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Abstract 
 

Calibration weightings is the process of formulating calibration constraints using a given distance 

measure to obtain expression of the calibration weights. One of the major limitations of the simple 

calibration technique by Deville and Sarndal (1992); is that the calibration weights obtained by 

this process may be negative and or extremely large. To overcome this challenge, this study 

develops a new framework for obtaining optimum calibration weightings using inverse 

exponentiation.  A new calibration regression estimator of population mean is proposed in 

stratified random sampling. Properties of the new estimator are derived and its efficacy 

established through empirical comparisons with existing estimators. Results of analysis showed 

that the new estimator obtained by the new calibration weightings is more precise and highly 

efficient than calibration estimators obtained by the simple calibration technique by Deville and 

Sarndal (1992), under the same optimum conditions. 
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1. Introduction 
 

In sample survey, one of the methods of sample selection is by stratifying the population. 

Stratification is one of the design instruments that gives increase precision. Calibration approach 

under stratified random sampling uses information from auxiliary variables to obtain optimum 

strata weights. The integration of auxiliary information has significant importance in formulating 

efficient estimators for population or subpopulation parameter estimation and it enhances 

efficiency in different sampling designs. Many authors have worked on the estimation of 

population parameters using the knowledge of auxiliary variables and have suggested different 

estimation methods for estimating population mean of the study variable. Work in this direction 

include; Bahl and Tuteja (1991), Singh and Kumar (2010), Diana et al. (2011), Malik and Singh 

(2012), Haq and Shabbir (2013), Clement et al (2014a), Lu et al (2014), Clement and Enang 

(2015), Lone and Tailor (2015), Clement (2016, 2017), Beevi  et al (2017), Clement (2018a), 

Yadav et al (2019), Izunobi and Onyeka (2019), Clement and Inyang (2020), Zaman (2020), 

Clement (2020,2021), Clement et al (2021), Clement (2022), Inyang and Clement (2023) and 

Clement et al (2024a) among others.  

https://doi.org/10.3329/ijss.v24i2.77975
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The concept of calibration estimation in sample survey was introduced by Deville and Sarndal 

(1992).  They used auxiliary information to obtain weighting system using a given distance 

measure and a set of calibration constraints. They observed that each distance measure has a 

corresponding set of calibration weights and an estimator. Hence, the strength of the formulated 

calibration constraints determines the efficiency of the resulting calibration estimator(s). The 

process of improving the efficiency of the study variable by deriving mathematical expression for 

the calibration weights through the formulated calibration constraints on a given distance measure 

is called calibration weightings. Survey estimation under calibration is discussed in Arnab and 

Singh (2005), Kott (2006), Kim (2010), Rao et al. (2012), Clement et al. (2014b), Koyuncu and 

Kadilar (2016), Clement and Enang (2017), Clement (2018b), Enang and Clement (2020), Clement 

and Inyang (2021), Clement and Etukudoh (2023), Clement and Enang (2024) and Clement et al 

(2024b) among others.  
 

In calibration estimation theory, the calibration weights are formulated such that a given distance 

measure is minimized subject to some specified constraints related auxiliary variable information. 

However, the calibration weights defined by minimizing a distance measure under some given 

constraints may be negative and or extremely large. This is not acceptable if the calibration 

weights are used in large scale sample surveys. In addition, it can affect the precision (or accuracy) 

of parameter estimate(s) of interest. In the progression for improvement in calibration estimation, 

this study sought to address this limitation by suggesting a new approach to calibration estimation 

in stratified random sampling based on a new formulated calibration constraints using inverse 

exponentiation.  The aim is to get reasonable calibration weights that will optimize the efficiency 

of calibration estimators. 

  

2. Sample Design and Procedure 
 

Consider a finite population of size (N) such that 𝑈 = (𝑈1,𝑈2, … , 𝑈𝑁). Let (𝑋) and (Υ) be the 

supplementary and study variables respectively taking values 𝑋𝑖  𝑎𝑛𝑑 𝑌𝑖  on the 𝑖 th unit 𝑈𝑖(𝑖 =
1, 2, … , 𝑁) of the population. It is assumed that every information on the population mean (�̅�) of 

the supplementary variable (𝑋) is known and (𝑥𝑖 , 𝑦𝑖) ≥ 0, (since survey variables are generally 

non-negative). Let a sample of size (𝑛)  be selected by simple random sampling without 

replacement (SRSWOR) based on which the mean (�̅�) for the supplementary variable (𝑋) and the 

mean (�̅�) for the study variable (Υ) are obtained. 
 

Let the population [𝑈 = (𝑈1,𝑈2, … , 𝑈𝑁) of size (𝑁)] be partitioned into 𝐻 strata with 𝑁ℎ units in 

the ℎth stratum where a simple random sample of size 𝑛ℎ is selected without replacement. Let the 

total population size be 𝑁 = ∑ 𝑁ℎ
𝐻
ℎ=1  and the sample size 𝑛 = ∑ 𝑛ℎ

𝐻
ℎ=1 , respectively. Associated 

with the 𝑖th element of the ℎth stratum are 𝑦ℎ𝑖  and  𝑥ℎ𝑖  with 𝑥ℎ𝑖 > 0 being the covariate; where  

𝑦ℎ𝑖  is the 𝑦 value of the 𝑖th element in stratum ℎ, and  𝑥ℎ𝑖  is the 𝑥 value of the 𝑖th element in 

stratum ℎ, ℎ = 1,2, … , 𝐻 and 𝑖 = 1,2, … , 𝑁ℎ.   
 

Let the stratum weights be 𝑊ℎ = 𝑁ℎ 𝑁⁄   and the sample fraction be 𝑓ℎ = 𝑛ℎ 𝑁ℎ⁄ .  Let the ℎth 

stratum means of the supplementary variable X and the study variable 𝑌 (�̅�ℎ = ∑ 𝑥ℎ𝑖 𝑛ℎ⁄
𝑛ℎ
𝑖=1 ; �̅�ℎ =

∑ 𝑦ℎ𝑖 𝑛ℎ  ⁄
𝑛ℎ
𝑖=1 )  be the unbiased estimator of the population mean (�̅�ℎ = ∑ 𝑥ℎ𝑖 𝑁ℎ⁄

𝑁ℎ
𝑖=1 ; �̅�ℎ =

∑ 𝑦ℎ𝑖 𝑁ℎ ⁄
𝑁ℎ
𝑖=1 ) of  𝑋  and   𝑌  respectively, based on 𝑛ℎ observations. 
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  𝑆ℎ𝑥
2 =

1

𝑁ℎ−1
∑ (𝑥ℎ𝑖 − �̅�ℎ𝑖)

2𝑁ℎ
𝑖=1 ;   𝑆ℎ𝑦

2 =
1

𝑁ℎ−1
∑ (�̅�ℎ − �̅�ℎ)2𝑁ℎ

𝑖=1 ,  𝑆ℎ𝑥𝑦 =  
1

𝑁ℎ−1
∑ (𝑥ℎ𝑖 − �̅�ℎ𝑖)

𝑁ℎ
𝑖=1  (𝑦ℎ −

�̅�ℎ) ,  𝑆ℎ𝑥𝑖𝑥𝑗
=  

1

𝑁ℎ−1
∑ (𝑥ℎ𝑖 − �̅�ℎ𝑖)

𝑁ℎ
𝑖=1  (𝑥ℎ𝑗 − �̅�ℎ𝑗)  �̅�𝑖,𝑠𝑡 = ∑ 𝑊ℎ

𝐻
ℎ=1 �̅�ℎ𝑖  and �̅�𝑠𝑡 = ∑ 𝑊ℎ

𝐻
ℎ=1 �̅�ℎ . 

Let �̅�ℎ =
1

𝑛ℎ
∑ 𝑥ℎ𝑖

𝑛ℎ
𝑖=1   and 𝑠ℎ𝑥

2 =
1

𝑛ℎ−1
∑ (𝑥ℎ𝑖 − �̅�ℎ)2𝑛ℎ

𝑖=1  be the sample mean and variance for the 

supplementary variable. Let  �̅�ℎ =
1

𝑛ℎ
∑ 𝑦ℎ𝑖

𝑛ℎ
𝑖=1  and 𝑠ℎ𝑦

2 =
1

𝑛ℎ−1
∑ (𝑦ℎ𝑖 − �̅�ℎ)2𝑛ℎ

𝑖=1   be the sample 

mean and variance for the study variable.  
 

Let define the relative errors terms as 

𝑒ℎ𝑦 = (
�̅�ℎ−�̅�ℎ

�̅�ℎ
) so that  �̅�ℎ = �̅�ℎ(1 + 𝑒ℎ𝑦) 

𝑒ℎ𝑥 = (
�̅�ℎ−�̅�ℎ

�̅�ℎ
) so that �̅�ℎ = �̅�ℎ(1 + 𝑒ℎ𝑥1) 

𝑒ℎ𝑠 = (
𝑠ℎ𝑥

2 −𝑆ℎ𝑥
2

𝑆ℎ𝑥
2 ), so that 𝑠ℎ𝑥

2 = 𝑆ℎ𝑥
2 (1 + 𝑒ℎ𝑠) 

 

Let define the expected values of the relative errors as 
 

E(𝑒ℎ𝑦) = 𝐸(𝑒ℎ𝑥) = (𝑒ℎ𝑠) = 0, 𝐸(𝑒ℎ𝑦
2 ) = 𝛾ℎ𝐶ℎ𝑦

2 , 𝐸(𝑒ℎ𝑥
2 ) = 𝛾ℎ𝐶ℎ𝑥

2 , 𝐸(𝑒ℎ𝑠
2 ) = 𝛾ℎ𝐶ℎ𝑠

2   

𝐸(𝑒ℎ𝑦𝑒ℎ𝑥) = 𝛾ℎ𝜌ℎ𝑦𝑥𝐶ℎ𝑦𝐶ℎ𝑥, 𝐸(𝑒ℎ𝑦𝑒ℎ𝑠) = 𝛾ℎ𝜌ℎ𝑦𝑠𝐶ℎ𝑦𝐶ℎ𝑠,  𝐸(𝑒ℎ𝑥𝑒ℎ𝑠) = 𝛾ℎ𝜌ℎ𝑥𝑠𝐶ℎ𝑥𝐶ℎ𝑠,  
 

and 𝛾ℎ = (
1

𝑛ℎ
−

1

𝑁ℎ
) where the parameters wherever they appear are defined as follows 

�̅�ℎ  -sample stratum mean of study variable 

�̅�ℎ  -population stratum mean of study variable 

�̅�ℎ  - sample stratum mean of auxiliary variable 

�̅�ℎ  - population stratum mean of auxiliary variable 

𝑠ℎ𝑥
2  -sample stratum variance of auxiliary variable 

𝑆ℎ𝑥
2  -population stratum variance of auxiliary variable 

𝐶ℎ𝑥
2  -coefficient of variation of auxiliary variable 

𝐶ℎ𝑦
2  -coefficient of variation of study variable 

𝜌ℎ𝑥𝑦  -correlation coefficient between auxiliary variable and study variable 

 𝜌ℎ𝑥𝑠 -correlation coefficient between mean and variance of auxiliary variable 

𝜌ℎ𝑦𝑠 -correlation coefficient between mean of study variable and variance of auxiliary variable. 

 

3. Calibration Estimation by Deville and Sarndal (1992) Technique  
 

This section applies the simple calibration technique by Deville and Sarndal (1992) to estimation 

theory with respect to Koyuncu and Kadilar (2016) calibration regression estimator in stratified 

random sampling design. 

 

3.1The Koyuncu and Kadilar (2016) Estimator 
 

Koyuncu and Kadilar (2016), being motivated by Tracy et al. (2003), used the conventional 

calibration estimation technique by Deville and Sarndal (1992) to propose the following 

calibration regression estimator in stratified random sampling: 
 

 �̅�𝑘𝑘
∗ = ∑ ϑℎ�̅�ℎ

𝐻
ℎ=1                                                                                                                                             (1)  

 



 

 

 

 

 

 

 

 

128                                       International Journal of Statistical Sciences, Vol. 24(2), 2024 

 

 

using chi-square distance measure of the form 

𝐿(ϑℎ, 𝑤ℎ) = ∑
(ϑℎ−𝑤ℎ)2

𝑤ℎ𝑄ℎ

𝐻
ℎ=1                                                                                                                             (2)  

 

subject to the calibration constraints defined by 
 

∑ ϑℎ�̅�ℎ
𝐻
ℎ=1 = ∑ 𝑊ℎ

𝐻
ℎ=1 �̅�ℎ                                                                                                                              (3)  

∑ ϑℎ
𝐻
ℎ=1 𝑠ℎ𝑥

2 = ∑ 𝑊ℎ
𝐻
ℎ=1 𝑆ℎ𝑥

′2                                                                                                                            (4)  

∑ ϑℎ
𝐻
ℎ=1 = ∑ 𝑊ℎ

𝐻
ℎ=1                                                                                                                                         (5)  

 

obtained the calibration weights 
 

ϑℎ =   𝑊ℎ + 𝑊ℎ𝑄ℎ(𝜆10�̅�ℎ + 𝜆20𝑠ℎ𝑥
2 + 𝜆30)                                                                                               (6) 

 

If (6) is substituted in [(3), (4), (5)] respectively and the resulting system of equations are solved; 

the values of the 𝜆𝑖0𝑠 are obtained. 
 

If the  𝜆𝑖0𝑠 are substituted in (6) and the result is substituted in (1) respectively; the Koyuncu and 

Kadilar (2016) calibration regression estimator is obtained as 
 

�̅�𝐾𝐾
∗ = ∑ 𝑊ℎ�̅�ℎ

𝐻

ℎ=1

+ β̂ℎ,10 ∑ 𝑊ℎ(�̅�ℎ − �̅�ℎ)

𝐻

ℎ=1

+ β̂ℎ,20 ∑ 𝑊ℎ(𝑆ℎ𝑥
2 − 𝑠ℎ𝑥

2 )

𝐻

ℎ=1

                                                                                                          (7) 

 

where β̂ℎ,10 and β̂ℎ,20  are the coefficients of regression defined by: 
 

�̂�ℎ,10 =
𝑇11(𝑏11𝑏12 − 𝑏13

2 ) + 𝑇22(𝑏13𝑏14 − 𝑏11𝑏15) + 𝑇33(𝑏13𝑏15 − 𝑏14𝑏12)

𝑏11𝑏12𝑏16 − 𝑏14
2 𝑏12 − 𝑏11𝑏15

2 − 𝑏13
2 𝑏16 + 2𝑏14𝑏13𝑏16

 

�̂�ℎ,20 =
𝑇11(𝑏13𝑏14 − 𝑏11𝑏15) + 𝑇22(𝑏11𝑏16 − 𝑏14

2 ) + 𝑇33(𝑏14𝑏15 − 𝑏13𝑏16)

𝑏11𝑏12𝑏16 − 𝑏14
2 𝑏12 − 𝑏11𝑏15

2 − 𝑏13
2 𝑏16 + 2𝑏14𝑏13𝑏16

 

where 𝑇11 = ∑ 𝑤ℎ�̅�ℎ�̅�ℎ
𝐻
ℎ=1 ,  𝑇22 = ∑ 𝑤ℎ𝑠ℎ𝑥

2 �̅�ℎ
𝐻
ℎ=1 ,  𝑇33 = ∑ 𝑤ℎ�̅�ℎ

𝐻
ℎ=1 ,  𝑏11 = ∑ 𝑊ℎ

𝐻
ℎ=1 , 

 𝑏12 = ∑ 𝑊ℎ
𝐻
ℎ=1 𝑠ℎ𝑥

4 ,  𝑏13 = ∑ 𝑊ℎ
𝐻
ℎ=1 𝑠ℎ𝑥

2 ,𝑏14 = ∑ 𝑊ℎ�̅�ℎ
𝐻
ℎ=1  ,   𝑏15 = ∑ 𝑤ℎ�̅�ℎ

𝐻
ℎ=1 𝑠ℎ𝑥

2 ,   

𝑏16 = ∑ 𝑊ℎ�̅�ℎ
2𝐻

ℎ=1    [See Koyuncu and Kadilar (2016) for detail]  
 

3.2 Estimation of Variance for Koyuncu and Kadilar (2016) Estimator 
 

Koyuncu and Kadilar (2016) did not derive variance expression for their estimator [See Koyuncu 

and Kadilar (2016) for detail]. Here, the estimator of variance for the Koyuncu and Kadilar (2016) 

calibration regression estimator is derived using large sample approximation (LASAP) method. 

Expressing (7) in the relative error terms gives 

�̅�𝐾𝐾
∗ = ∑ 𝑊ℎ[�̅�ℎ(1 + 𝑒ℎ𝑦)

𝐻

ℎ=1

  −β̂ℎ,10�̅�ℎ𝑒ℎ𝑥 − β̂ℎ,20𝑆ℎ𝑥
2 𝑒ℎ𝑠] 

 

So that 

[�̅�𝐾𝐾
∗ − �̅�] = ∑ 𝑊ℎ[�̅�ℎ𝑒ℎ𝑦

𝐻

ℎ=1

  −β̂ℎ,10�̅�ℎ𝑒ℎ𝑥 − β̂ℎ,20𝑆ℎ𝑥
2 𝑒ℎ𝑠]                                                                    (8)  

Squaring both sides of (8) gives 
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[�̅�𝐾𝐾
∗ − �̅�]2 = ∑ 𝑊ℎ

2

𝐻

ℎ=1

[�̅�ℎ
2𝑒ℎ𝑦

2 + β̂ℎ,10
2 �̅�ℎ

2𝑒ℎ𝑥
2 + β̂ℎ,20

2 𝑆ℎ𝑥
4 𝑒ℎ𝑠

2 − 2�̅�ℎβ̂ℎ,10�̅�ℎ𝑒ℎ𝑦𝑒ℎ𝑥 

−2�̅�ℎβ̂ℎ,20𝑆ℎ𝑥
2 𝑒ℎ𝑦𝑒ℎ𝑠 + 2β̂ℎ,10β̂ℎ,20�̅�ℎ𝑆ℎ𝑥

2 𝑒ℎ𝑥𝑒ℎ𝑠]                                                                                    (9) 
 

Taking expectation of both sides of (9) gives 
 

𝑉[�̅�𝐾𝐾
∗ ] = ∑ 𝑊ℎ

2

𝐻

ℎ=1

𝛾ℎ[�̅�ℎ
2𝐶ℎ𝑦

2 + �̅�ℎ
2β̂ℎ,10

2 �̅�ℎ
2𝐶ℎ𝑥

2 + β̂ℎ,20
2 𝑆ℎ𝑥

4 𝐶ℎ𝑠
2 − 2β̂ℎ,10�̅�ℎ�̅�ℎ𝜌ℎ𝑥𝑦𝐶ℎ𝑥𝐶ℎ𝑦 

−2β̂ℎ,20�̅�ℎ𝑆ℎ𝑥
2 𝜌ℎ𝑠𝑦𝐶ℎ𝑦𝐶ℎ𝑠 + 2β̂ℎ,10β̂ℎ,10𝑆ℎ𝑥

2 �̅�ℎ𝜌ℎ𝑥𝑠𝐶ℎ𝑥𝐶ℎ𝑠]                                                                 (10) 

 

3.3 Optimality conditions for Koyuncu and Kadilar (2016) Estimator 
 

In this section, optimality conditions for optimum performance of Koyuncu and Kadilar (2016) 

calibration regression estimator is deduced. Thus, setting  
𝜕𝑉[�̅�𝑘𝑘

∗ ]

𝜕β̂ℎ,10
= 0 and  

𝜕𝑉[�̅�𝑘𝑘
∗ ]

𝜕β̂ℎ,20
= 0 respectively 

gives 

β̂ℎ,10 =
�̅�ℎ𝜌ℎ𝑦𝑥𝐶ℎ𝑦𝐶ℎ𝑥 − β̂ℎ,20𝑆ℎ𝑥

2 𝜌ℎ𝑥𝑠𝐶ℎ𝑥𝐶ℎ𝑠

�̅�ℎ𝐶ℎ𝑥
2                                                                                         (11) 

β̂ℎ,20 =  
�̅�ℎ𝜌ℎ𝑦𝑠𝐶ℎ𝑦𝐶ℎ𝑠 − β̂ℎ,10�̅�ℎ𝜌ℎ𝑥𝑠𝐶ℎ𝑥𝐶ℎ𝑠

𝑆ℎ𝑥
2 𝐶ℎ𝑠

2                                                                                          (12) 

Substituting (12) in (11) or (11) in (12), the optimum values of β̂ℎ,10,𝑜𝑝𝑡 and β̂ℎ,20,𝑜𝑝𝑡 are obtained 

respectively as 
 

β̂ℎ,10,𝑜𝑝𝑡   =    
�̅�ℎ𝐶ℎ𝑦(𝜌ℎ𝑦𝑥 − 𝜌ℎ𝑦𝑠𝜌ℎ𝑥𝑠)

�̅�ℎ𝐶ℎ𝑥(1 − 𝜌ℎ𝑥𝑠
2 )

                                                                                                   (13) 

β̂ℎ,20,𝑜𝑝𝑡    =  
�̅�ℎ𝐶ℎ𝑦(𝜌ℎ𝑦𝑠 − 𝜌ℎ𝑦𝑥𝜌ℎ𝑥𝑠)

𝑆ℎ𝑥
2 𝐶ℎ𝑠(1 − 𝜌ℎ𝑥𝑠

2 )
                                                                                                    (14) 

substituting the value of  β̂ℎ,10,𝑜𝑝𝑡  in (13) and β̂ℎ,20,𝑜𝑝𝑡 in (14) for β̂ℎ,10  and β̂ℎ,20 in (7), an 

asymptotically optimum estimator (AOE) �̅�𝐾𝐾,𝑜𝑝𝑡
∗  of population mean is obtained for Koyuncu and 

Kadilar (2016) calibration regression estimator as 
 

�̅�𝐾𝐾,𝑜𝑝𝑡
∗ = ∑ 𝑊ℎ�̅�ℎ

𝐻

ℎ=1

+
�̅�ℎ𝐶ℎ𝑦(𝜌ℎ𝑦𝑥 − 𝜌ℎ𝑦𝑠𝜌ℎ𝑥𝑠)

�̅�ℎ𝐶ℎ𝑥(1 − 𝜌ℎ𝑥𝑠
2 )

∑ 𝑊ℎ(�̅�ℎ − �̅�ℎ)

𝐻

ℎ=1

 

+
�̅�ℎ𝐶ℎ𝑦(𝜌ℎ𝑦𝑠 − 𝜌ℎ𝑦𝑥𝜌ℎ𝑥𝑠)

𝑆ℎ𝑥
2 𝐶ℎ𝑠(1 − 𝜌ℎ𝑥𝑠

2 )
∑ 𝑊ℎ(𝑆ℎ𝑥

2 − 𝑠ℎ𝑥
2 )

𝐻

ℎ=1

                                                                                      (15) 

 

Similarly, substituting the value of  β̂ℎ,10,𝑜𝑝𝑡  in (13) and β̂ℎ,20,𝑜𝑝𝑡  in (14) for β̂ℎ,10, and  β̂ℎ,20 in 

(10), variance of the asymptotically optimum estimator (AOE) �̅�𝐾𝐾,𝑜𝑝𝑡
∗  [or minimum variance 

of �̅�𝐾𝐾
∗ ] for Koyuncu and Kadilar (2016) calibration regression estimator is obtained as 

 

𝑉𝑜𝑝𝑡[�̅�𝐾𝐾
∗ ] = ∑ 𝑊ℎ

2𝛾ℎ�̅�ℎ
2𝐶ℎ𝑦

2 (1 − 𝜌𝑥𝑠
2 )−2𝐻

ℎ=1 {(1 − 𝜌𝑥𝑠
2 )2 + (𝜌ℎ𝑥𝑦 − 𝜌ℎ𝑥𝑠𝜌ℎ𝑠𝑦)

2
  

+(𝜌ℎ𝑠𝑦 − 𝜌ℎ𝑥𝑠𝜌ℎ𝑥𝑦)
2

− (1 − 𝜌𝑥𝑠
2 )[2𝜌ℎ𝑥𝑦(𝜌ℎ𝑥𝑦 − 𝜌ℎ𝑥𝑠𝜌ℎ𝑠𝑦) + 2𝜌ℎ𝑠𝑦(𝜌ℎ𝑠𝑦 − 𝜌ℎ𝑥𝑠𝜌ℎ𝑥𝑦)] 

+2𝜌ℎ𝑥𝑠(𝜌ℎ𝑥𝑦 − 𝜌ℎ𝑥𝑠𝜌ℎ𝑠𝑦)(𝜌ℎ𝑠𝑦 − 𝜌ℎ𝑥𝑠𝜌ℎ𝑥𝑦)}                                                                                       (16) 
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4. Calibration Estimation by Logarithmic Calibration Weightings 
 

Deville and Sarndal (1992), suggested calibration estimation technique for minimising a distance 

measure between initial weights and final weights with respect to calibration constraints. However, 

the calibration weights defined by minimizing a distance measure under some given constraints 

may be negative and or extremely large. To overcome this limitation, this paper uses inverse 

exponentiation technique in formulating the calibration constraints to get reasonable calibration 

weights that will optimize the efficiency of calibration estimators.  

 

4.1 Modified Koyuncu and Kadilar (2016) Estimator 
  

Following Koyuncu and Kadilar (2016), a new calibration regression estimator of population mean 

is proposed using inverse exponentiation method as 
 

�̅�𝑁𝑒𝑤,𝐾𝐾
∗ = ∑ 𝑊ℎ

∗𝑙𝑜𝑔�̅�ℎ
𝐻
ℎ=1                                                                                                                           (17)  

 

where   𝑊ℎ
∗are new calibration weights minimising the chi-square distance measure 

𝐿(𝑊ℎ
∗, 𝑊ℎ) = ∑

(𝑊ℎ
∗−𝑊ℎ)

2

𝑊ℎ𝑄ℎ

𝐻
ℎ=1                                                                                                                      (18)  

 

subject to the logarithmic calibration constraints defined by 
 

∑ 𝑊ℎ
∗𝑙𝑜𝑔�̅�ℎ

𝐻
ℎ=1 = ∑ 𝑊ℎ

𝐻
ℎ=1 𝑙𝑜𝑔�̅�ℎ                                                                                                              (19)  

∑ 𝑊ℎ
∗𝐻

ℎ=1 𝑙𝑜𝑔𝑠ℎ𝑥
2 = ∑ 𝑊ℎ

𝐻
ℎ=1 𝑙𝑜𝑔𝑆ℎ𝑥

′2                                                                                                          (20)  

∑ 𝑊ℎ
∗𝐻

ℎ=1 = ∑ 𝑊ℎ
𝐻
ℎ=1                                                                                                                                     (21)  

 

The Lagrange function is given by   

𝐿(𝑊ℎ
∗, 𝑊ℎ)∗ = ∑

(𝑊ℎ
∗−𝑤ℎ)

2

𝑊ℎ𝑄ℎ

𝐻
ℎ=1 − 2𝜆10

∗  (  ∑ 𝑊ℎ
∗𝑙𝑜𝑔�̅�ℎ

𝐻
ℎ=1 − ∑ 𝑊ℎ𝑙𝑜𝑔𝐻

ℎ=1 �̅�ℎ)  

−2𝜆20
∗  (∑ 𝑊ℎ

∗𝑙𝑜𝑔𝐻
ℎ=1 𝑠ℎ𝑥

2 − ∑ 𝑊ℎ
𝐻
ℎ=1 𝑙𝑜𝑔𝑆ℎ𝑥

2  ) − 2𝜆30
∗  (∑ 𝑊ℎ

∗𝐻
ℎ=1 − ∑ 𝑊ℎ

𝐻
ℎ=1 )                               (22)  

 

Minimizing the chi-square distance measure (18) subject to the calibration constraints in [(19), 

(20), (21)] respectively, calibration weights (𝑊ℎ
∗) is obtained as    

 

𝑊ℎ
∗ =   𝑊ℎ + 𝑊ℎ𝑄ℎ(𝜆10

∗ 𝑙𝑜𝑔�̅�ℎ +   𝜆20
∗  𝑙𝑜𝑔𝑠ℎ𝑥

2 +  𝜆30
∗  )                                                                        (23) 

 

Substituting (23) into [(19), (20), (21)] respectively, a system of equations is obtained: 
 

[

𝑚16 𝑚15 𝑚14

𝑚15 𝑚12 𝑚13

𝑚14 𝑚13 𝑚11

] [

𝜆10
∗

𝜆20
∗

𝜆30
∗

] = [

μ10

μ20

μ30

]                                                                                                             (24) 

 

Solving for the 𝜆𝑖0
∗ 𝑠  in (24) gives 

 

𝜆10
∗ =

μ10(𝑚11𝑚12 − 𝑚13
2 ) + μ20(𝑚14𝑚15 − 𝑚11𝑚16)

(𝑚11𝑚12𝑚16 − 𝑚12𝑚14
2 − 𝑚11𝑚15

2 − 𝑚13
2 𝑚16 + 2𝑚13𝑚14𝑚15)

 

𝜆20
∗ =

μ20(𝑚11𝑚16 − 𝑚14
2 ) − μ10(𝑚11𝑚15 − 𝑚13𝑚14)

(𝑚11𝑚12𝑚16 − 𝑚12𝑚14
2 − 𝑚11𝑚15

2 − 𝑚13
2 𝑚16 + 2𝑚13𝑚14𝑚15)

 

𝜆30
∗ =

μ10(𝑚13𝑚15 − 𝑚12𝑚14) + μ20(𝑚14𝑚15 − 𝑚13𝑚16)

(𝑚11𝑚12𝑚16 − 𝑚12𝑚14
2 − 𝑚11𝑚15

2 − 𝑚13
2 𝑚16 + 2𝑚13𝑚14𝑚15)

 

 

where 𝑚11 = ∑ 𝑊ℎ𝑄ℎ
𝐻
ℎ=1    𝑚12 = ∑ 𝑊ℎ𝑄ℎ

𝐻
ℎ=1 (𝑙𝑜𝑔𝑠ℎ𝑥

2 )2    𝑚13 = ∑ 𝑊ℎ𝑄ℎ𝑙𝑜𝑔𝑠ℎ𝑥
2𝐻

ℎ=1   

 𝑚14 = ∑ 𝑊ℎ𝑄ℎ𝑙𝑜𝑔�̅�ℎ
𝐻
ℎ=1 ,    𝑚15 = ∑ 𝑊ℎ𝑄ℎ(𝑙𝑜𝑔�̅�ℎ)(𝑙𝑜𝑔𝑠ℎ

2)𝐻
ℎ=1 ,  𝑚16 = ∑ 𝑊ℎ𝑄ℎ

𝐻
ℎ=1 (𝑙𝑜𝑔�̅�ℎ)2  
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μ10 = ∑ 𝑊ℎ(𝑙𝑜𝑔�̅�ℎ − 𝑙𝑜𝑔�̅�ℎ)𝐻
ℎ=1 ,  μ20 = ∑ 𝑊ℎ(𝑙𝑜𝑔𝑆ℎ𝑥

2 − 𝑙𝑜𝑔𝑠ℎ𝑥
2 )𝐻

ℎ=1 ,   μ30 = 0 

 

If the 𝜆𝑖0
∗ 𝑠  are substituted in (23) and subsequently in (17) while setting 𝑄ℎ = 1, the proposed 

modification to Koyuncu and Kadilar (2016) calibration regression estimator of population mean 

in stratified random sampling is obtained as 
 

�̅�𝑁𝑒𝑤,𝐾𝐾
∗ = ∑ 𝑊ℎ 𝑙𝑜𝑔�̅�ℎ

𝐻
ℎ=1 + �̂�ℎ,10

∗ ∑ 𝑊ℎ(𝑙𝑜𝑔�̅�ℎ − 𝑙𝑜𝑔�̅�ℎ)𝐻
ℎ=1 +  

 �̂�ℎ,20
∗ ∑ 𝑊ℎ(𝑙𝑜𝑔𝑆ℎ𝑥

2 − 𝑙𝑜𝑔𝑠ℎ𝑥
2 )

𝐻

ℎ=1

                                                                                                              (25) 

 

here �̂�ℎ,10
∗  and �̂�ℎ,20

∗  are the coefficients of regression and are given by 
 

�̂�ℎ,10
∗ =

μ40(𝜏11𝜏12 − 𝜏13
2 ) − μ50(𝜏11𝜏15 − 𝜏13𝜏14) + μ60(𝜏13𝜏15 − 𝜏12𝜏14)

(𝜏11𝜏12𝜏16 − 𝜏12𝜏14
2 − 𝜏11𝜏15

2 − 𝜏13
2 𝜏16 + 2𝜏13𝜏14𝜏15)

 

�̂�ℎ,20
∗ =

μ40(𝜏13𝜏14 − 𝜏11𝜏15) − μ50(𝜏11𝜏16 − 𝜏14
2 ) + μ60(𝜏14𝜏15 − 𝜏13𝜏16)

(𝜏11𝜏12𝜏16 − 𝜏12𝜏14
2 − 𝜏11𝜏15

2 − 𝜏13
2 𝜏16 + 2𝜏13𝜏14𝜏15)

 

 

where τ11 = ∑ 𝑤ℎ
𝐻
ℎ=1 ,   𝜏12 = ∑ 𝑤ℎ

𝐻
ℎ=1 (𝑙𝑜𝑔𝑠ℎ𝑥

2 )2, 𝜏13 = ∑ 𝑤ℎ𝑙𝑜𝑔𝑠ℎ𝑥
2𝐻

ℎ=1   

 𝜏14 = ∑ 𝑤ℎ𝑙𝑜𝑔�̅�ℎ
𝐻
ℎ=1 ,     𝜏15 = ∑ 𝑤ℎ(𝑙𝑜𝑔�̅�ℎ)(𝑙𝑜𝑔𝑠ℎ

2)𝐻
ℎ=1 , 𝜏16 = ∑ 𝑤ℎ

𝐻
ℎ=1 (𝑙𝑜𝑔�̅�ℎ)2  

μ40 = ∑ 𝑊ℎ(𝑙𝑜𝑔�̅�ℎ)(𝑙𝑜𝑔�̅�ℎ).𝐻
ℎ=1  μ50 = ∑ 𝑊ℎ(𝑙𝑜𝑔𝑠ℎ

2)(𝑙𝑜𝑔�̅�ℎ)𝐻
ℎ=1 , μ60 = ∑ 𝑊ℎ𝑙𝑜𝑔�̅�ℎ

𝐻
ℎ=1  

 

4.2 Estimation of Variance for Modified Koyuncu and Kadilar (2016) Estimator 
 

The estimator of variance of the modified Koyuncu and Kadilar (2016) Calibration Regression 

Estimator is derived using large sample approximation (LASAP) method.  

Equation (25) can be expressed as: 

�̅�𝑁𝑒𝑤,𝐾𝐾
∗ = ∑ 𝑊ℎ 𝑙𝑜𝑔�̅�ℎ

𝐻
ℎ=1 + �̂�ℎ,10

∗ ∑ 𝑊ℎ (𝑙𝑜𝑔
�̅�ℎ

�̅�ℎ
)𝐻

ℎ=1 +  �̂�ℎ,20
∗ ∑ 𝑊ℎ (𝑙𝑜𝑔

𝑆ℎ𝑥
2

𝑠ℎ𝑥
2 )𝐻

ℎ=1                        (26)  

So that, expressing (26) in the relative error terms gives: 

�̅�𝑁𝑒𝑤,𝐾𝐾
∗ = ∑ 𝑊ℎ𝑙𝑜𝑔𝐻

ℎ=1 [�̅�ℎ(1 + 𝑒ℎ𝑦)] + �̂�ℎ,10
∗ ∑ 𝑊ℎ𝑙𝑜𝑔(1 + 𝑒ℎ𝑥)−1𝐻

ℎ=1 +   

�̂�ℎ,20
∗ ∑ 𝑊ℎ𝑙𝑜𝑔(1 + 𝑒ℎ𝑠)−1𝐻

ℎ=1                                                                                                                     (27)  

Expanding equation (27) gives: 

�̅�𝑁𝑒𝑤,𝐾𝐾
∗ = ∑ 𝑊ℎ𝑙𝑜𝑔�̅�ℎ

𝐻
ℎ=1 + ∑ 𝑊ℎ𝑙𝑜𝑔𝐻

ℎ=1 (1 + 𝑒ℎ𝑦) + �̂�ℎ,10
∗ ∑ 𝑊ℎ𝑙𝑜𝑔(1 + 𝑒ℎ𝑥)−1𝐻

ℎ=1 +   

�̂�ℎ,20
∗ ∑ 𝑊ℎ𝑙𝑜𝑔(1 + 𝑒ℎ𝑠)−1𝐻

ℎ=1                                                                                                                     (28)  

So that 

(�̅�𝑁𝑒𝑤,𝐾𝐾
∗ − �̅�) = ∑ 𝑊ℎ𝑙𝑜𝑔𝐻

ℎ=1 (1 + 𝑒ℎ𝑦) − �̂�ℎ,10
∗ ∑ 𝑊ℎ𝑙𝑜𝑔(1 + 𝑒ℎ𝑥) 𝐻

ℎ=1 –  

�̂�ℎ,20
∗ ∑ 𝑊ℎ𝑙𝑜𝑔(1 + 𝑒ℎ𝑠) 𝐻

ℎ=1                                                                                                                        (29)  

where �̅� = ∑ 𝑊ℎ𝑙𝑜𝑔�̅�ℎ
𝐻
ℎ=1  

Now, it is assumed that |𝑒ℎ𝑦| < 1; |𝑒ℎ𝑥| < 1 and |𝑒ℎ𝑠| < 1  so that expanding (1 + 𝑒ℎ𝑦), 

 (1 + 𝑒ℎ𝑥)   and (1 + 𝑒ℎ𝑠) as series in power of the 𝑒′𝑠 gives 

(�̅�𝑁𝑒𝑤,𝐾𝐾
∗ − �̅�) = [∑ 𝑊ℎ

𝐻
ℎ=1 (𝑒ℎ𝑦 −

𝑒ℎ𝑦
2

2!
+

𝑒ℎ𝑦
3

3!
− ⋯ ) − �̂�ℎ,10

∗ ∑ 𝑊ℎ
𝐻
ℎ=1 (𝑒ℎ𝑥 −

𝑒ℎ𝑥
2

2!
+

𝑒ℎ𝑥
3

3!
− ⋯ )   
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−�̂�ℎ,20
∗ ∑ 𝑊ℎ (𝑒ℎ𝑠 −

𝑒ℎ𝑠
2

2!
+

𝑒ℎ𝑠
3

3!
− ⋯ ) 𝐻

ℎ=1 ]                                                                                                 (30)  

Squaring both sides of (30), multiplying out and retaining terms of the 𝑒′𝑠 to the first degree of 

approximation gives 

[�̅�𝑁𝑒𝑤,𝐾𝐾
∗ − �̅�]

2
= ∑ 𝑊ℎ

2𝐻
ℎ=1 [𝑒ℎ𝑦

2 + β̂ℎ,10
∗2 𝑒ℎ𝑥

2 + β̂ℎ,20
∗2 𝑒ℎ𝑠

2  −2�̂�ℎ,10
∗ 𝑒ℎ𝑦𝑒ℎ𝑥 − 2�̂�ℎ,20

∗ 𝑒ℎ𝑦𝑒ℎ𝑠 

+2�̂�ℎ,10
∗ �̂�ℎ,20

∗ 𝑒ℎ𝑥𝑒ℎ𝑠⌋                                                                                                                                       (31)                                                                                                   

Taking expectation of both sides of (31), the variance of the proposed logarithmic calibration 

regression estimator of population mean in stratified random sampling is obtained as 

�̂�[�̅�𝑁𝑒𝑤,𝐾𝐾
∗ ] = ∑ 𝑊ℎ

2𝛾ℎ
𝐻
ℎ=1 [𝐶ℎ𝑦

2 + β̂ℎ,10
∗2 𝐶ℎ𝑥

2 + β̂ℎ,20
∗2 𝐶ℎ𝑠

2 − 2�̂�ℎ,10
∗ 𝜌ℎ𝑦𝑥𝐶ℎ𝑦𝐶ℎ𝑥  

−2�̂�ℎ,20
∗ 𝜌ℎ𝑦𝑠𝐶ℎ𝑦𝐶ℎ𝑠 + 2�̂�ℎ,10

∗ �̂�ℎ,20
∗ 𝜌ℎ𝑥𝑠𝐶ℎ𝑥𝐶ℎ𝑠]]                                                                                     (32) 

 

4.3 Optimality Conditions for Modified Koyuncu and Kadilar (2016) Estimator  
 

In this section, optimality conditions for optimum performance of the modified Koyuncu and 

Kadilar (2016) calibration regression estimator is deduced. Thus, the  𝑉[�̅�𝑁𝑒𝑤,𝐾𝐾
∗ ]  in (32) is 

minimized by setting 
𝜕𝑉[�̅�𝑛𝑒𝑤,𝐾𝐾

∗ ]

𝜕�̂�ℎ,10
∗ = 0    and  

𝜕𝑉[�̅�𝑛𝑒𝑤,𝐾𝐾
∗ ]

𝜕�̂�ℎ,20
∗ = 0  respectively so that: 

�̂�ℎ,10
∗ =

𝜌ℎ𝑦𝑥𝐶ℎ𝑦 − �̂�ℎ,20
∗ 𝜌ℎ𝑥𝑠𝐶ℎ𝑠

𝐶ℎ𝑥

                                                                                                               (33) 

�̂�ℎ,20
∗ =

𝜌ℎ𝑦𝑥𝐶ℎ𝑦 − �̂�ℎ,10
∗ 𝜌ℎ𝑥𝑠𝐶ℎ𝑥

𝐶ℎ𝑠

                                                                                                               (34) 

Substituting (34) in (33) or (33) in (34), gives the optimum values of �̂�ℎ,10,𝑜𝑝𝑡
∗  

and �̂�ℎ,20,𝑜𝑝𝑡
∗  respectively as: 

�̂�ℎ,10,𝑜𝑝𝑡
∗ =

𝐶ℎ𝑦(𝜌𝑥𝑦 − 𝜌𝑥𝑠𝜌𝑠𝑦)

𝐶ℎ𝑥(1 − 𝜌ℎ𝑥𝑠
2 )

                                                                                                                  (35) 

�̂�ℎ,20,𝑜𝑝𝑡
∗ =

𝐶ℎ𝑦(𝜌𝑠𝑦 − 𝜌𝑥𝑠𝜌𝑥𝑦)

𝐶ℎ𝑠(1 − 𝜌ℎ𝑥𝑠
2 )

                                                                                                                  (36) 

Substituting the value of �̂�ℎ,10,𝑜𝑝𝑡
∗  in (35) and  �̂�ℎ,20,𝑜𝑝𝑡

∗   in (36) for   �̂�ℎ,10
∗  and �̂�ℎ,20

∗  in (25), an 

asymptotically optimum estimator (AOE) �̅�𝑁𝑒𝑤,𝑜𝑝𝑡
∗  of population mean is obtained for the proposed 

modified Koyuncu and Kadilar (2016) calibration regression estimator as: 

�̅�𝑁𝑒𝑤,𝐾𝐾
∗ = ∑ 𝑊ℎ𝑙𝑜𝑔�̅�ℎ

𝐻
ℎ=1 +

𝐶ℎ𝑦(𝜌𝑥𝑦−𝜌𝑥𝑠𝜌𝑠𝑦)

𝐶ℎ𝑥(1−𝜌ℎ𝑥𝑠
2 )

∑ 𝑊ℎ(𝑙𝑜𝑔�̅�ℎ − 𝑙𝑜𝑔�̅�ℎ)𝐻
ℎ=1   

+ 
𝐶ℎ𝑦(𝜌𝑠𝑦−𝜌𝑥𝑠𝜌𝑥𝑦)

𝐶ℎ𝑠(1−𝜌ℎ𝑥𝑠
2 )

∑ 𝑊ℎ(𝑙𝑜𝑔𝑆ℎ𝑥
2 − 𝑙𝑜𝑔𝑠ℎ𝑥

2 )𝐻
ℎ=1                                                                                       (37)  

Similarly, substituting the value of  �̂�ℎ,10,𝑜𝑝𝑡
∗  in (35) and �̂�ℎ,20,𝑜𝑝𝑡

∗   in (36) for �̂�ℎ,10
∗  and �̂�ℎ,20

∗  in 

(32), variance of the asymptotically optimum estimator (𝐴𝑂𝐸) �̅�𝑁𝑒𝑤,𝐾𝐾,𝑜𝑝𝑡
∗  [or minimum variance 

of  �̅�𝑁𝑒𝑤,𝐾𝐾
∗ ] for the proposed modified Koyuncu and Kadilar (2016) calibration regression 

estimator is obtained as 

𝑉𝑜𝑝𝑡[�̅�𝑁𝑒𝑤,𝐾𝐾
∗ ] = ∑ 𝑊ℎ

2𝛾ℎ𝐶ℎ𝑦
2 (1 − 𝜌𝑥𝑠

2 )−2𝐻
ℎ=1 {(1 − 𝜌𝑥𝑠

2 )2 + (𝜌ℎ𝑥𝑦 − 𝜌ℎ𝑥𝑠𝜌ℎ𝑠𝑦)
2
  

+(𝜌ℎ𝑠𝑦 − 𝜌ℎ𝑥𝑠𝜌ℎ𝑥𝑦)
2

− (1 − 𝜌𝑥𝑠
2 )[2𝜌ℎ𝑥𝑦(𝜌ℎ𝑥𝑦 − 𝜌ℎ𝑥𝑠𝜌ℎ𝑠𝑦) + 2𝜌ℎ𝑠𝑦(𝜌ℎ𝑠𝑦 − 𝜌ℎ𝑥𝑠𝜌ℎ𝑥𝑦)] 

+2𝜌ℎ𝑥𝑠(𝜌ℎ𝑥𝑦 − 𝜌ℎ𝑥𝑠𝜌ℎ𝑠𝑦)(𝜌ℎ𝑠𝑦 − 𝜌ℎ𝑥𝑠𝜌ℎ𝑥𝑦)}                                                                                      (38) 
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5. Empirical Study 
 

The data set in Table 1 is used to test the performances of the proposed logarithmic calibration 

weightings method over existing simple calibration weightings method by Deville and Sarndal 

(1992). The variance and percent relative efficiency (𝑃𝑅𝐸) are the two measuring criteria used in 

comparing the performance of each calibration weightings method. 

 

5.1 Cochran (1977) Regression Estimator 
 

The conventional regression estimator in stratified random sampling by Cochran (1977) is given 

by 

�̅�𝑅𝑒𝑔
∗ = ∑ 𝑊ℎ�̅�ℎ

𝐻
ℎ=1 + 𝛽ℎ ∑ 𝑊ℎ(�̅�ℎ − �̅�ℎ)𝐻

ℎ=1                                                                                          (39)  

with variance estimator given by: 

𝑉𝑜𝑝𝑡[�̅�𝑅𝑒𝑔
∗ ] = ∑ 𝑊ℎ

2𝛾ℎ�̅�ℎ
2𝐶ℎ𝑦

2 (1 − 𝜌ℎ𝑥𝑦
2 )𝐻

ℎ=1                                                                                            (40)  

where �̅�𝑠𝑡 = ∑ 𝑊ℎ�̅�ℎ
𝐻
ℎ=1  and �̅�𝑠𝑡 = ∑ 𝑊ℎ�̅�ℎ

𝐻
ℎ=1  are the Horvitz-Thompson-type estimators,  

𝛽ℎ = ∑ 𝑊ℎ�̅�ℎ�̅�ℎ
𝐻
ℎ=1 ∑ 𝑊ℎ�̅�ℎ

2𝐻
ℎ=1⁄  is the regression coefficient and 𝑊ℎare design weights. 

 

5.2 Percent Relative Efficiency 
 

Let the percent relative efficiency (𝑃𝑅𝐸) of an estimator (say �̅�𝑖
∗) with respect to the conventional 

regression estimator in stratified random sampling (�̅�𝑅𝑒𝑔
∗ ) by Cochran (1977) be defined by 

𝑃𝑅𝐸 =
𝑉(�̅�𝑅𝑒𝑔

∗ )

𝑉(�̅�𝑖
∗)

× 100                                                                                                                              (41)  

 

Table 1: Data Statistics 
 

Parameter Stratum I Stratum II Stratum III Stratum IV 

𝑁ℎ 

𝑛ℎ 

�̅�ℎ 

�̅�ℎ 

𝐶ℎ𝑦 

𝐶ℎ𝑥 

𝜌ℎ𝑥𝑦  

𝜌ℎ𝑠𝑦  

𝜌ℎ𝑥𝑠 

10 

3 

11.90 

15.72 

1.062 

1.234 

0.940 

0.840 

0.860 

9 

2 

10.38 

14.84 

0.986 

1.306 

0.900 

0.880 

0.820 

26 

5 

12.120 

13.46 

1.208 

1.032 

0.840 

0.920 

0.760 

7 

2 

11.98 

16.32 

1.023 

0.926 

0.890 

0.780 

0.840 

 

Table 2: Variance and PRE of Estimators under the Two Calibration weightings Techniques 
 

S/No.           Estimator                                   PREs 

                        1.    �̅�𝑅𝑒𝑔
∗                 100 

                       2.    �̅�𝐾𝐾
∗                        126.0804   

                      3.        �̅�𝑁𝑒𝑤,𝐾𝐾
∗      191.3110 
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6. Discussion of results 
 

The percent relative efficiency (PREs) in Table 2 shows that the proposed modified Koyuncu and 

Kadilar (2016) calibration regression estimator has 91 percent efficiency gains while Koyuncu and 

Kadilar (2016) calibration regression estimator has 26 percent efficiency gains. This means that the 

proposed modified Koyuncu and Kadilar (2016) calibration regression estimator is 65 percent 

more efficient than Koyuncu and Kadilar (2016) calibration regression estimator with respect to 

Cochran (1977) conventional regression estimator of population mean in stratified random 

sampling. Therefore, in using the proposed modified Koyuncu and Kadilar (2016) calibration 

regression estimator one has 65 percent efficiency gains over the Koyuncu and Kadilar (2016) 

calibration regression estimator and by extension new proposed logarithmic calibration technique. 

Also, the proposed modified Koyuncu and Kadilar (2016) calibration regression estimator is better 

than Cochran (1977) conventional regression estimator in terms of efficiency by 91 percent. 

 

7. Conclusion  
 

Koyuncu and Kadilar (2016) used Deville and Sarndal (1992) simple calibration technique to 

propose a calibration regression estimator of population mean. The present study advocates a 

modification to Koyuncu and Kadilar (2016) estimator using a new calibration technique 

(logarithmic calibration weightings). Following the discussion of results, it is concluded that the 

proposed logarithmic calibration technique gives a better result than the conventional calibration 

technique by Deville and Sarndal (1992). Therefore, the new calibration technique to statistical 

estimation theory should be recommended to survey researchers as it gives more precise and 

consistent estimates of the population parameter(s) of interest. 
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