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Abstract

Calibration weightings is the process of formulating calibration constraints using a given distance
measure to obtain expression of the calibration weights. One of the major limitations of the simple
calibration technique by Deville and Sarndal (1992); is that the calibration weights obtained by
this process may be negative and or extremely large. To overcome this challenge, this study
develops a new framework for obtaining optimum calibration weightings using inverse
exponentiation. A new calibration regression estimator of population mean is proposed in
stratified random sampling. Properties of the new estimator are derived and its efficacy
established through empirical comparisons with existing estimators. Results of analysis showed
that the new estimator obtained by the new calibration weightings is more precise and highly
efficient than calibration estimators obtained by the simple calibration technique by Deville and
Sarndal (1992), under the same optimum conditions.
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1. Introduction

In sample survey, one of the methods of sample selection is by stratifying the population.
Stratification is one of the design instruments that gives increase precision. Calibration approach
under stratified random sampling uses information from auxiliary variables to obtain optimum
strata weights. The integration of auxiliary information has significant importance in formulating
efficient estimators for population or subpopulation parameter estimation and it enhances
efficiency in different sampling designs. Many authors have worked on the estimation of
population parameters using the knowledge of auxiliary variables and have suggested different
estimation methods for estimating population mean of the study variable. Work in this direction
include; Bahl and Tuteja (1991), Singh and Kumar (2010), Diana et al. (2011), Malik and Singh
(2012), Haq and Shabbir (2013), Clement et al (2014a), Lu et al (2014), Clement and Enang
(2015), Lone and Tailor (2015), Clement (2016, 2017), Beevi et al (2017), Clement (2018a),
Yadav et al (2019), Izunobi and Onyeka (2019), Clement and Inyang (2020), Zaman (2020),
Clement (2020,2021), Clement et al (2021), Clement (2022), Inyang and Clement (2023) and
Clement et al (2024a) among others.
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The concept of calibration estimation in sample survey was introduced by Deville and Sarndal
(1992). They used auxiliary information to obtain weighting system using a given distance
measure and a set of calibration constraints. They observed that each distance measure has a
corresponding set of calibration weights and an estimator. Hence, the strength of the formulated
calibration constraints determines the efficiency of the resulting calibration estimator(s). The
process of improving the efficiency of the study variable by deriving mathematical expression for
the calibration weights through the formulated calibration constraints on a given distance measure
is called calibration weightings. Survey estimation under calibration is discussed in Arnab and
Singh (2005), Kott (2006), Kim (2010), Rao et al. (2012), Clement et al. (2014b), Koyuncu and
Kadilar (2016), Clement and Enang (2017), Clement (2018b), Enang and Clement (2020), Clement
and Inyang (2021), Clement and Etukudoh (2023), Clement and Enang (2024) and Clement et al
(2024b) among others.

In calibration estimation theory, the calibration weights are formulated such that a given distance
measure is minimized subject to some specified constraints related auxiliary variable information.
However, the calibration weights defined by minimizing a distance measure under some given
constraints may be negative and or extremely large. This is not acceptable if the calibration
weights are used in large scale sample surveys. In addition, it can affect the precision (or accuracy)
of parameter estimate(s) of interest. In the progression for improvement in calibration estimation,
this study sought to address this limitation by suggesting a new approach to calibration estimation
in stratified random sampling based on a new formulated calibration constraints using inverse
exponentiation. The aim is to get reasonable calibration weights that will optimize the efficiency
of calibration estimators.

2. Sample Design and Procedure

Consider a finite population of size (N) such that U = (UyU,, ..., Uy). Let (X) and (Y) be the
supplementary and study variables respectively taking values X; and Y; on the ith unit U;(i =
1,2, ..., N) of the population. It is assumed that every information on the population mean (X) of
the supplementary variable (X) is known and (x;,y;) = 0, (since survey variables are generally
non-negative). Let a sample of size (n) be selected by simple random sampling without
replacement (SRSWOR) based on which the mean (x) for the supplementary variable (X) and the
mean () for the study variable (Y) are obtained.

Let the population [U = (ULUZ, UN) of size (N)] be partitioned into H strata with Ny, units in
the hth stratum where a simple random sample of size n,, is selected without replacement. Let the
total population size be N = ¥H_, N, and the sample size n = ¥/_, n,,, respectively. Associated
with the ith element of the hth stratum are y,; and x;; with x;; > 0 being the covariate; where
Vui 1S the y value of the ith element in stratum h, and xj; is the x value of the ith element in
stratumh, h =1,2,...,Hand i = 1,2, ..., N,.

Let the stratum weights be W, = N, /N and the sample fraction be f,, = n,/N,. Let the hth
stratum means of the supplementary variable X and the study variable Y (ih = Z’;:"l Xpi/Mn Y =

Y yni/ny, ) be the unbiased estimator of the population mean (X, = XM xp /Ny ; ¥,
Zlivz"l Vni/Np ) of X and Y respectively, based on n, observations.
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1 N = 1 Ny ,— = 1 N >
Sﬁx = Np—1 Zi=h1(xhi - Xhi)z; Sﬁy = Nh—12i=h1(yh - Yh)zn thy = Np-1 Zi=h1(xhi = Xni) (yn —
1

v _ Np v v = _ VH = = _VH =
) xixi = o1 Zi=1\Xni — Ani j — Anj ist = Zh= i st = h= .
V)0 Shx; = il G — X)) (xnj — Xnj) Fise = 2pca Wy %y and Jgp = YH_ Wy, 9

Np—-1

Let x;, = nihz?:hl Xp and sz, = #Z?ﬁl(xm — %,)? be the sample mean and variance for the
supplementary variable. Let y, = izﬁl Vi and s7, = ﬁ}]?z"l(yhi —¥,)? be the sample
mean and variance for the study variable.

Let define the relative errors terms as

eny = (Z1) s0 that 7, = Ta(1 + eny)
eny = (M) so that £, = X, (1 + ep1)
Xn

2 o2
ens = (%), so that sZ, = SZ. (1 + epy)
X

Let define the expected values of the relative errors as
E(ehy) = E(ehx) = (ehs) = 01 E(eizly) = thi%y:E(eI%x) = thI%x'E(eI%s) = )/hCi%s
E(ehyehx) = yhphyxChyChx! E(ehyehs) = yhphysChyChSI E(ehxehs) = thhxschxchm

andy, = (i -
np Np

¥y, -sample stratum mean of study variable

Y, -population stratum mean of study variable

X, - sample stratum mean of auxiliary variable

X, - population stratum mean of auxiliary variable

Sh, -sample stratum variance of auxiliary variable

SZ, -population stratum variance of auxiliary variable

CZ, -coefficient of variation of auxiliary variable

C#, -coefficient of variation of study variable

Pnxy -correlation coefficient between auxiliary variable and study variable

Pnxs -COrrelation coefficient between mean and variance of auxiliary variable

Prys -correlation coefficient between mean of study variable and variance of auxiliary variable.

) where the parameters wherever they appear are defined as follows

3. Calibration Estimation by Deville and Sarndal (1992) Technique

This section applies the simple calibration technique by Deville and Sarndal (1992) to estimation
theory with respect to Koyuncu and Kadilar (2016) calibration regression estimator in stratified
random sampling design.

3.1The Koyuncu and Kadilar (2016) Estimator

Koyuncu and Kadilar (2016), being motivated by Tracy et al. (2003), used the conventional
calibration estimation technique by Deville and Sarndal (1992) to propose the following
calibration regression estimator in stratified random sampling:

ek = Zﬁﬂ O ¥n €Y)
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using chi-square distance measure of the form

LG wy) = Bf, S @)
subject to the calibration constraints defined by

25:1 OpXp = Zg=1 Wy Xh 3
Yh=19n Shx = Xh=1 Wi St 4)
Zgzl Oy = Zﬁ=1 W (5)
obtained the calibration weights

O = Wiy + WiQp(L1oXn + A208hy + A30) (6)

If (6) is substituted in [(3), (4), (5)] respectively and the resulting system of equations are solved;
the values of the 1;,s are obtained.

If the A;,s are substituted in (6) and the result is substituted in (1) respectively; the Koyuncu and
Kadilar (2016) calibration regression estimator is obtained as

H H
Vkk = Z Wy Fh + Br.1o Z Wh (X — %p)
h=1 h=1

H
+ Gh,ZO Z Wh(slex — Shy) 7
h=1

where B, 10 and B, ., are the coefficients of regression defined by:
5 Tll(b11b12 - b123) + TZZ(b13b14— - b11b15) + T33(b13b15 - b14b12)

e bi1b1abig — bisbia — bysbs — bfsbig + 2b14bi3bis
5 _ Ty1(bi13b1y — by1bys) + Top(b11byg — b7y) + Ta3(biabys — bisbye)
120 by1bizb1g — bfybiy — byi1bfs — bisbig + 2b14bi3byg

_ VH - = _ VH 2 = _ VH = _ VH
where Ty = Yho1 WpXnVn, T2z = Xh=1 WrShxVn T3z = Zh=1WrVn» D11 = Xp=1 Wh,
_ VH 4 _VH 2 _ VH = _VH - 2
b1z = Xh=1Wh Shx» b1z = Y=t Wh Sig,b1a = Xy WyXp , bis = Y=g WpXp Shy

b = XH_, W,x? [See Koyuncu and Kadilar (2016) for detail]

3.2 Estimation of Variance for Koyuncu and Kadilar (2016) Estimator

Koyuncu and Kadilar (2016) did not derive variance expression for their estimator [See Koyuncu
and Kadilar (2016) for detail]. Here, the estimator of variance for the Koyuncu and Kadilar (2016)
calibration regression estimator is derived using large sample approximation (LASAP) method.
Expressing (7) in the relative error terms gives

H

ik = Z Wh[Yh(l + ehy) _Bh,lo)?hehx - Bh,zosﬁxehs]
h=1
So that

H
[k — Y1 = Z Wi Yneny —BrioXneny — BraoSiens] (8)

Squaring bOthhgildES of (8) gives
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H
ik — Y]? = Z 13 [Yhzeﬁy + Bh1oXEel, + BraoShcers — ZYhBh,IOXhehyehx
— A h=1 ~ ~ —
_ZYhBh,ZOSI%xehyehs + 2Bp10Bn,20XnShxenxens] C)]

Taking expectation of both sides of (9) gives
H

Vil = ) WEVnlTZCE + V2B 10XECE: + Bh 205 Che — 2B 10T Xnbncy CncCny
h=1
—2B1,20YnSixPsyCnyCns + 2Br10Bn10S ke XnPrxs Crx Chs) (10)

3.3 Optimality conditions for Koyuncu and Kadilar (2016) Estimator
In this section, optimality conditions for optimum performance of Koyuncu and Kadilar (2016)

calibration regression estimator is deduced. Thus, setting % = 0 and % = 0 respectively
h,10 h,20
gives
5 thhyxchychx - Bh,ZOSf%xphxs ChxCrs
h,10 = = 2 (11)
~ XhAChx ~
~ Y, CnyCrs — X Cn,C
Baso = hPhysbnylhs SZBZ:;O nPhxsChxClhs (12)
hx“hs

Substituting (12) in (11) or (11) in (12), the optimum values of By 1 opr @Nd Bp,20,0p¢ are obtained
respectively as

_ thhy(phyx - physphxs) (13)

thhx(l - przzxs)
B _ thhy (phys - phyxphxs) (14)
oot SitcCrs(1 = Pxs) ) ) )

substituting the value of B 100p¢ iN (13) and Bp 200pein (14) for By, 1o and B0 in (7), an
asymptotically optimum estimator (AOE) Yk op¢ OF population mean is obtained for Koyuncu and
Kadilar (2016) calibration regression estimator as

H — H

. _ Y Cr (Ph ~ PhysPn ) = _

Ykk,opt = Z Wyyn + )—; C yxl %IS — Z Wi (Xy — %)
he1 h hx( - phxs) h=1

_ H

Y.C -

L h};(phys ph;;xpth) Z Wi, (S2, — 52,) (15)
thChs(1 - phxs) o1

Similarly, substituting the value of By 100p¢ in (13) and Bp20,0p¢ in (14) for Br10, and Brz0in
(10), variance of the asymptotically optimum estimator (AOE) ¥ ope [Or minimum variance
of yxx] for Koyuncu and Kadilar (2016) calibration regression estimator is obtained as

Bh,lo,opt

. > _ 2
Vopt [YKK] = If-LI=1 th]/thzC}%y(l - Pfs) 2 {(1 - p)%s)z + (phxy - phxsphsy)
2
+(phsy - phxsphxy) - (1 - p)%s) [thxy(phxy - phxsphsy) + thsy(phsy - phxsphxy)]
+2phxs(phxy - phxsphsy)(phsy - phxsphxy)} (16)
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4. Calibration Estimation by Logarithmic Calibration Weightings

Deville and Sarndal (1992), suggested calibration estimation technique for minimising a distance
measure between initial weights and final weights with respect to calibration constraints. However,
the calibration weights defined by minimizing a distance measure under some given constraints
may be negative and or extremely large. To overcome this limitation, this paper uses inverse
exponentiation technique in formulating the calibration constraints to get reasonable calibration
weights that will optimize the efficiency of calibration estimators.

4.1 Modified Koyuncu and Kadilar (2016) Estimator

Following Koyuncu and Kadilar (2016), a new calibration regression estimator of population mean
is proposed using inverse exponentiation method as

INewkk = Yhe1 Wylogyn 17)
where W;are new calibration weights minimising the chi-square distance measure
. 2

" Wp-W

LWy, Wy) = sh, M) (18)
hQh

subject to the logarithmic calibration constraints defined by
Y1 Wilogx, = Xji—y Wy logXy, (19)
Yhi=1 Wy logsp, = Xhi—1 Wy logS5 (20)
LHa Wy =X Wy (21)

The Lagrange function is given by

* 2
* * Wh— * * = v
LWy, Wp)" = 25:17( ;,hg:) — 2230 ( Xh=1 WylogXn — Eii=y Wilog Xp)

—2250 (Bh=1 Wylog siy — Xhi=1 Wi 10gSiy ) — 2430 (Xhzy Wi — Xhz1 Wh) (22)

Minimizing the chi-square distance measure (18) subject to the calibration constraints in [(19),
(20), (21)] respectively, calibration weights (W};) is obtained as

Wy = Wy + WQn(A5logxy + N30 logsh, + A30) (23)
Substituting (23) into [(19), (20), (21)] respectively, a system of equations is obtained:

Mg Mys  Myq] [ Ao Hio

mys Mqy; Myz||A50| = |H20 (24)
My Mz Myql |43, Hzo

Solving for the A;,s in (24) gives

Hio(myymyy — mf3) + Hzo(Mygmys — myymye)

* —
Ao = (My1myaMyg — Mypmi, — myymis — mizmyg + 2my3Mmy,Mmys)
Ao = Hoo(My1mye — miy) — yo(Myymys — myzmy,)
(Mymyamyg — Myymi, — myymis — mizmyg + 2my3my,mys)
. Hio(My3Mys — MypMyy) + oo (MyaMys — Myzmye)

30 = 2 2 2
(myimyymye — myymi, — myyMis — MizMyg + 2My3My4My5)

where myy = Yi_ WhQp myy = Xi_ WiQp (logsi,)?  myz = Xioy WyQnlogsh,
Mys = Zg=1 WnQnlogx,, mys = ZZ=1 W,Qp (log)?h)(logs,zl), Mg = Z}P{=1 WrQn (loyfh)z
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Mo = Dhey Wh(logXy, — logXy), Wao = Xh=s Wy (logSh, — logsi,), 3o =0

If the A7,s are substituted in (23) and subsequently in (17) while setting Q;, = 1, the proposed
modification to Koyuncu and Kadilar (2016) calibration regression estimator of population mean
in stratified random sampling is obtained as

Vnewkk = L1 Wi L0g¥n + Br 10 2i=1 Wn(log Xy, — logx,) +

H
Bizo ) Wi(logSh — logsh) 25)

h=1

here Bf{,w and [?;{,20 are the coefficients of regression and are given by

[?* _ Hao(T11T12 — 7123) — Us0(T11T15 — T13T14) + Meo(T13T15 — T12T14)
ha10 =

(T11T12T16 — T12T124 - T11T125 - T123T16 + 2T13T147T15)
_ Hao (T13714 — T11T15) — Mso(T11T16 — T4) + Heo(T1aTis — T13T16)

A *
Brzo = 2 2 2
(T11T12T16 — T12T1a — T11Tis — T13T16 + 2T13T14715)

where t,; = X} W, Tiz = Xfoy Wi (l0g5h)? T3 = Tih=1 Wplogsiy

Tia = Lhe1 WplogXy, Ti5 = Xhoy wp(log%,)(logsh), T16 = Xhzq Wi (l0gXy)?

Mao = Xh=1 Wa(log %) (LlogFp). Hso = Xh=1 Wr(logsi)(LogTp), Heo = Xhi=1 WrlogPn

4.2 Estimation of Variance for Modified Koyuncu and Kadilar (2016) Estimator

The estimator of variance of the modified Koyuncu and Kadilar (2016) Calibration Regression

Estimator is derived using large sample approximation (LASAP) method.
Equation (25) can be expressed as:

— _ B X B SE

YNew,kK = Th=1 Wy logyn + Br,10 Th=1 Wh (109 f_:) + Bhr2o The1 Wy (109 #) (26)
X

So that, expressing (26) in the relative error terms gives:

Vewik = et Wilog [Va(1 + epy)] + Biro D= Wrlog(1 + €)™ +

B 20 Zhea Wilog (1 + ep) ™ (27)
Expanding equation (27) gives:

Vrewkk = ne1 Wnlog¥y + XH_ Wylog (1 + epny) + Br 10 Zoey Whlog(1 + ep) ™t +

B;;,zo Y1 Whlog(1 + eps) ™" (28)
So that

(}_’X/ew,KK - 7) = ZZ:l Whlog (1 + ehy) - E;,lo ZrPLI=1 Whlog(1 + epy) -

Bh.20 Zg=1 Wilog(1 + eps) (29)

where ¥ = ¥H_ W,log¥,
Now, it is assumed that |ep, | < 1; leny| < 1and |ens| < 1 so that expanding (1 + epy,),
(1 +ep,) and (1 + ey) as series in power of the e's gives

2 3 2 3
—* v eh €h, A * € €
(Fnvewrx —Y) = [Zﬁn Wh (ehy - 2_.y + 3_,y - ) — Brao Zi=1 W (ehx - % + % - )
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B0 Sfics Wi (s — B 4 85— )] (30)

3!
Squaring both sides of (30), multiplying out and retaining terms of the e's to the first degree of

approximation gives

—* 512 n* n* A* A *

[Frewxx — Y] = T, W2 [eﬁy + Brioehx + Brzo€hs —2Bn10€nyenx — 2Bn 20€nyChs
+2B;;,10B;;,Zoehxehsj (31)
Taking expectation of both sides of (31), the variance of the proposed logarithmic calibration
regression estimator of population mean in stratified random sampling is obtained as

V[Fhewkk] = Zh=1 Wivn [Chy + Bi2ioCix + BiZoChs — Zgﬁ,1ophyxchychx
_Zg;,zophyschychs + Z.Bh,lo.gh,zophxschxchs]] (32)

4.3 Optimality Conditions for Modified Koyuncu and Kadilar (2016) Estimator

In this section, optimality conditions for optimum performance of the modified Koyuncu and
Kadilar (2016) calibration regression estimator is deduced. Thus, the V[y,’QeW,KK] in (32) is

a
minimized by setting WOnewxr] _ ang YPnewxr] _ respectively so that:

3B 10 9B 20
C n C
ﬂh 0= phyx hy Cﬁh,zophxs hs (33)
@x
C n C
ﬂh o = phyx hy C,Bh,lophxs hx (34)
hs R
Substituting (34) in (33) or (33) in (34), gives the optimum values of 5 1 ¢
and B 20, 0pt respectively as:
Ch (pxy pxspsy)
Br > (35)
10 Opt Chx(l p}zlxs)
Chy (psy Pxs pxy)
36
ﬁh 20,opt — Chs(l ( )

2
phxs)
Substituting the value of B 10 ,pe IN (35) and B 29,pe in (36) for By 14 and B 50 in (25), an
asymptotically optimum estimator (AOE) Yyew,op: OF population mean is obtained for the proposed
modified Koyuncu and Kadilar (2016) calibration regression estimator as:

Vnewxkk = She1 Wnlogyy + MZh 1 Wy (logX,, — logxy)

Ch (1 phxs
Chy (Psy‘szny)

Chs(l_plzwcs) 2Z=1 Wh (logsﬁx - logshx) (37)
Similarly, substituting the value of S 100, IN (35) and B 200pe N (36) for B 1o and f 5 in
(32), variance of the asymptotically optimum estimator (AOE) Yyew kx,ope [OF Minimum variance
of Yyewxx ] for the proposed modified Koyuncu and Kadilar (2016) calibration regression
estimator is obtained as

- - 2
Vopt[yNew,KK = 2Z=1 thyhcﬁy(l - p)%s) z {(1 - pfs)z + (phxy - phxsphsy)

2
+(phsy - phxsphxy) - (1 - p)%s) [thxy(phxy - phxsphsy) + thsy(phsy - phxsphxy)]
+2phxs(phxy - phxsphsy)(phsy - phxsphxy)} (38)
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5. Empirical Study

The data set in Table 1 is used to test the performances of the proposed logarithmic calibration
weightings method over existing simple calibration weightings method by Deville and Sarndal
(1992). The variance and percent relative efficiency (PRE) are the two measuring criteria used in
comparing the performance of each calibration weightings method.

5.1 Cochran (1977) Regression Estimator

The conventional regression estimator in stratified random sampling by Cochran (1977) is given
by

VReg = Y1 Wiin + Br X1 Wi (X — %) (39)
with variance estimator given by:
Vopt [y;eg = Zﬁ:l thyhyhzcﬁy(l - pizlxy) (40)

where y, = YH_, W, ¥, and %, = X.0_, W, X, are the Horvitz-Thompson-type estimators,
Br = XH_ Wi, v, /3H_, W, k2 is the regression coefficient and W,are design weights.

5.2 Percent Relative Efficiency

Let the percent relative efficiency (PRE) of an estimator (say y;) with respect to the conventional
regression estimator in stratified random sampling (¥z.4) by Cochran (1977) be defined by

_ V(FReg)
PRE = e X 100 (41)
Table 1: Data Statistics
Parameter Stratum | Stratum 11 Stratum I11 Stratum 1V
Ny, 10 9 26 7
ny, 3 2 5 2
X 11.90 10.38 12.120 11.98
Y, 15.72 14.84 13.46 16.32
Chy 1.062 0.986 1.208 1.023
Crx 1.234 1.306 1.032 0.926
Phicy 0.940 0.900 0.840 0.890
0.840 0.880 0.920 0.780
Phsy 0.860 0.820 0.760 0.840
Phxs

Table 2: Variance and PRE of Estimators under the Two Calibration weightings Techniques

S/No. Estimator PREs
L Vreg 100
2. Vi 126.0804
3. Virew KK 191.3110
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6. Discussion of results

The percent relative efficiency (PREs) in Table 2 shows that the proposed modified Koyuncu and
Kadilar (2016) calibration regression estimator has 91 percent efficiency gains while Koyuncu and
Kadilar (2016) calibration regression estimator has 26 percent efficiency gains. This means that the
proposed modified Koyuncu and Kadilar (2016) calibration regression estimator is 65 percent
more efficient than Koyuncu and Kadilar (2016) calibration regression estimator with respect to
Cochran (1977) conventional regression estimator of population mean in stratified random
sampling. Therefore, in using the proposed modified Koyuncu and Kadilar (2016) calibration
regression estimator one has 65 percent efficiency gains over the Koyuncu and Kadilar (2016)
calibration regression estimator and by extension new proposed logarithmic calibration technique.
Also, the proposed modified Koyuncu and Kadilar (2016) calibration regression estimator is better
than Cochran (1977) conventional regression estimator in terms of efficiency by 91 percent.

7. Conclusion

Koyuncu and Kadilar (2016) used Deville and Sarndal (1992) simple calibration technique to
propose a calibration regression estimator of population mean. The present study advocates a
modification to Koyuncu and Kadilar (2016) estimator using a new calibration technique
(logarithmic calibration weightings). Following the discussion of results, it is concluded that the
proposed logarithmic calibration technique gives a better result than the conventional calibration
technique by Deville and Sarndal (1992). Therefore, the new calibration technique to statistical
estimation theory should be recommended to survey researchers as it gives more precise and
consistent estimates of the population parameter(s) of interest.
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