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Abstract 
 

Without assuming independence of sample mean and variance, or without using any conditional 

distribution, we present an integral proof of the joint moment generating function for sample mean 

and variance for independently, identically and normally distributed random variables. This proves 

the independence of sample mean and variance which is the basis of Student -testt and many 

other inferential methods.  
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1. Introduction 
 

The independence of sample mean and variance of independently, identically and normally 

distributed variables is essential in the basic definition of Student -statistic,t   and also in the 

development of many statistical methods. It is usually proved using the independence of X  and 

1( ,X X 2 ,X X , ),nX X  (see e.g. Theorem 1, p.340, Rohatgi and Saleh, 2001), but 

this requires background on independence of functions of random variables (Theorem 2, p.121, 

Rohatgi and Saleh, 2001). Shuster (1973) and Zehna (1991) use moment generating function to 

prove the independence of sample mean and variance. In this note we give a new proof of this 

independence that also uses moment generating function, but it avoids the use of conditional 

distributions though it requires background in multivariable integral calculus.  
 

2. Some Preliminaries 
[ 

Let 1 2, , , nX X X  ( 2,3, )n   have an arbitrary -dimensionaln  joint distribution. We 

define the sample mean x  and variance 
2s  by 

1

i n
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nx x
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n s x x




     respectively.  The sample variance can also be represented by  
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Also for identically distributed observations 1 2, , , nX X X  with common mean ,  we denote 

( ),a

a E X   the -tha  moment of X  and ( ) ,a

a E X   the centered moment of X

order .a  The mean 1  and variance 2 ( )V X  will be simply denoted by   and 

2 2

2     respectively. 

The moment generating function of 
2~ ( , )X N   is given by  

2 21
( ) exp ,

2
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 
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Let [ ]ijA a  be a n n  positive definite symmetric matrix. Then the following integral is 

known: 
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where 1 2( , , ) .nb b b b   The above expression usually appears as part of the moment 

generating function  
 

1
( ) exp ,

2
XM b b b

 
  

 
                              (2.3) 

of a random variable X having multivariate normal distribution (0, ).N   See for example, 

Anderson (1984, p.21 and p.47). 
 

For the proof of the following theorem dealing with the properties of a pattern matrix, see Rao 

(1973, p.67). 
 

Theorem 2.1 Let the n n matrix [ ]ij   where ,ii  for 1,2, , ,i n  and ,ij  for 

1,2, , ,i n and ( ) 1,2, , .j i n   Then the following hold: 

a. 
1| | ( ) [ ( 1) ],n n         

 

b. 
1 exists if and only if    and (1 ) .n    Moreover, if 

ii and 
ij are the entries  of 

1,  then  
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Corollary 2.1 Let the n n matrix [ ]ij   where ,ii  for 1,2, , ,i n  and ,ij 

for 1,2, , ,i n and ( ) 1,2, , .j i n   Further if ( 1) 1,n    then we have the 

following: 

 

a. 
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b. 
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,
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i j
n

 

 
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Proof.  
 

a. It is obvious from part (a) of Theorem 2.1. 
 

b. Since ( 1) 1,n     it follows that  
 

1 1 1 1 ( i) 1

n n n n n

ij ii iji j i i j
  

     
       which equals .n  

c. Since ( 1) 1,n     it follows from Theorem 2.1  that 
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3. The Joint M.G.F. of Sample Mean and Variance  
 

Without using any conditional distribution or assuming independence of X  and 
2 ,S  we present a 

direct proof of the joint moment generating function of X  and 
2 ,S  based on  independently, 

identically and normally distributed random variables.   
 

Theorem 3.1 Let the random variables 1 2, , , ,nX X X  ( 2)n  be independently, identically 

and normally distributed with 1( )E X   and 
2

1( ) ,Var X   0.  Then the joint moment 

generating function of the sample mean X and variance 
2S is given by  
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In particular,  X  and 
2S  are independent, and 

2 2 2

1( 1) / ~ .nn S     

Proof.  The joint moment generating function of X and 
2S is given by  
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From (2.1), we have 
2 2

1 1 ( ) 1

1 1

( 1)

n n n

i i ji i j i
s x x x

n n n   
 


   so that 

 2 22 2
2 1 1 ( ) 1

exp exp .
( 1)

n n n

i i ji i j i

t t
t s x x x

n n n   

 
  

 
    

 

Then the expression (3.2) can be written as  
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Using the representation of 
2s given in (2.1) in the above integral, and the transformation 

,i ix z   ( 1,2, , )i n yields 
 

2

2 2
2 22 2

1 2 1/ 2,
1 1 ( ) 1 1 1

1 1
( , ) exp[ ( )]exp exp .

(2 ) ( 1) 2

nn n n n

i i j i inX S
i i j i i i

t t
M t t t z z z z z dz

n n n

 
 



  

       

   
      

   
      

 

The joint M.G.F. of the sample mean and variance can then be written as  
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The above can also be written as the following: 
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The expression (3.4) can then be written as  
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which,  by (2.3),  can be evaluated to be  
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It is easy to check that  
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where the last step follows by Corollary 2.1(c). Also by Corollary 2.1(a), we have  
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Plugging (3.6) and (3.7) in (3.5), we obtain (3.1). 
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