑠𝜌ℎ𝑥𝑦)
2

− 2(1 − 𝜌𝑥𝑠
2 ) × 

[𝜌ℎ𝑥𝑦(𝜌ℎ𝑥𝑦 − 𝜌ℎ𝑥𝑠𝜌ℎ𝑠𝑦) + 𝜌ℎ𝑠𝑦(𝜌ℎ𝑠𝑦 − 𝜌ℎ𝑥𝑠𝜌ℎ𝑥𝑦)] + 

2𝜌ℎ𝑥𝑠(𝜌ℎ𝑥𝑦 − 𝜌ℎ𝑥𝑠𝜌ℎ𝑠𝑦)(𝜌ℎ𝑠𝑦 − 𝜌ℎ𝑥𝑠𝜌ℎ𝑥𝑦)]                                                                                     (16) 

 

4. The Suggested estimator 
 

The objective of this study is to introduce the concept of inverse exponentiation in formulating 

calibration constraints. Therefore, motivated by Koyuncu and Kadillar (2014), a new calibration 

estimator of population mean in stratified double sampling is suggested as: 
 

 �̅�𝑛𝑒𝑤
∗ = ∑ 𝜑ℎ𝑙𝑜𝑔�̅�ℎ

𝐻
ℎ=1                                                                                                                      (17)  

where  𝜑ℎ are calibration weights, using the chi-square loss functions  

𝐿(𝜑ℎ , 𝑤ℎ) = ∑
(𝜑ℎ−𝑤ℎ)2

𝑤ℎ𝑞ℎ

𝐻
ℎ=1                                                                                                                  (18)  

and subject to the following calibration constraints  
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∑ 𝜑ℎ𝑙𝑜𝑔�̅�ℎ
𝐻
ℎ=1 = ∑ 𝑤ℎ

𝐻
ℎ=1 𝑙𝑜𝑔�̅�ℎ

′                                                                                                          (19)  

∑ 𝜑ℎ
𝐻
ℎ=1 𝑙𝑜𝑔𝑠ℎ𝑥

2 = ∑ 𝑤ℎ
𝐻
ℎ=1 𝑙𝑜𝑔𝑠ℎ𝑥

′2                                                                                                      (20)  

∑ 𝜑ℎ
𝐻
ℎ=1 = ∑ 𝑤ℎ

𝐻
ℎ=1                                                                                                                                (21)  

 

The Lagrange function is given by  
 

Δ = ∑
(𝜑ℎ−𝑤ℎ)2

𝑤ℎ𝑞ℎ

𝐻
ℎ=1 − 2𝜆11

∗  (  ∑ 𝜑ℎ𝑙𝑜𝑔�̅�ℎ𝑥
𝐻
ℎ=1 − ∑ 𝑤ℎ𝑙𝑜𝑔𝐻

ℎ=1 �̅�ℎ𝑥
′ )  

−2𝜆22
∗  (∑ 𝜑ℎ𝑙𝑜𝑔𝐻

ℎ=1 𝑠ℎ𝑥
2 − ∑ 𝑤ℎ

𝐻
ℎ=1 𝑙𝑜𝑔𝑠ℎ𝑥

′2  ) − 2𝜆33
∗  (∑ 𝜑ℎ

𝐻
ℎ=1 − ∑ 𝑤ℎ

𝐻
ℎ=1 )                             (22)  

 

Minimizing the chi-square loss functions (18) subject to the calibration constraints [(19), (20), 

(21)] gives the calibration weights for stratified double sampling as follows:  
   

𝜑ℎ =   𝑤ℎ + 𝑤ℎ𝑞ℎ(𝜆11
∗ �̅�ℎ𝑥 +   𝜆22

∗  𝑠ℎ𝑥
2 + 𝜆33

∗  )                                                                                      (23) 
 

Substituting (23) into [(19), (20), (21)] respectively gives the following system of equations: 

[

𝜔16 𝜔15 𝜔14

𝜔15 𝜔12 𝜔13

𝜔14 𝜔13 𝜔11

] [

𝜆11
∗

𝜆22
∗

𝜆33
∗

] = [

Μ11

Μ22

Μ33

]                                                                                                            (24) 

 

Solving the system of equations in (24) for 𝜆𝑖𝑖
∗ 𝑠  gives 

𝜆11
∗ =

Μ11(𝜔11𝜔12 − 𝜔13
2 ) + Μ22(𝜔14𝜔15 − 𝜔11𝜔16)

(𝜔11𝜔12𝜔16 − 𝜔12𝜔14
2 − 𝜔11𝜔15

2 − 𝜔13
2 𝜔16 + 2𝜔13𝜔14𝜔15)

 

𝜆22
∗ =

Μ22(𝜔11𝜔16 − 𝜔14
2 ) − Μ11(𝜔11𝜔15 − 𝜔13𝜔14)

(𝜔11𝜔12𝜔16 − 𝜔12𝜔14
2 − 𝜔11𝜔15

2 − 𝜔13
2 𝜔16 + 2𝜔13𝜔14𝜔15)

 

𝜆33
∗ =

Μ11(𝜔13𝜔15 − 𝜔12𝜔14) + Μ22(𝜔14𝜔15 − 𝜔13𝜔16)

(𝜔11𝜔12𝜔16 − 𝜔12𝜔14
2 − 𝜔11𝜔15

2 − 𝜔13
2 𝜔16 + 2𝜔13𝜔14𝜔15)

 

 

Where 𝜔11 = ∑ 𝑤ℎ𝑞ℎ
𝐻
ℎ=1    𝜔12 = ∑ 𝑤ℎ𝑞ℎ

𝐻
ℎ=1 (𝑙𝑜𝑔𝑠ℎ𝑥

2 )2     𝜔13 = ∑ 𝑤ℎ𝑞ℎ𝑙𝑜𝑔𝑠ℎ𝑥
2𝐻

ℎ=1   𝜔14 =
∑ 𝑤ℎ𝑞ℎ𝑙𝑜𝑔�̅�ℎ

𝐻
ℎ=1 ,    𝜔15 = ∑ 𝑤ℎ𝑞ℎ(𝑙𝑜𝑔�̅�ℎ)(𝑙𝑜𝑔𝑠ℎ

2)𝐻
ℎ=1  

𝜔16 = ∑ 𝑤ℎ𝑞ℎ
𝐻
ℎ=1 (𝑙𝑜𝑔�̅�ℎ)2  𝜔16 = ∑ 𝑤ℎ𝑞ℎ

𝐻
ℎ=1 (𝑙𝑜𝑔�̅�ℎ)2  

Μ11 = ∑ 𝑤ℎ(𝑙𝑜𝑔�̅�ℎ
′ − 𝑙𝑜𝑔�̅�ℎ)𝐻

ℎ=1   Μ22 = ∑ 𝑤ℎ(𝑙𝑜𝑔𝑠ℎ𝑥
′2 − 𝑙𝑜𝑔𝑠ℎ𝑥

2 )𝐻
ℎ=1 ,   Μ33 = 0 

 

Substituting the 𝜆𝑖𝑖
∗ 𝑠  in (23) and the resulting equation in (17) while setting 𝑞ℎ = 1, gives the 

proposed logarithmic calibration regression estimator for population mean in stratified double 

sampling as follows: 
 

�̅�𝑛𝑒𝑤
∗ = ∑ 𝑤ℎ(𝑙𝑜𝑔�̅�ℎ) 𝐻

ℎ=1 + 𝐵ℎ,11
∗ ∑ 𝑤ℎ(𝑙𝑜𝑔�̅�ℎ

′ − 𝑙𝑜𝑔�̅�ℎ)𝐻
ℎ=1 +  

 𝐵ℎ,22
∗ ∑ 𝑤ℎ(𝑙𝑜𝑔𝑠ℎ𝑥

′2 − 𝑙𝑜𝑔𝑠ℎ𝑥
2 )𝐻

ℎ=1                                                                                                        (25)  
 

where 𝐵ℎ,11
∗  and 𝐵ℎ,22

∗  are the coefficients of regression and are given by: 

𝐵ℎ,11
∗ =

Α44(𝛼11𝛼12 − 𝛼13
2 ) − Α55(𝛼11𝛼15 − 𝛼13𝛼14) + Α66(𝛼13𝛼15 − 𝛼12𝛼14)

(𝛼11𝛼12𝛼16 − 𝛼12𝛼14
2 − 𝛼11𝛼15

2 − 𝛼13
2 𝛼16 + 2𝛼13𝛼14𝛼15)

 

𝐵ℎ,22
∗ =

Α44(𝛼13𝛼14 − 𝛼11𝛼15) − Α55(𝛼11𝛼16 − 𝛼14
2 ) + Α66(𝛼14𝛼15 − 𝛼13𝜔16)

(𝛼11𝛼12𝛼16 − 𝛼12𝛼14
2 − 𝛼11𝛼15

2 − 𝛼13
2 𝛼16 + 2𝛼13𝛼14𝛼15)

 

Where α11 = ∑ 𝑤ℎ
𝐻
ℎ=1    𝛼12 = ∑ 𝑤ℎ

𝐻
ℎ=1 (𝑙𝑜𝑔𝑠ℎ𝑥

2 )2 𝛼13 = ∑ 𝑤ℎ𝑙𝑜𝑔𝑠ℎ𝑥
2𝐻

ℎ=1   

 𝛼14 = ∑ 𝑤ℎ𝑙𝑜𝑔�̅�ℎ
𝐻
ℎ=1 ,     𝛼15 = ∑ 𝑤ℎ(𝑙𝑜𝑔�̅�ℎ)(𝑙𝑜𝑔𝑠ℎ

2)𝐻
ℎ=1  𝛼16 = ∑ 𝑤ℎ

𝐻
ℎ=1 (𝑙𝑜𝑔�̅�ℎ)2  

Α44 = ∑ 𝑤ℎ(𝑙𝑜𝑔�̅�ℎ)(𝑙𝑜𝑔�̅�ℎ).𝐻
ℎ=1 Α55 = ∑ 𝑤ℎ(𝑙𝑜𝑔𝑠ℎ

2)(𝑙𝑜𝑔�̅�ℎ)𝐻
ℎ=1 , Α66 = ∑ 𝑤ℎ𝑙𝑜𝑔�̅�ℎ

𝐻
ℎ=1  
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4.1 Theoretical Variance Estimation  
 

This section derives the estimator of variance for the proposed logarithmic calibration estimator 

using the large sample approximation (LASAP) method.  
 

�̅�𝑛𝑒𝑤
∗ = ∑ 𝑤ℎ𝑙𝑜𝑔�̅�ℎ

𝐻
ℎ=1 + 𝐵ℎ,11

∗ ∑ 𝑤ℎ(𝑙𝑜𝑔�̅�ℎ
′ − 𝑙𝑜𝑔�̅�ℎ)𝐻

ℎ=1 + 𝐵ℎ,22
∗ ∑ 𝑤ℎ(𝑙𝑜𝑔𝑠ℎ𝑥

′2 − 𝑙𝑜𝑔𝑠ℎ𝑥
2 )𝐻

ℎ=1   

�̅�𝑛𝑒𝑤
∗ = ∑ 𝑤ℎ𝑙𝑜𝑔�̅�ℎ

𝐻
ℎ=1 + 𝐵ℎ,11

∗ ∑ 𝑤ℎ (𝑙𝑜𝑔
�̅�ℎ
′

�̅�ℎ
)𝐻

ℎ=1 +  𝐵ℎ,22
∗ ∑ 𝑤ℎ (𝑙𝑜𝑔

𝑠ℎ𝑥
′2

𝑠ℎ𝑥
2 )𝐻

ℎ=1   

�̅�𝑛𝑒𝑤
∗ = ∑ 𝑤ℎ𝑙𝑜𝑔�̅�ℎ

𝐻
ℎ=1 (1 + 𝑒ℎ𝑦) + 𝐵ℎ,11

∗ ∑ 𝑤ℎ𝑙𝑜𝑔 (
1+𝑒ℎ𝑥

′

1+𝑒ℎ𝑥
)𝐻

ℎ=1   

+ 𝐵ℎ,22
∗ ∑ 𝑤ℎ (

1+𝑒ℎ𝑠
′

1+𝑒ℎ𝑠
)𝐻

ℎ=1   

�̅�𝑛𝑒𝑤
∗ = ∑ 𝑤ℎ𝑙𝑜𝑔�̅�ℎ

𝐻
ℎ=1 + ∑ 𝑤ℎ𝑙𝑜𝑔𝐻

ℎ=1 (1 + 𝑒ℎ𝑦) + 𝐵ℎ,11
∗ ∑ 𝑤ℎ𝑙𝑜𝑔(1 + 𝑒ℎ𝑥

′ )(1 + 𝑒ℎ𝑥)−1 𝐻
ℎ=1  

    +𝐵ℎ,22
∗ ∑ 𝑤ℎ𝑙𝑜𝑔(1 + 𝑒ℎ𝑠

′ )𝐻
ℎ=1 (1 + 𝑒ℎ𝑠)′ 

�̅�𝑛𝑒𝑤
∗ = ∑ 𝑤ℎ𝑙𝑜𝑔�̅�ℎ

𝐻
ℎ=1 + ∑ 𝑤ℎ𝑙𝑜𝑔𝐻

ℎ=1 (1 + 𝑒ℎ𝑦) + 𝐵ℎ,11
∗ ∑ 𝑤ℎ𝑙𝑜𝑔(1 + 𝑒ℎ𝑥

′ ) 𝐻
ℎ=1   

−𝐵ℎ,11
∗ ∑ 𝑤ℎ𝑙𝑜𝑔(1 + 𝑒ℎ𝑥) 𝐻

ℎ=1 + 𝐵ℎ,22
∗ ∑ 𝑤ℎ𝑙𝑜𝑔(1 + 𝑒ℎ𝑠

′ ) 𝐻
ℎ=1 − 𝐵ℎ,22

∗ ∑ 𝑤ℎ𝑙𝑜𝑔(1 + 𝑒ℎ𝑠) 𝐻
ℎ=1   

(�̅�𝑛𝑒𝑤
∗ − �̅�) = [∑ 𝑤ℎ

𝐻
ℎ=1 (𝑒ℎ𝑦 −

𝑒ℎ𝑦
2

2!
+

𝑒ℎ𝑦
3

3!
− ⋯ ) + 𝐵ℎ,11

∗ ∑ 𝑤ℎ (𝑒ℎ𝑥
′ −

𝑒ℎ𝑦
′2

2!
+

𝑒ℎ𝑦
′3

3!
− ⋯ )𝐻

ℎ=1   

−𝐵ℎ,11
∗ ∑ 𝑤ℎ

𝐻
ℎ=1 (𝑒ℎ𝑥 −

𝑒ℎ𝑥
2

2!
+

𝑒ℎ𝑥
3

3!
− ⋯ ) + 𝐵ℎ,22

∗ ∑ 𝑤ℎ (𝑒ℎ𝑠
′ −

𝑒ℎ𝑠
′2

2!
+

𝑒ℎ𝑠
′3

3!
− ⋯ ) 𝐻

ℎ=1    

−𝐵ℎ,22
∗ ∑ 𝑤ℎ (𝑒ℎ𝑥

′ −
𝑒ℎ𝑠

2

2!
+

𝑒ℎ𝑠
3

3!
− ⋯ ) 𝐻

ℎ=1 ]                                                                                           (26)  
 

Squaring both sides of (26) and retaining terms to the first degree of approximation gives: 

[�̅�𝑛𝑒𝑤
∗ − �̅�]2 = ∑ 𝑤ℎ

2𝐻
ℎ=1 [𝑒ℎ𝑦

2 + Βℎ,11
∗2 (𝑒ℎ𝑥

′ − 𝑒ℎ𝑥)
2

+ Βℎ,22
∗2 (𝑒ℎ𝑠

′ − 𝑒ℎ𝑠)
2
  

     +2𝐵ℎ,11
∗ 𝑒ℎ𝑦(𝑒ℎ𝑥

′ − 𝑒ℎ𝑥) + 2𝐵ℎ,22
∗ 𝑒ℎ𝑦(𝑒ℎ𝑠

′ − 𝑒ℎ𝑠) 

+2Βℎ,11Βℎ,22𝐵ℎ,11
∗ 𝐵ℎ,11

∗ (𝑒ℎ𝑥
′ − 𝑒ℎ𝑥)(𝑒ℎ𝑠

′ − 𝑒ℎ𝑠)]                                                                    (27) 

Taking expectation of both sides of (27) gives 

�̂�[�̅�𝑛𝑒𝑤
∗ ] = ∑ 𝑤ℎ

2𝐻
ℎ=1 [𝛾ℎ𝐶ℎ𝑦

2 + (𝛾ℎ − 𝛾ℎ
′ )[Βℎ,11

∗2 𝐶ℎ𝑥
2 + Βℎ,22)

∗2 𝐶ℎ𝑠
2   

−2𝐵ℎ,11
∗ 𝜌ℎ𝑦𝑥𝐶ℎ𝑦𝐶ℎ𝑥 − 2𝐵ℎ,22

∗ 𝜌ℎ𝑦𝑠𝐶ℎ𝑦𝐶ℎ𝑠 + 2𝐵ℎ,11
∗ 𝐵ℎ,22

∗ 𝜌ℎ𝑥𝑠𝐶ℎ𝑥𝐶ℎ𝑠]]                                           (28) 

 

4.2 Optimality conditions 
 

This section deduced the optimality conditions that would guarantee optimum performance of the 

proposed logarithmic calibration estimator on satisfaction.  

Setting 
𝜕𝑉[�̅�𝑛𝑒𝑤

∗ ]

𝜕Βℎ,11
= 0    and  

𝜕𝑉[�̅�𝑛𝑒𝑤
∗ ]

𝜕𝐵ℎ,22
∗ = 0 in (28) respectively gives: 

𝐵ℎ,11
∗ =

𝜌ℎ𝑦𝑥𝐶ℎ𝑦 − 𝐵ℎ,22
∗ 𝜌ℎ𝑥𝑠𝐶ℎ𝑠

𝐶ℎ𝑥

                                                                                                             (29) 

𝐵ℎ,22
∗ =

𝜌ℎ𝑦𝑥𝐶ℎ𝑦 − 𝐵ℎ,11
∗ 𝜌ℎ𝑥𝑠𝐶ℎ𝑥

𝐶ℎ𝑠

                                                                                                            (30) 

Substituting (29) in (30) or vice verse, gives the optimum values of 𝐵ℎ,11
∗ (𝑜𝑝𝑡) 

and 𝐵ℎ,22
∗ (𝑜𝑝𝑡) respectively as: 
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𝐵ℎ,11
∗ (𝑜𝑝𝑡) =

𝐶ℎ𝑦(𝜌𝑥𝑦 − 𝜌𝑥𝑠𝜌𝑠𝑦)

𝐶ℎ𝑥(1 − 𝜌ℎ𝑥𝑠
2 )

                                                                                                            (31) 

𝐵ℎ,22
∗ (𝑜𝑝𝑡) =

𝐶ℎ𝑦(𝜌𝑠𝑦 − 𝜌𝑥𝑠𝜌𝑥𝑦)

𝐶ℎ𝑠(1 − 𝜌ℎ𝑥𝑠
2 )

                                                                                                            (32) 

Substituting the value of 𝐵ℎ,11
∗ (𝑜𝑝𝑡) in (31) and 𝐵ℎ,22

∗ (𝑜𝑝𝑡)  in (32) for 𝐵ℎ,11
∗  and 𝐵ℎ,22

∗  in (25), 

gives the proposed logarithmic calibration asymptotically optimum estimator (CAOE) for 

population mean in stratified double sampling as: 

�̅�𝑛𝑒𝑤,𝑜𝑝𝑡
∗ = ∑ 𝑤ℎ𝑙𝑜𝑔�̅�ℎ

𝐻
ℎ=1 +

𝐶ℎ𝑦(𝜌𝑥𝑦−𝜌𝑥𝑠𝜌𝑠𝑦)

𝐶ℎ𝑥(1−𝜌ℎ𝑥𝑠
2 )

∑ 𝑤ℎ(𝑙𝑜𝑔�̅�ℎ
′ − 𝑙𝑜𝑔�̅�ℎ)𝐻

ℎ=1   

+ 
𝐶ℎ𝑦(𝜌𝑠𝑦−𝜌𝑥𝑠𝜌𝑥𝑦)

𝐶ℎ𝑠(1−𝜌ℎ𝑥𝑠
2 )

∑ 𝑤ℎ(𝑙𝑜𝑔𝑠ℎ𝑥
′2 − 𝑙𝑜𝑔𝑠ℎ𝑥

2 )𝐻
ℎ=1                                                                                  (33)  

Similarly, substituting the value of  𝐵ℎ,11
∗ (𝑜𝑝𝑡) in (31) and 𝐵ℎ,22

∗ (𝑜𝑝𝑡)  in (32) for 𝐵ℎ,22
∗  and 𝐵ℎ,11

∗  

in (28), gives the variance of the proposed logarithmic calibration asymptotically optimum 

estimator (𝐶𝐴𝑂𝐸)  �̅�𝑛𝑒𝑤,𝑜𝑝𝑡
∗  [or minimum variance of �̅�𝑛𝑒𝑤

∗ ] as: 

�̂�𝑜𝑝𝑡[�̅�𝑛𝑒𝑤
∗ ] = ∑ 𝑤ℎ

2𝐶ℎ𝑦
2 (1 − 𝜌𝑥𝑠

2 )−2𝐻
ℎ=1 {𝛾ℎ(1 − 𝜌𝑥𝑠

2 )2 + γ
ℎ
∗ [(𝜌ℎ𝑥𝑦 − 𝜌ℎ𝑥𝑠𝜌ℎ𝑠𝑦)

2
  

+(𝜌ℎ𝑠𝑦 − 𝜌ℎ𝑥𝑠𝜌ℎ𝑥𝑦)
2

− (1 − 𝜌𝑥𝑠
2 )[2𝜌ℎ𝑥𝑦(𝜌ℎ𝑥𝑦 − 𝜌ℎ𝑥𝑠𝜌ℎ𝑠𝑦) 

+2𝜌ℎ𝑠𝑦(𝜌ℎ𝑠𝑦 − 𝜌ℎ𝑥𝑠𝜌ℎ𝑥𝑦)]+2𝜌ℎ𝑥𝑠(𝜌ℎ𝑥𝑦 − 𝜌ℎ𝑥𝑠𝜌ℎ𝑠𝑦)(𝜌ℎ𝑠𝑦 − 𝜌ℎ𝑥𝑠𝜌ℎ𝑥𝑦)}                                   (34) 

 

5. Empirical study 
 

The relative performances of the proposed logarithmic calibration estimator over members of its 

class in stratified double sampling was determined using the data set in Table 1 adapted from 

Clement (2018). Two measuring criteria; variance and percent relative efficiency (𝑃𝑅𝐸) were used 

to compare the performance of each estimator. 
 

The percent relative efficiency (𝑃𝑅𝐸)  of an estimator 𝜙  with respect to the conventional 

regression estimator in stratified double sampling �̅�𝑙𝑟
∗  is defined by: 

𝑃𝑅𝐸[𝜙, �̅�𝑙𝑟
∗ ] =

𝑉(�̅�𝑙𝑟
∗ )

𝑉(𝜙)
× 100 

The variance of the conventional regression estimator of population mean for double sampling for 

stratification defined by Cochran (1977) is given by: 

𝑉(�̅�𝑙𝑟
∗ ) = ∑ {

𝑆ℎ𝑦
2 (1 − 𝜌ℎ𝑥𝑦

2 )

𝑛ℎ

+
𝜌ℎ𝑥𝑦

2 𝑆ℎ𝑦
2

𝑛ℎ
′

−
𝑆ℎ𝑦

2

𝑁ℎ

} = 4137.2834

𝐻

ℎ=1

 

𝑉𝑂𝑝𝑡(�̅�𝑘𝑘
∗ ) = 3530.17655 

𝑉𝑂𝑝𝑡(�̅�𝑛𝑒𝑤
∗ ) = 2642.2146 

The percent relative efficiency of the conventional regression estimator in stratified double 

sampling  �̅�𝑙𝑟
∗ , Koyuncu and Kadilar (2014) calibration regression estimator in stratified double 

sampling (�̅�𝑘𝑘
∗ ) and the proposed logarithmic calibration regression estimator in stratified double 

sampling (�̅�𝑛𝑒𝑤
∗ ) with respect to (�̅�𝑙𝑟

∗ ) were calculated and presented in Table 2. 
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Table 1: Data Statistics [Clement (2018)] 
Parameter Stratum 1 Stratum 2 Stratum 3 

𝑁ℎ 

𝑛ℎ
′  

𝑛ℎ 

�̅�ℎ 

�̅�ℎ 

𝑆ℎ𝑥
2  

𝑆ℎ𝑦
2  

𝑆ℎ𝑥𝑦
2  

𝛾ℎ
′  

𝛾ℎ 

𝜌ℎ𝑦𝑥 

𝜌ℎ𝑦𝑠 

𝜌ℎ𝑦𝛽 

𝜌ℎ𝑥𝑠 

𝜌ℎ𝑥𝛽 

𝜌ℎ𝑠𝛽 

52 

15 

4 

6.813 

417.33 

15.9712 

74775.467 

1007.6547 

0.0474 

0.2308 

0.703 

0.802 

0.86 

0.714 

0.82 

0.836 

76 

20 

5 

10.12 

503.375 

132.66 

259113.70 

5709.1629 

0.0368 

0.1868 

0.738 

0.761 

0.764 

0.812 

0.803 

0.846 

82 

28 

7 

7.967 

340.00 

38.438 

65885.6 

1404.71 

0.0235 

0.1307 

0.805 

0.826 

0.726 

0.742 

0.782 

0.812 

 

Table 2: Performance of estimators from empirical study 

Estimator Variance PRE (𝜙, �̅�𝑙𝑟
∗ ) 

�̅�𝑙𝑟
∗  

�̅�𝑘𝑘
∗  

�̅�𝑛𝑒𝑤
∗  

4137.2834 

3530.1765 

2642.2146 

100 

117.1976 

158.4763 

   

6. Simulation Study 
 

This section compares the performance of the Koyuncu and Kadilar (2014) calibration estimator 
(�̅�𝑘𝑘

∗ )  and the proposed logarithmic calibration estimator  (�̅�𝑛𝑒𝑤
∗ )  with a global estimator [The 

Generalized Regression (GREG) estimator (�̅�𝐺𝑅𝐸𝐺
∗ )] 

 

For a given estimator (say) �̂̅�𝑖
∗, let �̂̅�𝑖

∗(𝑚)
 be the estimate of �̂̅�𝑖

∗ in the m-th simulation run; m =1, 
2… M (=4,500). Four performance criteria namely; Relative Root Mean Square Error (RRMSE), 
Percent Relative Efficiency (𝑃𝑅𝐸), Average Length of Confidence Interval (AL) and Coverage 
Probability (CP) were used to compare the performance of the Koyuncu and Kadilar (2014) 
calibration estimator (�̅�𝑘𝑘

∗ )  and the proposed logarithmic calibration estimator  (�̅�𝑛𝑒𝑤
∗ )  with the 

GREG-estimator (�̅�𝐺𝑅𝐸𝐺
∗ ). Each measuring criterion is calculated using the following mathematical 

expressions: 

(i) 𝑅𝑅𝑀𝑆𝐸(�̂̅�𝑖
∗) = √ 1

𝑀
∑ (

�̂̅�
𝑖
∗(𝑚)

−�̂̅�𝑖
∗̅̅̅̅

�̂̅�𝑖
∗̅̅̅̅ )

2

𝑀
𝑖=1  

       where �̂̅�𝑖
∗̅̅ ̅

=
1

𝑀
∑ �̂̅�𝑖

∗(𝑚)𝑀
𝑚=1  and �̂�𝑖

∗(𝑚)
 is the estimated total based on sample 𝑚  and  

       𝑀 is the total number of samples drawn for the simulation. 

(ii) The percent relative efficiency (𝑃𝑅𝐸)  of an estimator �̂̅�𝑖
∗ with respect to the 

Generalized Regression (GREG) estimator (�̅�𝐺𝑅𝐸𝐺
∗ ) is defined by: 

      𝑃𝑅𝐸 [�̅�𝑖
∗, �̅�𝐺𝑅𝐸𝐺

∗ ] =
𝑅𝑅𝑀𝑆𝐸(�̅�𝐺𝑅𝐸𝐺

∗ )

𝑅𝑅𝑀𝑆𝐸(�̂̅�𝑖
∗)

× 100  
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(iii) 𝐶𝑃(�̂̅�𝑖
∗) =

1

𝑀
∑ (�̂̅�𝐿

∗(𝑚)
< �̂̅�𝑖

∗(𝑚)
< �̂̅�𝑈

∗(𝑚)
)𝑀

𝑚=1   

where �̂̅�𝐿
∗(𝑚)

is the lower confidence limit and  �̂̅�𝑈
∗(𝑚)

 is the upper confidence limit. 

For each estimator of �̂̅�𝑖
∗, a 95% Confidence Interval (�̂̅�𝐿

∗(𝑚)
, �̂̅�𝑈

∗(𝑚)
) is constructed, 

where, 

       �̂̅�𝐿
∗(𝑚)

= �̂̅�𝑖
∗(𝑚)

− 1.96√𝑉(�̂̅�𝑖
∗(𝑚)

) ,    �̂̅�𝑈
∗(𝑚)

= �̂̅�𝑖
∗(𝑚)

+ 1.96√𝑉(�̂̅�𝑖
∗(𝑚)

)         

       and 𝑉(�̂̅�𝑖
∗(𝑚)

) =
1

𝑀−1
∑ (�̂̅�𝑖

∗(𝑚)
− �̂�𝑖

∗̅̅ ̅)
2

𝑀
𝑚=1 . 

(iv) 𝐴𝐿𝐶𝐼(�̂̅�𝑖
∗) =

1

𝑀
∑ (�̂̅�𝑈

∗(𝑚)
− �̂̅�𝐿

∗(𝑚)
)𝑀

𝑚=1 . 
 

Table 3: Performance of estimators from simulation study 

Estimators RRMSE  𝑃𝑅𝐸 [�̅�𝑖
∗, �̅�𝐺𝑅𝐸𝐺

∗ ] ALCI CP 

�̅�𝐺𝑅𝐸𝐺
∗  

�̅�𝑘𝑘
∗  

�̅�𝑛𝑒𝑤
∗  

182.7423 

168.6332 

123.4642 

100.0000 

108.3667 

148.0124 

1668.72 

1464.68 

1034.42 

0.7324 

0.6446 

0.5278 
 

 

7. Results and Discussion   
 

Numerical results for the percent relative efficiency (PREs) in Table 2 reveals that the proposed 

logarithmic calibration estimator (�̅�𝑛𝑒𝑤
∗ ) has 58 percent gains in efficiency while the Koyuncu and 

Kadilar (2014) calibration estimator (�̅�𝑘𝑘
∗ ) has 17 percent gains in efficiency; this shows that the 

proposed logarithmic calibration estimator (�̅�𝑛𝑒𝑤
∗ )  is 41 percent more efficient than the Koyuncu 

and Kadilar (2014) calibration estimator(�̅�𝑘𝑘
∗ ). This means that in using the proposed logarithmic 

calibration estimator  (�̅�𝑛𝑒𝑤
∗ )  one will have 41 percent efficiency gain over the Koyuncu and 

Kadilar (2014) calibration estimator (�̅�𝑘𝑘
∗ ).  

 

Similarly, the simulation study for the comparison of performance of estimators reveals that the 

proposed logarithmic calibration estimator  (�̅�𝑛𝑒𝑤
∗ ) has 48 percent gains in efficiency while the 

Koyuncu and Kadilar (2014) calibration estimator (�̅�𝑘𝑘
∗ ) has 8 percent gains in efficiency; this 

shows that the proposed logarithmic calibration estimator (�̅�𝑛𝑒𝑤
∗ )  is 40 percent more efficient than 

the Koyuncu and Kadilar (2014) calibration estimator  (�̅�𝑘𝑘
∗ )  with respect to the Generalized 

Regression (GREG) estimator (�̅�𝐺𝑅𝐸𝐺
∗ ) as shown in the percent relative efficiency (PREs) in Table 

3 This means that in using the proposed logarithmic calibration estimator (�̅�𝑛𝑒𝑤
∗ ), one will have 40 

percent efficiency gains over the Koyuncu and Kadilar (2014) calibration estimator (�̅�𝑘𝑘
∗ ). The 

simulation study also showed that the Average Length of Confidence Interval (ALCI) and 

Coverage Probability (CP) for the proposed logarithmic calibration estimator are significantly 

smaller than that of Koyuncu and Kadilar (2014) calibration estimator and GREG-estimator. These 

results prove the robustness of the proposed logarithmic calibration estimator and by extension 

inverse exponentiation.  

 

8. Conclusion  
 

This study introduces the concept of inverse exponentiation to formulate new calibration weights 

in stratified double sampling and proposes a more improved calibration estimator based on 

Koyuncu and Kadilar (2014) calibration estimator. The variance of the proposed calibration 

estimator has been derived under large sample approximation. Calibration asymptotic optimum 
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estimator (𝐶𝐴𝑂𝐸) and its approximate variance estimator are derived for the proposed calibration 

estimator and existing calibration estimators in stratified double sampling.  Results of empirical 

and simulation studies conducted showed that the proposed logarithmic calibration 

estimator  (�̅�𝑛𝑒𝑤
∗ )  is more efficient than both the Koyuncu and Kadilar (2014) calibration 

estimator (�̅�𝑘𝑘
∗ ) and the Generalized Regression (GREG) estimator (�̅�𝐺𝑅𝐸𝐺

∗ ). 

It is observed that the proposed logarithmic calibration estimator (�̅�𝑛𝑒𝑤
∗ ) is very attractive and 

should be preferred in practice as it provides consistent and more precise parameter estimates than 

existing calibration estimators in stratified double sampling.  
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