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Abstract 

 
The main thrust of this article is to provide counterexamples where the variance of the UMVUE 

does not achieve the Cramer-Rao lower bound. We provided many motivating counterexamples 

and showed that these UMVU estimators are, in fact, asymptotically efficient estimators. All 

counterexamples are new or may not be available in standard textbooks. To illustrate the entire 

process, we supplied many definitions related to UMVUE and described various methods and step-

by-step approaches for finding UMVUE’s. In concluding remarks, we also gave a short biography 

of Professor C.R. Rao.  It is hoped that the article will have pedagogical value in courses on 

statistical inference.     
 

Keywords: Ancillary statistics, Complete statistics, Minimal Sufficiency, Unbiased estimator, 

Rao-Blackwell theorem, Lehmann-Scheffé theorem.  
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1.  Introduction 
 

Rao-Blackwell theorem (Rao 1945), Lehmann-Scheffé theorem (Lehmann and Scheffé 1950, 

1955), Basu’s theorem on ancillary statistics (1955), and Cramer-Rao inequality are considered to 

be fundamental paradigms of modern statistics (see Pathak, 1992). The Rao-Blackwell theorem 

says that conditioning on a sufficient statistic improves any estimator. More specifically, this 

theorem says that any unbiased estimator should be a function of a sufficient statistic; if not, we 

can construct a new estimator with a smaller variance by taking conditional expectation given a 

sufficient statistic.  
 

However, this raises the question of which sufficient statistics are to be used to compute the 

conditional expectation for maximum improvement. The best “Rao-Blackwellization” is achieved 

by conditioning on a minimal sufficient statistic ( T ), a function of any other sufficient statistic. A 

minimal sufficient statistic is a sufficient statistic that represents a maximal reduction of the data 
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and contains as much information about the unknown parameters as the data itself. Again, a 

minimal sufficient statistic may not be unique and may contain ancillary or “redundant” 

information about the unknown parameter. On the other hand, if T  is complete (a stronger 

notion), then any  ( )g T  is ancillary for the unknown parameter only if ( )g T  is a constant; thus, a 

complete statistic contains no ancillary information. If a statistic T  is complete and sufficient, it is 

minimally sufficient; however, the converse is not always true.  
 

The Lehmann-Scheffé theorem that says if a statistic T  is ‘complete,’ there will be only one 

unbiased estimator that is a function of the complete statistic T  for any given parametric function. 

So, consider an unbiased estimator as a function of the complete sufficient statistic. Then, the Rao-

Blackwell theorem confirms no further improvement is possible (by conditioning), so it is the best. 

Therefore, a complete sufficient statistic is ‘sufficient’ to derive the uniformly minimum variance 

unbiased (UMVUE) (when it exists). The Rao-Blackwell theorem was first established by Rao 

(1945). Later, it was independently discovered by Blackwell (1947) who extended its application 

to unbiased estimation under optimal stopping rules. 
 

In the above, we noted that UMVU estimators of a parametric function ( )g  can be found using 

the Rao-Balckwell theorem if a complete sufficient statistic exists. However, in many cases the 

minimal sufficient statistic is not complete, and so we cannot always appeal to the Lehmann-

Scheffé theorem to find UMVU estimators. However, Cramer-Rao inequality gives a lower bound 

for the variance of an unbiased estimator of ( )g . If the variance of an unbiased estimator of 

( )g  attains this lower bound, then the estimator will be UMVUE.  
 

The Cramér-Rao inequality is the finite sample analog of the Fisher information inequality. It is 

widely used in diverse areas of statistics. The story behind this inequality is that C.R. Rao, who 

was then hardly 23 years old, was teaching a class at Calcutta University in 1943. During the class, 

he proved a result obtained by R.A. Fisher about the lower bound for the variance of an estimator 

for a large sample. During the lecture, a student asked him if he could prove the result for finite 

samples. On the same day, he worked all night, and the next day, he proved the result, what is now 

known as the Cramér-Rao inequality for finite samples. Because of its usefulness, people have 

been using it ever since. Some of the significant contributions to this inequality have been made by 

Bhattacharya (1946), Blyth (1974), Blyth and Roberts (1972), Chapman and Robbins (1951), 

Fabian and Hannan (1977), and others.      
 

More recently, McKeague and Wefelmeyer (2000) introduced a form of Rao-Blackwellization for 

Markov Chains, Nayak and Sinha (2012) considered a few aspects of UMVUE in the presence of 

ancillary statistics, and Kagan and Malinovsky (2013, 2016) gave partial solution to the existence 

of UMVUE in the Nile problem and discussed the structure of the UMVUE. Pathak (1992) 

reviewed Rao’s (1945) article concerning information and the accuracy attainable in the estimation 

of statistical parameters, particularly the Rao-Blackwell theorem and the Cramer-Rao inequality, 

and their impacts on the current development in statistics and, more specifically, in statistical 

estimation theory.  
 

The paper is organized as follows: In Section 2, we provide definitions related to UMVUE, which 

will be used in subsequent sections for proofs. In Section 3, we describe various methods for 

finding UMVUE. Section 4 presents several thought-provoking examples where the variance of 

UMVU estimators does not reach the Cramer-Rao Lower Bound (CR-LB). Section 5 contains 

some concluding remarks.          
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2. Preliminaries: Definitions and Propositions 
 

A sufficient statistic T allows one to summarize the full data without losing any information 

relevant to the parameter in question. In other words, given T  no additional information on  can 

be extracted from the data. So, a natural definition of sufficiency is then as follows: 
 

Definition 2.1 (Sufficient statistic). A statistic T  is sufficient for an unknown parameter if the 

conditional distribution of the data given T  does not depend on . 
 

Definition 2.2 (Ancillary Statistic). A statistic T is called an ancillary statistic for if its 

distribution is free of .  
 

Thus, ancillary statistic T  contains no information about the unknown parameter . For T   to 

contain any information about , its distribution must depend on . Suppose 
1X and 

2X are 

independent Normal random variables (r.v.’s), each with mean  and variance 1. Let 

1 2
T X X ; then T   follows Normal distribution with mean 0  and variance 2 . Thus T  is 

ancillary for the unknown parameter and cannot be directly used to estimate it. Paradoxically, 

there are situations where an ancillary statistic, when used in conjunction with other statistics, can 

sometimes give important information for inferences about  (Rao, 1952b; Casella and Berger, 

2002; Nayak and Sinha, 2012; Vexler and Hutso, 2024). 
 

Definition 2.3 (Minimal Sufficient). A statistic T   is said to be a minimal sufficient for  if for 

any other sufficient statistic U  there exists a function g  such that ( )T g U . 
 

Thus, a minimal sufficient statistic is a sufficient statistic that represents the maximal reduction of 

the data and contains as much information about the unknown parameter as the data itself.  
 

Definition 2.4 (Complete Statistic). A statistics T  is said to be  complete if, for any measurable 

function ( )g  of  T ,  [ ( )] 0E g T for all  implies that [ ( ) 0]P g T 1 for all .  
  

For instance, if T   is complete then ( )g T  is ancillary for only if ( )g T  remains constant for all 

. In other words, a statistic T   is complete if no nonconstant function ( )g T  exists such that 

[ ( )] 0E g T for all .  
 

We show below that if a statistic T  is complete and sufficient, then T  is minimally sufficient, but 

the converse is not always true. 
 

Proposition 2.1 If a sufficient statistic T  is complete, then it is also minimal sufficient. 
 

Proof. Suppose U is minimal sufficient for , then by definition, U
1( )g T  for some function 

1g . We have 
2( ) [ ( | )] [ ( )]E T E E T U E g U  for some function 𝑔

2
. Again, 

2 2 1( ) [ ( )]g U g g T , hence 
2 1[ ( ( ))]E T g g T   0 . Since T  is complete, by Definition 2.4 

T
2 1[ ( )]g g T 0   a.s.  or T

2 1[ ( )]g g T  a.s.;  hence T
2 ( )g U . Thus, T is a one-to-one 

transformation of a minimal sufficient statistic.              
 

However, as demonstrated in the following counterexample, a minimal sufficient statistic may not 

necessarily be complete. Let 
1 2, , , nX X X

2 2( ,  )N c , 0c . (See Abramovich and Ritov, 

2023 and Nayak and Sinha, 2012.) It can be verified that 
2

1 1( ,  )n n

i i i iT X X is minimal 
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sufficient for  and 1

n

i iX  
2 2( ,  )N n nc . So, using the fact 2 2( ) Var( ) [ ( )]E X X E X , 

we have 
2 2 2 2 2 2 2

1( ) ( )n

i iE X nc n n c n  and 
2

1( )n

i iE X
2 2 2 2 2( ) ( 1)n c n c . An immediate algebra shows that 

                              2 2

2 2 2 21 1
1 11

( ) 0n n

i i i ic n c
E X E X n n  for all . 

Hence, there is a function ( )g T  with expectations identically zero and ( ) 0g T  a.s. So T is not 

complete.   
 

Below, we introduce an important class of distributions that include many “standard” distributions 

(e.g., binomial, Poisson, negative binomial, normal, gamma) and have common properties.  
 

Definition 2.5 (one-parameter exponential family). A family of distributions { ( ) : }f x  is 

called (one parameter) exponential family if 
 

                                                  ( ) exp ( ) ( ) ( ) ( )f c T d Ux x x   

for 
1( , , )nx x Sx  where support S  does not depend on the parameter  and ( )c , ( )T , 

( )d , and ( )S  are known functions; ( )c is known as the natural parameter of the distribution. 
 

The one-parameter exponential family can be naturally extended to multiparameter exponential 

families. 
 

Definition 2.6 (k-parameter exponential family). A family of distributions 

1{ ( ) : ( , , ) }pfθ x θ Θ  is called the k-parameter exponential family if 

                                                  
1

( ) exp ( ) ( ) ( ) ( )
k

i i
i

f c T d Uθ x θ x θ x   

for 
1( , , )nx x Sx  where support S  does not depend on the parameter θ  and ( )ic , ( )iT , 

( )d , and ( )S  are known functions. The functions 
1( ), , ( )kc cθ θ  are known as the natural 

parameters of the distribution. It is important to note that p , dimension of θ , need not be equal to 

k . 
 

3. Methods for UMVUE 
  

Let 
1 2, , , nX X X  be a random sample from a probability distribution ( )f x , where , an 

unknown parameter, is to be estimated. In the best-case scenario, one would seek an unbiased 

estimator for  with a small variance; ideally, an unbiased estimator with uniformly minimal 

variance.  
 

Definition 3.1 (Uniformly minimum variance unbiased estimator). T is said to be a uniformly 

minimum variance unbiased estimator (UMVUE) for , if  
 

(i) T is unbiased for , i.e., ( )E T    

(ii) for any other unbiased estimator  U of , Var ( ) Var ( )T U  uniformly  . 
 

 If a UMVUE T exists, then it should be unique. 

 



 

 

 

 

 

 

 

Bagui and Mehra: Uniformly Minimum Variance Unbiased Estimators...                         5 

 

 

Below, we state the Rao-Blackwell Theorem without proof. Proof can be found in any standard 

statistical inference textbook, such as Casella and Berger (2002) and Knight (2000). 
 

Theorem 3.1 (Rao-Blackwell Theorem). Let U be any unbiased estimator of ( )g  and T

sufficient for . Set 

    ( ) ( | )T E U T .  

Then, 

  (i)  ( )T  is unbiased of ( )g  

  (ii) Var ( ( )) Var ( )T U     . 
 

That is, ( )T  is a uniformly better-unbiased estimator of ( )g . The Rao-Blackwell Theorem 

states that an unbiased estimator can be improved by taking the conditional expectation given a 

sufficient statistic with a smaller variance. Now the question is which sufficient statistic to choose 

to compute the conditional expectation. For example, suppose U (not a function of sufficient 

statistic) is an unbiased estimator of ( )g and 
1T  and 

2T are both sufficient for  such that 

1 2( )T h T  for some function h . Now set 
1( )T  

1( | )E U T  and 
2 2( ) ( | )T E U T . By the 

Rao-Blackwell Theorem, variances of 
1( )T  and 

2( )T  will be less than or equal to Var( )U . 

But it is not clear which “Rao-Blackwellized” estimator, 
1( )T  or 

2( )T , will have a smaller 

variance. The following Proposition will answer this question. 
 

Proposition 3.1 Let U  be any unbiased estimator of ( )g . Set 
1 1( ) ( | )T E U T   and  

2 2( ) ( | )T E U T  where 
1T  and 

2T  are sufficient statistics. If  
1 2( )T h T , then 

 

    
1 2Var ( ( )) Var ( ( ))T T     

  

Proposition 3.1. asserts that for any unbiased estimator U of ( )g , the best improvement, known 

as “Rao-Blackwellization,” is attained by conditioning on a minimal sufficient statistic. (Recall 

that a statistic T is minimal sufficient if ( )T h W , where W is any other sufficient statistic.) 

Since minimal sufficient statistics are not unique, the Rao-Blackwell Theorem does not guarantee 

that the resulting unbiased estimator of ( )g  would be an UMVUE. For a unique UMVUE for 

( )g , we need additional completeness property of sufficient statistics of . This is established 

in the following theorem. 
 

Theorem 3.2 (Lehmann- Scheffé Theorem). Let U be unbiased for ( )g  and T  be a complete 

sufficient statistic for . Then 
1( ) ( | )T E U T  is the unique UMVUE of ( )g .  

 

Proof. By Theorem 3.1, 
1( )T  is the best-unbiased estimator for ( )g . Let 

2 ( )T  be another 

unbiased estimator of ( )g . Thus, 
1 2[ ( ) ( )] ( ) ( )E T T g g 0 . Since T  is complete, 

by the Definition 2.4   
1( )T 2 ( )T 0  with probability 1, hence, 

1 2( ) ( )T T ,  a.s.        

 
 

Remarks. 
 

(i)    Completeness of T guarantees the uniqueness of the unbiased estimator 
1( )T  of ( )g . 
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(ii)   The Lehmann-Scheffé theorem above states that if 
1( )T  is an unbiased estimator of ( )g

and T a complete sufficient statistic, then 
1( )T  is the unique UMVUE of ( )g .  

 (iii)  For distributions from the exponential family, completeness of sufficient statistics can be 

established using Theorem 3.3 below. 
 

Theorem 3.3 Suppose 
1( , , )nX XX  have a joint distribution ( )fθ x , 

1( , , )nX XX S

, which belongs to a k-parameter exponential family with natural parameters 
1( ), , ( )kc cθ θ , that 

is, 

1

( ) exp ( ) ( ) ( ) ( )
k

i i
i

f c T d Uθ x θ x θ x  for 
1( , , )nx xx S  free of θ

1( , , )p
 . 

Then, 

(i)  1
1 1

( ) ( ), , ( )
n n

i k i
i i

T T x T xx  is complete and sufficient (and, therefore, minimally 

sufficient) 

 (ii) The distribution of 1
1 1

( ) ( ), , ( )
n n

i k i
i i

T T x T xx  also belongs to the exponential family. 

 

The proof of Theorem 3.3 can be found in Lehmann and Romano (2005, Theorem 4.3.1). 
 

We noted that UMVUE of ( )g could be found if a complete sufficient statistic is available. But, 

in many cases, the (minimal) sufficient statistic is not complete, so we cannot use the Lehmann-

Scheffé theorem to find UMVUE. So, given an unbiased estimator and its variance (Definition 

3.1), can we derive a UMVUE? In fact, there exists a lower bound for a variance of any unbiased 

estimator, which can be utilized as a benchmark for assessing its quality. The Cramér-Rao 

Inequality provides a lower bound for the variance of an unbiased estimator of ( )g . If the 

variance of an unbiased estimator of ( )g attains this lower bound, then this estimator will be 

UMVUE. Below, we state the Cramér-Rao Inequality. 
 

Theorem 3.4 (Cramer-Rao lower bound). Let 1, , nX X  be a random sample (i.i.d.) with a joint 

distribution 1( , , )nf x x . Under some reasonably weak regularity conditions, the variance of an 

unbiased estimator T of ( )g satisfies the following inequality 

   
2

1
2

2 2 2

2 ( )ln ( , , )

( ) ( ) ( )
Var ( )

( )n
f xf x x

g g g
T

InEE
, 

where 
2

1

2

2
ln ( , , ) ln ( )

( ) nf x x f x
I E nE  is known as the Fisher Information number. The 

Var ( )T attains the Cramer-Rao lower bound if, and only, 1( , , )nf x x  has the exponential 

family form with sufficient statistic T , as in Theorem 3.1. (See Knight (2000) for regularity 

conditions).                      
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Below, we extend the Cramer-Rao lower bound (see Theorem 3.4) one parameter cases to 

multiparameter cases. First, we define the Fisher Information matrix – a multiparameter extension 

of the Fisher Information number. 
 

Definition 3.1 (Fisher Information Matrix). Let 1, , nX X   be i.i.d. random variables with joint 

density ( )fθ x , where 1( , , )nx xx  and 
1( , , )pθ . The Fisher Information Matrix is 

defined by  

   ( ) ( )ij p p
I Iθ , , 1, ,i j k , 

with 
ln ( ) ln ( )

( )
i j

f f

ijI E θ θX X
θ

2

ln ( )
i j

nE f Xθ . (see Abramovich and Ritov, 2003). 

 

Theorem 3.5 (Multiparameter Cramer-Rao lower bound). Let T be an unbiased estimator of a 

real-valued parametric function ( )g θ with finite variance. Then,  

    
1

Var ( ) ( )T Iα α ,  

where α  is the gradient column vector with the element 
( ( ))

i

E T

i

X
. (See Romano and Siegel, 

1986).       
 

We use this theorem in Example 4.7.                                       
 

A Step-by-Step Approach for the UMVUE.  
 

I. Together with the Rao-Blackwell and Lehmann and Scheffé theorems, we suggest the following 

two methods for finding UMVUE when a complete sufficient statistic T exists: 
 

(i) Find a function ( )T such that it is unbiased for ( )g . If Var [ ( )]T for all , then 

( )T  is UMVUE for ( )g . The function  can be obtained either by solving the equation 

( ) ( )E T g , or  by making educated guesses.   
 

(ii) Given an unbiased estimator U of ( )g , set the “Rao-Blackwellized” estimator 

( ) ( | )T E U T .  Then ( )T is the UMVUE for ( )g . 
 

II. If a complete sufficient is not available or difficult to find, then the following approach can be 

used to find the UMVUE:  
 

First, determine the Cramer-Rao lower bound for the variance of any unbiased estimator. Then, 

identify  an unbiased estimator T of ( )g with variance attaining this lower bound. This estimator 

T will be the UMVUE. An unbiased estimator attaining CR-LB is an ‘efficient estimator.’ 
 

4. Applications: Examples and Counter-Examples 
 

In this section, we present the derivation of UMVUE in several examples. The first six of these 

examples deal with the derivation of UMVUE of selected parametric functions where, in part (i), 

their variance attains the CR-LB and does not attain CR-LB in part (ii). The last Example, 4.7, 

deals with a multiparameter case where the variance of the UMVUE does not attain the CR-LB. 

Every example in part (ii) where the variance of the UMVUE does not attain CR-LB may be called 

a counterexample (Romano and Siegel, 1986, p. vii).   In the cases where the variance of the 
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UMVUE does not reach the CR-LB, the variance of UMVUE is always larger than the 

corresponding CR-LB, and the differences become insignificant as n . 
 

Example 4.1 Let  1 2, , , ( ,1)nX X X X N  . Consider finding the UMVUE for ( )g   and 

2( )g   . It can be seen easily that X  is complete and sufficient for   by the exponential 

family property.  
 

(i) Since X is unbiased for  ( )g   , by the Lehmann - Scheffé (L-S) theorem X  is UMVUE 

for  . The Cramer-Rao lower bound (CR-LB) for an unbiased estimator of ( )g    is computed 

as  

                                                    2

2

2

ln ( )

[ ( )] 1 1

( 1)[ ]
f x

g

n nnE 









 
 

.  

Again, Var( X )
1

n
 . In this case, the UMVUE of  attains CR-LB. So X  is also an efficient 

estimator. 
 

(ii) Note that 
2 21( )

n
E X   . Thus, 

2 1
1( , , )n n

U X X X  is a function of a complete and 

sufficient statistic X  of   and also unbiased for 
2 . Thus, by the L-S theorem  

2 1
1( , , )n n

U X X X   is UMVUE for 
2 . The CR-LB for an unbiased estimator of 

2( )g    

is   

   2

2

2 2 2

ln ( )

[ ( )] 4 4

( 1)[ ]
f x

g

n nnE 



  





 
 

.  

Whereas the variance of 
2 1

1( , , )n n
U X X X   is   

                                 
2 1Var( )

n
X Var ( 2X )

4 2 2( ) [ ( )]E X E X   

                                                             
2

2

64 3

n n

  
2 21 ( )

n
 

2

2

4 2

n n


  .  

Thus, the  Var( )U   Var(
2 1

n
X  )

2

2

4 2

n n


    CR-LB 

24

n


. Hence, Var( U )   CR-LB 

2

2
0

n
  . This is an example of a case where a UMVUE exists, but its variance is larger than the 

Cramer-Rao lower bound. For large n, the difference will be negligible.                   

Example 4.2 Let 1 2, , , ( )
!

x

n X

e
X X X X f x

x



 , 0,1, 2,3,x  . Let us consider finding 

the UMVUE for ( )g   , 
2( )g   , and ( )g e   . Recall that X is a sufficient statistic for 

  and it is also complete. 
 

(i) In addition, X  is unbiased for ( )g   . Thus, by Lehmann - Scheffe’s theorem,  X  is 

UMVUE for  . The CR-LB for an unbiased estimator of ( )g    is given by 
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2

2

2

1ln ( )

[ ( )] 1

( )[ ]
f x

g

n nnE 




 





 
 

.  

Again, Var( X )
n


  CR-LB. In this case, UMVUE of  attains Cramer- Rao bound. So X  is 

also an efficient estimator. 
 

(ii) Let 
1

n

i
i

T X


  . Note that T is complete and sufficient for  . It can be verified that 

Poisson( )T n  and 
2 2 2[ ( 1)] ( )E T T n n    . Thus, 

2( 1)U T T n   is unbiased for 
2 and a 

function of the complete sufficient statistic T of  . Hence, by Lehmann - Scheffe’s theorem 
2( 1)U T T n   is UMVUE for 

2 .  
 

Let us check if Var(U) attains the Cramer-Rao lower bound. The CR-LB for an unbiased estimator 

of 
2( )g    is 

                                            
2

2

2

ln ( )

[ ( )]

[ ]
f x

g

nE 












2 3

1

4 4

( )n n


 
 
 

.  

Now, the variance of U can be calculated as Var(U )
4

Var[ ( 1)]T T

n


 . The Var[ ( 1)]T T   can be 

derived as Var[ ( 1)]T T 
2 2[ ( 1)] [ ( ( 1)]E T T E T T    4 3 2 2[ 2 ] [ ( ( 1)]E T T T E T T     . Noting 

that 1

n

i iT X Poisson( )n  and utilizing the formulas given by Bagui and Mehra (2024) 

and a tedious calculation yield Var[ ( 1)]T T 
3 3 2 24 2n n   . Thus, the variance of U is given by 

3 2

2

4 2
Var( ) =U

n n

 
 . Now the difference 

2

2

2
Var( ) CR-LB 0U

n


   . The difference becomes 

negligible for large n. 
 

(iii) Consider 
1

n

i
i

T X


  , which is complete and sufficient for  . Define U by 1U  if 1 0X  and 

0 otherwise. Now, 1( ) ( 0) ( )E U P X e g     . Thus, U is unbiased for ( )g e   . By Rao-

Blackwellizing U using T , we have a new unbiased estimator ( ) ( | )T E U T   of  ( )g e   . 

Since, ( )T is unbiased for ( )g e   and a function of complete sufficient statistic T , ( )T

would be UMVUE of  ( )g e   , by Lehmann-Scheffe’s theorem. The UMVUE ( )T  of e 

can be derived as 1
1( ) ( 0 | ) (1 )t

n
t P X T t      so that 1( ) (1 )T

n
T   . The CR-LB for an 

unbiased estimator of ( )g e    is 
 

2

2

2

ln ( )

[ ( )]

[ ]
f x

g

nE 












2
2

1
( )

( )
n

e
e

n


 




 

 
.  
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Let us check if Var(U) attains the Cramer-Rao bound. Now the Var[ ( )]T  is evaluated as 

Var[ ( )]T  

2 21 1[(1 ) ) [ (1 ) ]T T

n n
E E    . Note that 

( )1 1
1 !

(1 ) (1 )
n te nT n T

in n t
E

[( 1) ] ( 1)

1 !
.

tnn n n n

i t
e e e e  and similarly, 

( )2 21 1
1 !

(1 ) (1 )
n te nT n T

in n t
E

22 ( 1)[( 1) ]

1 !
.

t n nn nn n n

i t
e e e

2 . ne e .   

Hence, the Var[ ( )]T  can be simplified as Var[ ( )]T  2 2 2. ( 1)n ne e e e e          . Now the 

difference Var[ ( )]T  and the CR-LB of the unbiased of ( )g e    is  

            Var[ ( )]T  CR-LB
2 2( 1) ( )ne e e n      

2 2

2 2

2 1

2! ( )3! ( )4!
[ ]

nn n
e        0 .  

This difference is negligible for sufficiently large n.          
 

Example 4.3 Let 
1

1 2, , , ( ) (1 ) ,x x

n pX X X X f x p p    0,1.x   Let us consider finding the 

UMVUE for ( )g p p , 
2( )g p p , and ( ) (1 )g p p p  . 

Let  
1

n

i
i

T X


  .  Bin( , )T n p . Binomial is a complete family. So 
1

n

i
i

T X


   complete. It is easy 

to show that 
1

n

i
i

T X


   is also sufficient for .p   

(i) Again, X T n  is a function of complete sufficient statistic T of p  and also unbiased for p . 

Thus, by, Lehmann-Scheffe’s theorem X T n  is UMVUE for p . The CR-LB for an unbiased 

estimator of ( )g p p  is given by   

                                 2

2

2

ln ( )

[ ( )]

[ ]pf x

p

g p

nE








1

[ 1 (1 )]n p p

  

(1 )p p

n


 .  

Again, Var( X )
(1 )p p

n


  CR-LB. In this case, UMVUE of p  attains Cramer- Rao bound. So 

X  is also an efficient estimator. 
 

(ii) It can be easily verified that 
2[ ( 1)] ( 1) .E T T n n p   Thus, 

( 1)
( )

( 1)

T T
T

n n






 is an unbiased for 

2p . Since 
( 1)

( )
( 1)

T T
T

n n






 is a function of complete sufficient statistics T of p  and unbiased for 

2p , by Lehmann-Scheffe’s theorem 
( 1)

( )
( 1)

T T
T

n n






 is UMVUE for 

2p . The CR-LB for an 

unbiased estimator of 
2( )g p p  is given by  2

2

2

ln ( )

[ ( )]

[ ]pf x

p

g p

nE









2(2 )

[ 1 (1 )]

p

n p p  
=

3 44 4p p

n n
 .  

Let us check if Var ( ( )T ) attains the Cramer-Rao lower bound. Now, the Variance of ( )T  is 

evaluated as follows:  
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   Var( ( )T ) 2 2

1

( 1)
Var[ ( 1)]

n n
T T


  2 2

2 21

( 1)
[ [ ( 1)] ( ( 1))]

n n
E T T E T T


     

                    2 2

4 3 21

( 1)
{[ ( ) ( ) ( )]

n n
E T E T E T


  

2[ ( ( 1))] }E T T   

                    2 2

41

( 1)
[{ ( 1)( 2)( 3)

n n
n n n n p


   

3 24 ( 1)( 2) 2 ( 1) }n n n p n n p     2 2 4( 1) ]n n p   

                    4 3 21

( 1)
[( 2)( 3) 4( 2) 2

n n
n n p n p p


     

4( 1) ]n n p  .  
 

Now the difference Var[ ( )]T  and the CR-LB of the unbiased of 2( )g p p is  

Var[ ( )]T  CR-LB 4 3 21

( 1)
[( 2)( 3) 4( 2) 2

n n
n n p n p p


     

4( 1) ]n n p 
34p

n


44 p

n
     

                                   2 2 4 3 21

( 1)
[( 5 6 4 4) 4( 2 1) 2 ]

n n
n n n n n p n n p p


             

                                    
22 2

( 1)
( 2 1)

p

n n
p p


   

2 22 (1 )

( 1)
0

p p

n n




 , for 1n . 

The difference will be negligible for large n.  

(iii) Observe that ( ) (1 ) Var[ ]g p p p X   . Again, the sample variance 
21

1
1

( )
n

in
i

U X X




   

1

1
1

[
n

in
i

X




 2

1

( ) ]
n

i
i

X n


  21

1
[ ]

n
T T n


  . Thus, 

21

1
( ) [ ] (1 )

n
E U E T T n p p


    . The CR-LB for 

an unbiased estimator of ( ) (1 )g p p p   is given by 

    2

2

2

ln ( )

[ ( )]

[ ]pf x

p

g p

nE









2 2(1 2 ) (1 )(1 2 )

[ 1 (1 )]

p p p p

n p p n

  


  
.  

Let us check if Var (U ) attains the Cramer-Rao lower bound. Now, the Variance of U  is given 

by Var( )U 
2 (1 )2

( 1)

(1 )
[(1 2 ) ]

p p

n

p p
p

n






   Now the difference Var[ ]U  and the CR-LB of the 

unbiased of ( ) (1 )g p p p   is Var[ ( )]T  CR-LB
2 22 (1 )

( 1)

p p

n n




 0 . This difference will be 

negligible for large n.                
 

Example 4.4 Let 1
1 2, , , ( ) ,x

nX X X X f x e 

 

 0x  . Let us consider finding the 

UMVUE for ( )g   and 
2( )g   . 

Let  
1

n

i
i

T X


  .  Gamma( , )T n  . It is straightforward to show that 
1

n

i
i

T X


   is also complete 

and sufficient for .   

(i) It can be easily verified that ( )E T n . Thus, ( ) T

n
T X   is unbiased for  . Since 

( ) T

n
T X     is a function of the complete sufficient statistic and unbiased for  , by Lehmann-

Scheffe’s theorem, ( ) T

n
T X    is UMVUE for  . The CR-LB for an unbiased estimator of 

( )g    is given by 

     2

2

2

ln ( )

[ ( )]

[ ]
f x

g

nE 












2

2

1

[ 1 ] nn




 
 

.  
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Again, Var( X )
2

n


  CR-LB. In this case, UMVUE of   attains Cramer- Rao bound. So X  is 

also an efficient estimator. 
 

(ii) Note that 
2Var(X)2 2 2 2( ) Var( ) [ ( )] [ ( )]

n n
E X X E X E X

       21n

n
 . Thus, 

2

1

n

n
U X


  is 

unbiased for 
2 . Since 

1

n

i
i

T X


   is complete and sufficient of  , thus X is also complete and 

sufficient for  . Since  
2

1

n

n
U X


  is a function of complete and sufficient statistics X of  , 

and unbiased of 
2 , by Lehmann and Scheffe’s theorem,  

2

1

n

n
U X


 is UMVUE for 

2 . The 

CR-LB for an unbiased estimator of 
2( )g    is given by   

   2

2

2

ln ( )

[ ( )]

[ ]
f x

g

nE 













2 4

2

(2 ) 4

[ 1 ] nn

 




 
.  

Let us check if Var (U ) attains Cramer-Rao bound. Now, the Variance of U  can be evaluated as 

follows:  
2 2 2

2 2 2

2

( 1) ( 1)
Var( )= Var( ) Var( )n n T

n n n
U X

 
 2 2

21

( 1)
Var( )

n n
T


 2 2

4 2 21

( 1)
( ( ) [ ( )] )

n n
E T E T


  . 

Since 
1

n

i
i

T X


  Gamma( ,  )n , thus it is straightforward to show that 
( 1)!

( 1)!
( )

n rr r

n
E T . 

Using this identity, the variance Var( )U  can be simplified as  

2 2

1

( 1)
Var( )

n n
U

4 2 2[ ( ) ( ( )) ]E T E T
2 2

41

( 1)
[( 3)( 2)( 1)

n n
n n n n

2 2 4( 1)n n ] 

  ( 3)( 2)4

( 1)
1

n n

n n

4(4 6)

( 1)

n

n n
 

It does not attain Cramer- Rao lower. The difference between Var( )U  and the CR-LB of the 

unbiased estimator of 2( )g    is Var( )U  CR-LB
4 4 4(4 6) 4 4 6

( 1) 1
4

n n

n n n n n

   

 
     

42

( 1)n n
0 . 

This difference will be negligible for large n.                                  
 

Example 4.5 Let 1

1 2, , , ( ) ,nX X X X f x x   0 1,x  ( 0 ). Let us consider finding 

the UMVUE for ( )g   .  

Let  
1

ln
n

i
i

T X


  .  Gamma( ,1 )T n  . It is straightforward to show that 
1

ln
n

i
i

T X


   is also 

complete and sufficient for .   It can be easily verified that 1

1
( )

T n
E 


 . Thus, 1( ) n

T
T   is 

unbiased for  . Since 1( ) n

T
T    is a function of complete sufficient statistic T of  and also 

unbiased for , by Lehmann-Scheffe’s theorem, 1( ) n

T
T   is UMVUE for  . The CR-LB for an 

unbiased estimator of ( )g    is given by  

    
2

2

2

ln ( )

[ ( )]

[ ]
f x

g

nE 












2

2

1

[ 1 ] nn




 
 

.  

Let us check if Var ( ( )T ) attains Cramer-Rao bound. Now, the Variance of Var ( ( )T ) can be 

evaluated as follows: 
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 Var ( ( )T ) 21 1Var( ) ( 1) Var( )n
T T

n 2

2 21 1( 1) [ ( ) [ ( )]
TT

n E E  

       
2 2

2

2

( 1)( 2) ( 1)
( 1) [ ]

n n n
n

2

2n
.  

It does not attain Cramer- Rao lower. The difference between Var[ ( )]T  and the CR-LB of the 

unbiased of ( )g     is Var[ ( )]T  CR-LB
2 2 2

2 ( 2)
0

n n n n

  
 

    , for 2n . This difference 

will be negligible for large n.    
 

Example 4.6 Let 1

1 2, , , ( )nX X X X f x x   , 1x , ( 0 ). Let us consider finding 

the UMVUE for ( )g   .  

Let  
1

ln
n

i
i

T X


  .  Gamma( ,1 )T n  . It is straightforward to show that 
1

ln
n

i
i

T X


   is also 

complete and sufficient for .  It can be easily verified that 1

1
( )

T n
E 


 . Thus, 1( ) n

T
T   is 

unbiased for  . Since 1( ) n

T
T    is a function of the complete sufficient statistic T  of  and 

also unbiased for , by Lehmann-Scheffe’s theorem, 1( ) n

T
T   is UMVUE for  . The CR-LB 

for an unbiased estimator of ( )g    is given by  

    
2

2

2

ln ( )

[ ( )]

[ ]
f x

g

nE 












2

2

1

[ 1 ] nn




 
 

. 

Let us check if Var ( ( )T ) attains the Cramer-Rao Lower bound. Now, the Var ( ( )T ) can be 

evaluated as follows: 

Var ( ( )T )
21 1Var( ) ( 1) Var( )n

T T
n   2

2 21 1( 1) [ ( ) [ ( )]
TT

n E E     

                                              
2 2

2

2

( 1)( 2) ( 1)
( 1) [ ]

n n n
n

2

2n
.  

It does not attain the CR-LB. The difference between Var[ ( )]T  and the CR-LB of an unbiased of 

( )g    is Var[ ( )]T  CR-LB
2 2 2

2 ( 2)
0

n n n n

  
 

    , for  2n . This difference will be 

negligible for large n.            
 

Example 4.7 Let  
2

1 2, , , ( ,  )nX X X X N   . Consider finding the UMVUE for 
2

2( , )g



   . It is known that X is complete and sufficient for  . By two-parameter exponential 

family property, it can be shown that 
2 2

1 1

,  ,  ( ) ( 1)
n n

i i
i i

X S X n X X n  is complete 

as well as sufficient for 
2( ,  ) . Let 

2( , )T X S  

2

2

3 1

1

X n

S n n
 . The statistics X  and 

2S

are independent and 
2( ,  )X N n  and 

2 2 2

1( 1) nn S . Using these facts, it is 

straightforward to evaluate 
2

2

X

S
E , then show that 

2
2

2

3 1
( , )

1

X n
T X S

S n n
 is unbiased for 
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2

2
. Since 

2
2

2

3 1
( , )

1

X n
T X S

S n n
 is function of a complete sufficient statistic 

2( ,  )X S  

for 
2( ,  ) , by Lehmann and Scheffe’s theorem 

2
2

2

3 1
( , )

1

X n
T X S

S n n
 is the UMVUE 

for 
2

2( , )g



   . Let us check if Var ( 2( ,  )T X S ) attains Cramer-Rao Lower bound. The two-

parameter CR-LB formula may be stated as: Under certain ‘regularity assumptions’ (see Section 

2.7 of Lehmann 1983) if ( )U X is any real-valued statistic, then                  

                                              
1Var ( ) [ ( )]U Iθ α θ α ,  

where α  is the row vector with i-th element 
i

[ ( )]
i
E Tθ X  and ( )I θ  the information 

matrix with ( ,  )i j th component  

( )ijI θ ln ( ) ln ( )
i j

E f fθ θX X
2

ln ( )
i j

nE f Xθ . Let 
2

. Thus, 

1 2( ,  ) ( ,  )θ , ln ( )f Xθ
ln( 2 ) 21 1

2 2
ln ( )X , 

2

211( ) ln ( )I nE f Xθθ n ,
2

222 ( ) ln ( )I nE f Xθθ
22

n , 

2

12 21( ) ( ) ln ( ) 0I I nE f Xθ . The information matrix ( )I θ  and its inverse 

1( )I θ are given, respectively, by 
 

                                     
22

0
( )

0

n

n
I θ  and 2

1

2

0
( )

0

n

n

I θ . 

 

Now by unbiasedness 
2 2

2[ ( )]E Tθ X . The entries of the α column vector are given by 

2

1 ( )E Tθ
 and 

2

22 ( )E Tθ . So the α  row vector is 
2

2

2
α , 

hence 

                             
2 2 4

2 22 2

2

2

2 4 21

2

0
( )

0

n

n n
n

Iα θ α
4 2

4 2

22 [ ]
n

. 

Now 
2Var[ ( ,  )]T X S can be derived as 

2 2

2 2

( 3)2

( 1)
Var[ ( ,  )] Var

n X

n S
T X S . Next, compute  

2 4 2

2 4 2

2

Var X X X

S S S
E E . 

By unbiasedness 
2

2

2
2

2

3 1
( , )

1

X n
E T X S E

S n n
, this gives 

22

2 2

1 1
3 ( 3)

n nX
n n nS

E . 

Since X and 
2S  independent, thus 

4

4 4

4 1.X

S S
E E X E . Below, evaluate the terms, 

4E X  
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and 4

1

S
E  separately. By the properties of normal distribution  

4E X
2 2 4

2

64 3
n n

 and 

using the properties of Chi-square distribution, we simplify  4

1

S
E  as 

 
4

1
E

S 2
2

1
E

S
 2 2

2

2

2
11

( 1)

n

n S
E

2 2

4 2 4
2

1

( 1) ( 1)1 1
( 3)( 5)

n

n n

n n
E . 

Thus,  

 
4

4 4

4 1.X

S S
E E X E  

                          
2 2 4

2

64 3( )
n n

2

4

( 1) 1
( 3)( 5)

n

n n
 

                          
4 2 2

4 2 2

( 1)6 3
( 3)( 5)

n

n n nn
.  

Hence, 
2

2Var X

S
 can be simplified as 

2 4 2

2 4 2

2

Var X X X

S S S
E E

4 2 2

4 2 2

( 1)6 3
( 3)( 5)

n

n n nn

2

2

2
1 1
3 ( 3)

n n
n n n

 

4 2 2

4 2 2

( 1)6 3
( 3)( 5)

n

n n nn
 

4 2 2 2 2

4 2 2 2 2 2

( 1) ( 1) ( 1)

( 3) ( 3) ( 3)
2

n n n

n n n n n
 

4 2 2 2

4 2

( 1) ( 1) 61 1 2
( 3) 5 3 ( 3) 5 3

n n

n n n n n n n

2

2

( 1) 3 1
5 3( 3)

n

n nn n
 

4 2 2 2 2

4 2 2 2 2 2

2( 1) 4( 2)( 1) 2( 2)( 1)
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This difference will be negligible for large n.          



 

 

 

 

 

 

 

 

16                                       International Journal of Statistical Sciences, Vol. 24(2)s, 2024 

 

 

5. Concluding Remarks 
 

The main objective of this article is to provide counterexamples where the variances of the UMVU 

estimators do not achieve the Cramer-Rao lower bound. We provided many motivating 

counterexamples where the variance of UMVUE is always larger than the Cramer-Rao lower 

bound and showed that these UMVU estimators are, in fact, asymptotically equivalent and 

efficient. All the counterexamples are new or may not be available in the standard textbooks. To 

demonstrate this, we provided many definitions related to UMVUE, described various methods for 

finding UMVUE, and explained step-by-step approaches for UMVUE for different scenarios. 

Finally, why is the variance of a UMVUE in some cases not attaining the CR-LB? We do not have 

a definite answer to this. This is probably because no other unbiased estimator can presumably 

achieve the CR-LB.  
  

This note could serve as a valuable reference article in senior-level statistical methodology 

courses. The material should also be helpful for senior undergraduates and first-year graduate 

students taking statistical Inference classes. The material should be of interest to teachers of 

statistical estimation theory. They could assign the examples provided in this paper to various 

exams. Certainly! The article also holds a significant pedagogical value.  
 

As this volume is dedicated to Professor C.R. Rao, we decided to give a short biography of 

Professor C.R. Rao, which would be very informative to all readers of this journal. 
 

Short Biography of C.R. Rao (Pathak, 1992): 
 

Dr. Calyampudi Radhakrishna Rao was born on September 10, 1920, in Hadagali, Karnataka, 

India. He earned an M.A. in mathematics from Andhra University in 1940 and an M.A. in statistics 

from Calcutta University in 1943. In 1948, he completed his Ph.D. at Cambridge University under 

the guidance of R.A. Fisher with a thesis titled "Statistical Problems of Biological Classification." 

His work earned him a D.Sc. in 1965 for his significant contributions to statistical theory and 

applications. 
 

Throughout his illustrious career, Dr. Rao profoundly impacted the field of statistics, with several 

key results and theorems bearing his name, such as the Rao-Blackwell theorem, the Cramér-Rao 

inequality, and Rao’s score test, and many more. His theory of the generalized inverse of matrices 

significantly advanced statistical methodologies in linear models. Dr. Rao's exceptional 

organizational skills and dedication played a crucial role in transforming the Indian Statistical 

Institute from a modest beginning into a renowned institution of higher learning. 
 

Dr. Rao's contributions were recognized internationally; he was elected a Fellow of the Royal 

Society of the U.K. in 1967 and received numerous honors, including 14 honorary doctorates. He 

held prestigious positions at the Indian Statistical Institute, the University of Pittsburgh, and 

Pennsylvania State University. In 2024, he was awarded the International Prize in Statistics for his 

outstanding contributions to the field. The International Prize in Statistics, established in 2016, 

recognizes major achievements using statistics to advance science, technology, and human 

welfare. It is awarded biennially to individuals or teams. Soon after receiving the award, Dr. Rao 

passed away in the same year, leaving a legacy of remarkable scientific achievements and 

exemplary human qualities. 
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