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Abstract

In linear regression models, multicollinearity often results in unstable and unreliable parameter
estimates. Ridge regression, a biased estimation technique, is commonly used to mitigate this issue
and produce more reliable estimates of regression coefficients. Several estimators have been
developed to select the optimal ridge parameter. This study focuses on the top 16 estimators from
the 366 evaluated by Mermi et al. (2024), along with seven additional estimators introduced over
time. These 23 estimators were compared to Ordinary Least Squares (OLS), Elastic-Net (EN),
Lasso, and generalized ridge (GR) regression, to evaluate their performance across different levels
of multicollinearity in multiple regression settings. Simulated data, both with and without outliers,
and various parametric conditions were used for the comparisons. The results indicated that certain
ridge regression estimators perform reliably with small sample sizes and high correlations (around
0.95) in the absence of outliers. However, when outliers were present, some estimators performed
better due to small sample sizes and increased variance. Furthermore, GR, EN, and Lasso
exhibited robustness with large datasets, except in cases with substantial outliers and high
variance.

Keywords: Elastic-Net, Lasso, MSE, Multicollinearity, OLS, Outliers, Ridge regression,
Simulation

AMS Classification: 62J07.

1. Introduction

Linear regression is a frequently utilized methodology for analyzing data to construct a model
depicting the relationship between the dependent variable and one or more independent variables
(Herawati et al., 2024). During this type of analysis, it is common to encounter specific issues and
hypotheses regarding the model. One important assumption in regression analysis is the absence of
multicollinearity, as violating this assumption can render the model unreliable for estimating
population parameters (Damodar N. Gujarati, 2013, Herawati et al., 2018). In multiple regression
analysis, multicollinearity occurs when one independent variable is correlated with another
independent variable. This can result in inaccurate estimates of the regression coefficients,


https://doi.org/10.3329/ijss.v24i20.78212
mailto:kibriag@fiu.edu

26 International Journal of Statistical Sciences, Vol. 24(2)s, 2024

increased standard errors, reduced partial t-tests, statistically insignificant p-values, and diminished
predictability of the model (Gujarati, 2013).

Addressing high multicollinearity is crucial as it can lead to inaccurate decisions and an increased
likelihood of accepting the wrong hypothesis. It is essential to find the most suitable method to
deal with multicollinearity (Gibbons, 1981). One effective approach to overcome this issue is by
using the shrinkage method to reduce the estimated coefficients, also known as regularization.
Common regularization methods include Ridge Regression, Least Absolute Shrinkage and
Selection Operator (Lasso), and Elastic-Net (EN) (Herawati et al., 2024). Ridge Regression
stabilizes the regression coefficient in the presence of multicollinearity issues by introducing a
level of bias to the regression estimate (Li et al., 2010). This reduces the standard error and
provides a more precise estimation of the regression coefficient compared to the Ordinary Least
Squares (OLS) method (Kibria & Lukman, 2020). On the other hand, Lasso and EN address
multicollinearity problems by shrinking the regression coefficients of highly correlated or perfectly
correlated independent variables toward zero (Emmert-Streib & Dehmer, 2019; Liu & Li, 2017).

Hoerl and Kennard (1970) were the first to propose the concept of ridge regression to address the
issue of multicollinearity in engineering data. They discovered that there exists a non-zero value of
k (ridge parameter) for which the MSE of the ridge regression estimator is smaller than the
variance of the OLS estimator (Hoerl & Kennard, 1970). Over the years, numerous researchers
have delved into this area of study, devising and suggesting various estimators for k. To cite a few,
Dempster et al., 1977; Gibbons, 1981; Hoerl et al., 1975; Hoerl & Kennard, 1970; J. F. & P, 1976;
Khalaf & Shukur, 2005; Kibria, 2003; Kibria et al., 2012a; Mansson et al., 2010; McDonald &
Galarneau, 1975; McDonald & Schwing, 1973; Muniz & Kibria, 2009; Walker & Birch, 1988and
very recently Arashi & Valizadeh, 2015a, 2015b; Aslam, 2014a, 2014b; Ayinde & Lukman, 2016;
A. V. Dorugade, 2014; Emmert-Streib & Dehmer, 2019; Golam Kibria & Lukman, 2020; Hefhawy
& Farag, 2014; Herawati et al., 2018, 2024; Kibria, 2023; Lukman et al., 2018, 2019; Lukman &
Ayindez, 2017; Melkumova & Shatskikh, 2017; Mermi et al., 2024; Yiizbasi et al., 2020 Hoque &
Golam Kibria, 2023; Hoque & Kibria, 2024, among others.

Mermi et al. (2024) compared 366 different ridge parameter estimators that were proposed at
different times in terms of the number of independent variables (p), sample size (n), the correlation
coefficient between independent variables (p), and standard deviation of errors (c) (Mermi et al.,
2024). Here, we have incorporated a total of 16 best estimators out of 366, with the exclusion of
the robust estimator. Furthermore, we have applied seven estimators recommended by Kibria et al.
(2003, 2023) tailored for asymmetric populations.

The objective of this paper is to provide a thorough analysis to compare 23 ridge parameter
estimators with OLS, Lasso, EN, and GR. Our analysis not only focused on MSE but also
examined how the models behaved in the presence of multicollinearity and outliers. Our goal is to
contribute to the existing literature on ridge regression by providing a comprehensive analysis of
estimator performance, particularly in simulation scenarios where outliers have a significant
impact on model estimates. Additionally, we presented real-life examples to validate the
simulation results. The R programming language is utilized for the purpose of data analysis.

The organization of the paper is as follows: The statistical methodology is described in Section 2.
A simulation study for comparing the performance of the estimators is presented in Section 3. Two
real-life datasets are analyzed in Section 4. The paper ends with some concluding remarks in
Section 5.
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2. Statistical Methodology
2.1 Ordinary least squares method
Consider the following multiple linear regression model,
Y=XB+ ¢
where Y is a column vector representing the dependent variable; X is a matrix of independent

variables, and B is a parameter vector. The & column vector represents the error terms. The
ordinary least squares estimator of [} is obtained as,

Bors = XTX)71XTY

2.2 Ridge Regression Method

Hoerl and Kennard (1970) first introduced the ridge regression estimator as a solution to the
multicollinearity issue. This approach minimizes the sum of squared residuals while applying a
constraint on the total sum of the coefficient squares,

Briage = argmin (Y = XB)"(Y = XB) + k 1| B II”
B
where || 8 1I?= leﬁl-z. Taking the above equation and finding its derivative with respect to 8 and
setting the outcome to zero, we get

Briage = XTX + kDTXTY, k>0
where k is known as ridge or shrinkage estimator and need to be estimated from observed data.
The MSE of fgigge is Obtained as follows:

A A . A 2
MSE(ﬁRidge ) = Var(ﬁRidge ) + [Blas(ﬁRidge )]
=o2r{(XTX + kD72XTX} + k2T (XTX + kI)72p
A 2
2\P ] 2! ’
= N E— X'X + kI
o L=1(/1i+k)2+k'8( +k77) :8

where A;, 1,, ..., 4, are eigenvalues of XTX matrix.

2.3 Generalized Ridge (GR) Regression

Yang and Emura (2017) proposed GR regression by changing from uniform shrinkage to non-
uniform shrinkage that replaced the identity matrix I, with the diagonal matrix M(A) (Yang &
Emura, 2017). The following is the proposed GR method.

Bor = (XX + kM (8)}) X"y
where A > 0 is the threshold parameter and k > 0 is the shrinkage parameter. The diagonal
components of M(4) = diag{, (A), ..., M, (A)}, where (Emura et al., 2024)

(12 if z2A
mi(A)‘{1 iz <A
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where 7, = 2/SD(3), and SD(8%) = {S7_, (B - $7.8%/p)* /@ = 1) for i =1,...,p, and

B = (B, B,‘,’)T defined as 8 = Xfy/XTX;, where X; is the i-th column of X. And g°is a
compound covariate estimator (Chen & Emura, 2017).

2.4 Least Absolute Shrinkage and Selection Operator (Lasso)

LASSO (Tibshirani, 1996) is a regression analysis technique in statistics and machine learning that
performs both variable selection and regularization to improve the predictive accuracy and
interpretability of the statistical model it produces. In LASSO, most of the coefficients of
irrelevant variables are set to zero, while the other coefficients are shrunk. Lasso estimators, which
include only the best subset of regressors in their final model, have been used by many researchers
to address the issue of multicollinearity (Fu & Knight, 2000; Lounici, 2008; Yuan & Lin, 2007).
The process for estimating Lasso follows a similar procedure as the ridge estimator, but the
difference is that the squared £, norm (Il 8 lI13) in the ridge has been replaced by £; norm (li
B 1l;).The Lasso technique seeks to minimize the sum of the squared residuals while imposing a
constraint on the total absolute value of the coefficients, ensuring that it remains below a specified
constant.
Brasso = argmin (¥ = XB)' (Y = XB) + 21 B Iy
B

2.5 Elastic net (EN)

Introduced by Zou and Hastie (2005), the EN extends the Lasso and addresses limitations,
particularly in variable selection (Zou & Hastie, 2005). It creates regression model that undergoes
penalty from both the ridge (L, norm) and the Lasso (L, norm). The coefficients are effectively
reduced, similar to ridge regression, and some are forced to zero, similar to Lasso regression. The
L1 norm produces a sparse model, reducing certain coefficients to zero, while the L2 norm
removes the constraint on the number of selected variables (Park & Konishi, 2016). Liu and Li
(2017) utilized an effective EN with regression coefficients technique to identify significant
variables within the spectrum data (Liu & Li, 2017). When this happens, Lasso cannot select more
than the specified number of predictors, whereas the EN has the ability to do so. (Emmert-Streib &
Dehmer, 2019). The loss function is minimized by EN, and the estimated parameter vector is
derived accordingly.

n 14 2
Pex = argmin Z (yz - Z ,Bini> +2
1 i=1

1=

¢! —Of)zp: Bt +0pr: |ﬁi|”

where A4 = tuning parameter and ¢ = weight that should be used to determine the allocation for
Lasso or ridge suchthatO < a < 1, where @ = 0, fzy becomes :éRidge and wherea = 1, fgy

becomes S 4550+

The MSE for Lasso and EN was calculated by comparing the estimated coefficients of each model
with the true coefficient (assumed B = I,,), and then averaging the results over all simulations to
determine the model's performance.
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2.6 Ridge parameters

There are numerous ridge estimators available in the literature for different types of models,
mostly mentioned in the introduction, to estimate the ridge parameter k. A study compared 80
ridge estimators using Monte Carlo simulation techniques (Mermi et al., 2021). In a recent study,
Mermi et al. (2024) conducted a comparison of 366 different ridge parameter estimators that were
proposed at different times. For our study, we selected the top 16 estimators from Mermi et al.
(2024), excluding the robust estimator. These selected estimators are k; through k, and ko through
ko, (Table 2.1). Additionally, we utilized seven estimators, which are ks through kg proposed by
Kibria (2023) and ky, and k,3 by Kibria and Lukman (2020), specifically tailored for asymmetric
populations. The 23 ridge parameters used in our study, including both simulation-based and
empirical examples, are presented in Table 2.1.

Table 2.1: Existing best estimators based on the Monte Carlo Simulation

Estimators Citation
1
k, : max (—) (Alkhamisi & Shukur, 2007)
qi
s? .
ky : max| — (Alkhamisi et al., 2006)
B;
62
ky i —————— Dorugade, 2014
min(g + %) ( g )
V42
ket |py? max(4)d (Lukman & Ayindez, 2017)
=1\ (n —p)d? + max(};)a?
6% 1 -
ks: median <A— + —) (Kibria, 2023)
ﬂiz Ai
o1 Kibria, 2023
ke: max E-l_l_l (Kibria, )
/62 1 L
k;:min E + R (Kibria, 2023)
1 1 -
kg: geometric. mean (E + /1—) (Kibria, 2023)
i i
6% 1 -
kq: harmonic. mean <E + A_> (Kibria, 2023)

(Lukman & Ayindez, 2017)

max(4;)62
klo:median( () )

(n —p)é2 + A;&?

max(4;)62 )
kiq: Lukman et al., 2018
11:Max ((n — )62 + max(1,)a? ( )
14
Ai6® Lukman & Ayindez, 2017
kyy: pz - - (Lukman yindez, )
(n—p)6? + Aa;

i=1
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Estimators Citation
Ld A2
ey max(1,)6 (Alkhamisi et al., 2006)
P& (n—p)6% + A}
! Muni l., 2012
ki, max P (Muniz et al., )
(n-p)g2+1;a?
1
) ] T
- max(2)6* (Muniz et al., 2012)
P\l (n-p)6? + 2,87
2,672 (Lukman et al., 2018)
ki 1 '
1e max( /\](n —-p)6t+ [max(/ll-)]c?i2>
1;6° (Lukman et al., 2018)
ks 1 '
17:Tax /(n —p)é2 + Aimax(c?,-z))
1
» (1Y (Kibria et al., 2012)
k18 i=0 <_
di
A;6%
kygt ML (1/ i 2) (Lukman et al., 2018)
(n = p)&? + A;(max(&)))
1
koot (Ayinde & Lukman, 2016)
Al max(4;)max(d?)
1
oyt e (Ayinde & Lukman, 2016)
A maxGy? a2
Jegy: 6p(1*R) (Kibria & Lukman, 2020)
1
st 6 X max (p(1+%),p(1+5)) (Kibria & Lukman, 2020)

3. Simulation study

As the theoretical comparison is not feasible, we conducted a Monte Carlo simulation study using
the R program in this section.

3.1 Simulation Technique

The data generation process for the models was carried out according to a widely used method as
described below (Gibbons, 1981).

xip = (1= p)Y 2+ puj e, 1= 1,2, i =12, ..,p

where p denotes the correlation coefficient between any two explanatory variables, w;; denotes the
independent pseudo-random variable obtained from standard normal distribution and p denotes the
number of explanatory variables. Moreover, the dependent variable Y was obtained through the
following equation.
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Yi = Bo+ BrXin + Baxig + -+ Bpxyp + &, L =12, ,mn
where, g is the error term, i.e. & ~ N(0,02).

For modelling, two different values of explanatory variables, p = 5 and 10, three different values
of the correlation coefficients between the explanatory variables, = 0.9,0.95,and, 0.99, four
different values of the sample sizes, n = 20,30, 50, and 100, and two different values of the error
variance o2 = 1 and 5 were taken. The data generation process of the explanatory variables was
carried out with the help of the values determined for p, p, n, and . The experiment was
repeated, N = 5000 times.

The MSE was calculated by comparing the estimated coefficients of each model with the true
coefficients (assumed B = I,,) and averaged MSE was calculated based on the following formula
over all simulations.
R 1 A '
AMSE(B) = 3 Xt (B = B) (Bi = B)
where 37 is any of the OLE, Ridge, Lasso, or EN estimators, £ is the true parameter (assumed
B = I,), and p is the number of predictors.

3.2 Results and Discussion

In this section, we thoroughly examined a simulation study comparing the performance of current
best estimators with traditional OLS, EN, Lasso, and GR. In section 3.2.1, the simulation results in
the absence of outliers in the data are discussed, where Tables 3.1.1 to 3.1.3 represent the MSE
scenario of the estimators in the presence of the correlation coefficients 0.90, 0.95, and 0.99,
respectively. Section 3.2.2 discusses the simulation results in the presence of 10% and 25%
outliers in the dataset. The simulation results, showcased in Tables 3.2.1 to 3.2.6, present outcomes
for various correlation coefficients, numbers of independent variables, variance numbers, and
sample sizes in the presence of outliers of 10% and 25%.

3.2.1 Without Outlier

Table 3.1.1 reveals that, for a correlation coefficient of 0.90 and no outliers, the MSE of the
estimators behaves differently based on sample size, number of predictors, and variance. In smaller
samples (e.g., 20 or 30 observations) with five predictors and low variance, estimators such as Ka,
Kio, K11, K3, K15, and GR tend to show relatively low MSE. However, as the number of predictors
or variance increases, the MSE also rises. Specifically, with higher variance and a fixed number of
predictors, the MSE escalates, and a similar trend is observed when the number of predictors
grows. For small samples (e.g., 20 or 30 observations) with high variance, estimators like kg, Ki»,
and k,; are more effective when the number of predictors is unchanged. When both the variance is
high and the number of predictors is large, estimators kg, ko, Kip, and kyy are recommended. In
contrast, for larger samples, regardless of the variance level, methods such as Lasso, EN, and GR
are generally preferred due to their efficiency, particularly in the presence of a correlation of 0.90.
It’s important to note that OLS does not perform well when collinearity is present among the
independent variables. Figure 3.1 illustrates how estimator performance varies with changes in
sample size, number of predictors, and variance.
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Figure 3.1: MSE of the Estimators when p = 0.9 and no outlier
Table 3.1.1: MSE values of the estimators with correlation = 0.9
Exi . P=3,0°=1 P=3,02=3 P=10,0°=1 =10,0% =3
SHmAtOr Ty T 3g | S0 | 100 | 20 | 30 | 30 | 100 | 20 | 30 | 30 | 100 | 20 50 | 100
OLS | 0.684 | 0.637 | 0.616 | 0.606 | D.0I8 | 0.786 | 0.683 | 0.632 | 0.726 | 0.701 | 0.630 | 0.611 | 1.746 0,706 | 0.657
ly | 0.798 | 0.851 | 0.010 | 0.060 | 0.902 | 0.044 | 0.972 | 0.089 | 0.806 | 0.807 | 0.843 | 0.017 | 0.885 0036 | 0.076
k; | 0.806 | 0.841 | 0.884 | 0.035 | 0.943 | 0.069 | 0.986 | 0.095 | 0.853 | 0.852 | 0.868 | 0.915 | 0.935 0973 | 0.002
ks | 0.574 | 0.536 | 0.520 | 0.514 | 0.834 | 0.657 | 0.573 | 0533 | 0.701 | 0590 | 0.537 | 0.514 | 1.491 0.673 | 0553
ky | 0662 | 0.616 | 0.560 | 0.532 | 0.705 | 0.643 | 0.583 | 0.530 | 0.806 | 0.764 | 0.704 | 0.615 | 0.833 0.707 | 0.611
ks | 0.704 | 0.670 | 0.640 | 0.610 | 0.782 | 0.766 | 0.742 | 0.726 | 0.793 | 0.768 | 0.720 | 0.633 | 0.840 0.800 | 0.754
E; | 0.640 | 0.617 | 0.600 | 0.501 | 0.726 | 0.693 | 0.675 | 0.672 | 0.602 | 0.653 | 0.627 | 0.504 | 0.866 0701 | 0.670
ky | D.813 | 0768 | 0.710 | 0.662 | D.013 | 0.893 | 0.854 | 0.803 | 0.025 | 0.885 | 0.833 | 0./64 | 0.036 0045 | 0875
g | 0712 | 0.678 | 0.645 | 0.621 | 0.804 | 0.788 | 0.750 | 0.732 | 0.805 | 0.771 | 0.726 | 0.661 | 0.830 0.820 | 0.763
ke | 0.688 | 0.663 | 0.637 | 0.618 | 0.759 | 0.748 | 0.732 | 0.721 | 0.761 | 0.736 | 0.702 | 0.648 | 0.831 0.776 | 0.742
lyy | 0573 | 0535 | 0.515 | 0.506 | 0.812 | 0.664 | 0.580 | 0.531 | 0.663 | 0.587 | 0.337 | 0.511 | 0.966 0.663 | 0953
ky | 0573 | 0535 | 0.515 | 0.506 | 0.812 | 0.663 | 0.580 | 0.531 | 0.662 | 0.587 | 0.337 | 0.511 | 0.965 0.663 | 0959
ly; | 0.633 | 0.500 | 0.552 | 0.524 | 0.703 | 0.632 | 0.576 | 0.535 | 0.752 | 0.707 | 0.651 | 0.578 | 0.818 0.666 | 0062
ks | 0573 | 0335 | 0.515 | 0.506 | 0.814 | 0.664 | 0.580 | 0.531 | 0.662 | 0.587 | 0.337 | 0511 | 0.973 0.663 | 0059
lyy | 0961 | 0.972 | 0.978 | 0.086 | 0.953 | 0.965 | 0.973 | 0.982 | 0.060 | 0.980 | 0.989 | 0.993 | 0.968 0.987 | 0.092
lgs | 0.573 | 0.535 | 0.515 | 0.506 | 0.814 | 0.664 | 0.580 | 0.531 | 0.662 | 0.587 | 0.537 | 0511 | 0.975 0.663 | 0353
kg | 0.821 | 0.830 | 0.836 | 0.856 | 0.801 | 0.506 | 0.807 | 0.826 | 0.881 | 0.871 | 0.876 | 0.885 | 0.877 0.864 | 0.871
kir | 0.962 | 0.973 | 0.979 | 0.986 | 0.953 | 0.965 | 0.972 | 0.982 | 0.069 | 0.980 | 0.989 | 0.993 | 0.958 0.987 | 0.692
Ty | 085 | 0.646 | 0.000 | 0.060 | 0.806 | 0.042 | 0.072 | 0089 | 0.761 | 0.J88 | 0.837 | 0.915 | 0.861 0031 | 0976
k| D062 | 0073 | 0.070 | 0.086 | 0.953 | 0.065 | 0.073 | 0.082 | 0.060 | 0.080 | 0.080 | 0.093 | 0.058 0087 | 0.002
ki | D648 | 0611 | 0.578 | 0.554 | 0.604 | 0.620 | 0.560 | 0.534 | 0.760 | 0.718 | 0.666 | 0.599 | 0.816 0647 | 0.567
lky | 0628 | 0.595 | 0.567 | 0.547 | 0.710 | 0.623 | 0.567 | 0.531 | 0.724 | 0.685 | 0.640 | 0.385 | 0.843 0.632 | 0557
kyp | 0.785 | 0.779 | 0.775 | 0.772 | 0.842 | 0.841 | 0.839 | 0.840 | 0.004 | 0.879 | 0.855 | 0.827 | 0.934 0.905 | 0.888
kn | 0.785 | 0.773 | 0.755 | 0.739 | 0.842 | 0.836 | 0.821 | 0.812 | 0.904 | 0.879 | 0.855 | 0.827 | 0.934 0.905 | 0.888
Tasso | 0.601 | 0.540 | 0.516 | 0.506 | 0.830 | 0.711 | 0.592 | 0.532 | 0.749 | 0.610 | 0.540 | 0.511 | 1.086 0713 | 0560
EN | 0.506 | 0.540 | 0.516 | 0.506 | 0.835 | 0.701 | 0.591 | 0.532 | 0.732 | 0.614 | 0.540 | 0.511 | 1.058 0700 | 0550
GR | 0575 | 0.536 | 0.516 | 0.507 | 0.758 | 0.656 | 0.578 | 0.531 | 0.668 | 0.594 | 0.546 | 0.517 | 0.895 0642 | 0.550

Table 3.1.2 shows that the performance of OLS deteriorates significantly as the correlation
coefficient rises from 0.90 to 0.95. Consistent with the findings in Table 3.1.1, for small samples
with low variance and five predictors, estimators such as ki, ki1, ki3, K15, and GR exhibit relatively
low MSE. While an increase in the number of predictors leads to higher MSE, these estimators
maintain stable performance for small sample sizes. Additionally, for small samples with high




Nayem, Aziz and Kibria: Comparison among Ordinary Least Squares...

33

variance and a correlation coefficient of 0.95, estimators ky, ki, and ky, are recommended. For
larger samples, regardless of variance, Lasso, EN, and GR remain the preferred choices due to
their operational efficiency.

Table 3.1.2: MSE values of the estimators with correlation = 0.95

. P=50%=5 P=10,0%= P=10,0%=
Estimator 100 | 20 30 50 30 50 | 100 | 20 3 50 | 100
OLS 0.606 | 1.107 | 0.865 | 0.695 0.792 | 0.671 | 0.616 | 2.799 | 1458 | 0.857 | 0.684
Iy 0.959 | 0.900 | 0.937 | 0.971 0.844 | 0.847 | 0.911 | 0.912 | 0.903 | 0.933 | 0.974
k 0038 | 0.038 | 0.064 | 0.986 0874 | 0.870 | 0.808 | 0.938 | 0.944 | 0.969 | 0.001
ks 0.515 | 0.099 | 0.713 | 0.582 0.660 | 0.563 | 0.517 | 2.203 | 1.281 | 0.802 | 0.574
K, 0.536 | 0.742 | 0.661 | 0.504 0.813 | 0.742 | 0.636 | 0.886 | 0.832 | 0.749 | 0.634
ks 0.811 | 0.776 | 0.753 0.838 | 0.780 | 0.674 | 0.893 | 0.860 | 0.840 | 0.774
kg 0.767 | 0.702 | 0.684 0.711 | 0.667 | 0.609 | 1.036 | 0.831 | 0.733 | 0.680
ks 0.026 | 0.005 | 0.863 0032 | 0.801 | 0.822 | 0.957 | 0.063 | 0.962 | 0.006
kg 0.826 | 0.797 | 0.769 0.840 | 0.781 | 0.689 | 0.895 | 0.876 | 0.852 | 0.786
™ 0.783 | 0.752 | 0.741 0.798 | 0.745 | 0.668 | 0.897 | 0.843 | 0.804 | 0.755
) 0919 | 0.718 | 0.589 0.646 | 0.563 | 0.515 | 1.135 | 0.955 | 0.751 | 0.577
Iy 0.019 | 0.718 | 0.580 0.645 | 0.563 | 0.515 | 1.135 | 0.955 | 0.751 | 0.577
K 0745 | 0.653 | 0.584 0.762 | 0.604 | 0.507 | 0.004 | 0.811 | 0.712 | 0.603
T 0004 | 0.710 | 0.580 0.645 | 0.563 | 0.515 | 1.150 | 0.950 | 0.752 | 0.577
lyy 0.970 | 0.974 | 0.977 0.087 | 0.993 | 0.996 | 0.074 | 0.986 | 0.992 | 0.995
s 0024 | 0.710 | 0.580 0.645 | 0.563 | 0.515 | 1.155 | 0.950 | 0.752 | 0.577
k1s 0.837 | 0.823 | 0.823 0.002 | 0.900 | 0.006 | 0.010 | 0.806 | 0.892 | 0.896
Iy 0.970 | 0.974 | 0.977 0.087 | 0.993 | 0.906 | 0.974 | 0.986 | 0.993 | 0.995
ks 0.893 | 0.935 | 0.971 0.823 | 0.830 | 0.010 | 0.894 | 0.891 | 0.029 | 0.074
k1o 0.070 | 0.074 | 0.077 0.087 | 0.993 | 0.906 | 0.074 | 0.086 | 0.993 | 0.995
g 0731 | 0.643 | 0.578 0.787 | 0.717 | 0.623 | 0.803 | 0.806 | 0.703 | 0.501
Ty 0.750 | 0.648 | 0.575 0.752 | 0.690 | 0.606 | 0.035 | 0.807 | 0.684 | 0.577
kx 0.849 | 0.836 | 0.843 0.893 | 0.861 | 0.829 | 0.035 | 0.021 | 0.007 | 0.888
ka 0.849 | 0.831 | 0.825 0.893 | 0.861 | 0.829 | 0.935 | 0.921 | 0.907 | 0.888
Lasso 0,971 | 0.765 | 0.610 0.715 | 0.579 | 0.516 | 1.272 | 1.032 | 0.816 | 0.503
EN 0.939 | 0.748 | 0.605 0.701 | 0.578 | 0.516 | 1.234 | 0.991 | 0.790 | 0.588
GR 0.812 | 0.687 | 0.586 0.658 | 0.581 | 0.526 | 0.083 | 0.855 | 0.698 | 0.567
: MSE values of the estimators with correlation = 0.99
Estimator =50 = P=50"=5 P=1
20 30 30 | 100 70 30 50 | 100 100 2 30
OLS 0941 [0700 [ 0623 10607 [ 2771 [ 0970 | 0.715 | 0.633 0640 | 11.705 | 5.223
I 0.827 | 0.846 | 0.007 | 0.957 | 0.000 | 0.037 | 0.970 | 0.988 0012 | 0.083 | 0042
I 0.830 | 0.834 | 0.885 | 0.934 | 0.042 | 0.965 | 0.986 | 0.995 0910 | 0.985 | 0.930
I 0.816 | 0.582 | 0.525 | 0515 | 1.600 | 0.819 | 0.506 | 0.537 0533 | 7541 | 3460
ky 0.732 | 0.658 | 0.593 | 0.538 | 0.792 | 0.688 | 0.603 | 0.545 0.660 | 1.082 | 0.947
ks 0.797 | 0.717 | 0.665 | 0.627 | 0.836 | 0.793 | 0.764 | 0.736 0710 | 1.022 | 0.941
ks 0.708 | 0.651 | 0.619 | 0.597 | 0.826 | 0.721 | 0.688 | 0.683 0640 | 2.073 | 1107
s 0.943 | 0.886 | 0.772 | 0.686 | 0.933 | 0.020 | 0.876 | 0.814 0033 | 0078 | 0973
[ 0817 | 0741 [ 0.677 | 0.632 | 0830 | 0.820 [ 0.780 | 0.743 0742 | 1.022 0.930
™ 0.755 | 0.702 | 0.663 | 0.628 | 0.815 | 0.769 | 0.749 | 0.J32 0701 | 1.202 | 0.952
kg 0665 | 0572 [ 0321 | 0307 | 1.085 | 0.789 [ 0.603 | 0534 0532 | 1.810 1.342
kg 0664 | 0572 [ 0321 | 0307 | 1.084 | 0.788 | 0.603 | 0.534 0.532 | 1.840 1.346
ky; | 0.709 | 0.632 | 0.571 | 0.528 | 0.804 | 0.680 | 0.593 | 0.540 0.632 | 1.283 | 0973
kg3 0.666 | 0.572 | 0.521 | 0307 | 1.105 [ 0.790 [ 0.603 | 0.534 0.532 | 1.880 1.364
kg, | 0003 | 0090 | 0.086 | 0988 | 0001 | 0.087 | 0.082 | 0985 0000 | 0.088 | 0.996
Kz | 0.667 | 0572 | 0.321 | 0507 | 1111 | 0.790 | 0.605 | 0.534 0532 | 1.929 | 1371
ks 0908 [ 0891 [ 086 | 0867 [ 0898 [ 0871 | 0.841 | 0.842 0949 | 0.977 0.947
gy | 0993 | 0090 | 0.086 | 0.088 | 0001 | 0.087 | 0.082 | 0985 0990 | 0.088 | 0.996
lkys | 0.807 | 0.830 | 0.905 | 0.957 | 0.808 | 0.035 | 0.070 | D.088 0910 | 1.015 | 0.936
ke 0.993 | 0.990 0.991 | 0.987 | 0.982 | 0.985 0.999 | 0.988 0.996
ky | 0.737 | 0.661 0.780 | 0.672 | 0.587 | 0.539 0.663 | 1.064 | 0.948
kn 0.718 | 0.642 0.704 | 0.674 | 0.383 | 0.535 0.643 | 1.149 0.964
Ky, | 0313 | 0.780 0.862 | 0.845 | 0.846 | 0.845 0838 | 0.079 | 00943
kx| 0813 | 0.784 0.862 | 0.841 | 0.829 | 0.817 0838 | 0.079 | 0043
Lasso | 0.857 | 0.615 1.504 | 0.866 | 0.629 | 0.536 0545 | 2.586 | 1.644
EN | 0.822 | 0.607 1453 | 0.841 | 0.621 | 0333 0542 | 2455 | 1343
GR_ | 0670 | 0574 0.911 | 0.716 | 0.396 | 0.534 0537 | 1.37 1.075
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From Table 3.1.3, it is evident that conventional methods exhibit lower performance as the
correlation among predictors increases (from 0.90 to 0.95 to 0.99). Notably, with the same number
of predictors, an increase in variance results in higher MSE. For example, when number of
predictors is five and error variance is one for small samples, the models Kig, ki1, ki3, and Kis
demonstrate low MSE; however, their performance diminishes as the number of predictors and
variance increases. Conversely, with small predictors and high variance, models k4, Ki», Koo, and
k,; outperform others, while for high variance and a high number of predictors, models k7, ki, Koo,
and k,3 are recommended. Furthermore, for small samples and low variance, the robust
performance of ki, ki1, ki3, and kys is noticeable, especially when the correlation coefficient is
around 0.99. In the case of large samples, traditional models such as Lasso, EN, and GR are
preferred due to their ease of use. Figure 3.2 illustrates the performance of the top estimators as the
sample size, predictors, and variance increase.
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Figure 3.2: MSE of the Estimators when p = 0.99 and no outlier

3.2.2 With outlier

It is noted from Table 3.2.1 is that the MSE of the estimators is reported for correlated predictors at
0.90 and a 10% outlier present in the data. The addition of outliers is seen to result in an elevated
MSE in comparison to the values outlined in Table 3.1.1. It is noteworthy that an increase in
variance leads to a higher MSE when the number of predictors remains constant. Notably, in the
case of small sample sizes and low variance, it is evident that ky, ks, and k,; demonstrate low
MSE. However, as the number of predictors and variance increase, ky, and kys perform well.
Furthermore, for small predictors and high variance, the estimators kig, Kop, and k3 demonstrate
better performance. For high variance and a high number of predictors, ki, kzp, and kps are
recommended. Additionally, in the case of large samples, traditional models such as Lasso, EN,
and GR are recommended due to their ease of operation. Figure 3.3 illustrates the behavior of the
top-performing estimators when the sample size, predictors, and variance increase in the presence
of a 10% outlier. With an increase in sample size, predictors, and variance, Figure 3.3 portrays the
situation for the best-performing estimators.
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Table 3.2.1: MSE values of the estimators with correlation = 0.90 and 10% outlier

P=10,5%=1 P=10,5°=%

Estimator

20 30 50 100 20 100 20 30 50 100 20 30 50 100

OLS | 1635 ) 1.048 | 0.856 | 0.706 | 1.951 0.824 | 3.545 | 1.804 | 1.030 | 0.837 | 4435 | 2.225 | 1.139 | 0.923

k) 0.829 | 0.831 | 0.878 | 0.933 | 0.893 0984 | 0.893 | 0.862 | 0.847 | 0.896 | 0.911 | 0.902 | 0925 | 0968

k; 0.852 | 0.817 | 0.820 | 0.877 | 0.911 0900 [0.924 [ 0.879 [ 0.857 [ 0.877 [ 0.939 [ 0.943 [ 0.961 [ 0.986

ly 1.496 | 0.996 | 0.736 | 0.396 | 1.610 0.610 [3.231 [ 1.700 [ 0.998 [ 0.676 [ 3.582 [ 1.963 [ 1.097 [ 0.710

ky 0.928 | 0.784 | 0.678 | 0.388 | 0.986 0601 | 0.966 | 0.845 | 0.745 | 0.639 | 0.992 | 0.878 | 0.760 | 0.630

ks 0.878 | 0.762 | 0.687 | 0.617 | 0.871 0.694 | 1.011 | 0.847 | 0.765 | 0.674 | 1.015 | 0.870 | 0.800 | 0.741

s 1.072 | 0.820 | 0.684 | 0.593 | 1.088 0.639 | 1.832 | 1.116 | 0.788 | 0.635 | 1.828 | 1.130 | 0.789 | 0.667

i 0.871 | 0.840 | 0.801 | 0.712 | 0.903 0.838 | 0.027 | 0.014 | 0.501 | 0.856 | 0.948 | 0.048 | 0.953 | 0.937

iy 0.867 | 0.766 | 0.699 | 0.627 | 0.866 0.717 | 0.993 | 0.845 | 0.760 | 0.686 | 0.988 | 0.871 | 0.818 | 0.770

) 0.918 | 0.768 | 0.682 | 0.613 | 0.913 0.683 [ L.I79 [ 0.882 | 0745 [ 0.657 | 1.163 [ 0.900 | 0770 | 0.719

kg 1.419 | 1.000 | 0.748 | 0.605 | 1.654 0.623 | 1.864 | 1.357 [ 0.956 | 0.680 | 2.120 | 1.642 | 1.067 | 0.718

S 1.407 | 0.999 | 0.748 | 0.605 | 1.650 0.623 | 1.808 | 1.351 [ 0.956 | 0.680 | 2.102 | 1.640 | 1.067 | 0.718

SN 0995 | 0.811 [ 0.686 | 0.380 | 1.083 0.603 | 1.106 | 0.887 [ 0.745 [ 0,630 | 1.174 [ 0.955 [ 0.773 | 0.647

30 1430 | 1.002 | 0.748 | 0.605 | 1.662 0.623 | 1.921 [ 1.376 | 0.958 | 0.680 | 2.175 | 1.633 | 1.068 | 0.718

kyy 0.946 | 0.055 | 0.965 | 0.976 | 0.940 0973 | 0.063 | 0.975 | 0.084 | 0.990 | 0.962 | 0.973 | 0.983 | 0.989

ks 1438 | 1.003 | 0.748 | 0.605 | 1.664 0.623 | 1.996 | 1.384 | 0.959 | 0.680 | 2.202 | 1.655 | 1.068 | 0.718

kg 0.829 | 0.799 | 0.792 | 0.795 | 0.830 0.781 | 0.904 | 0.878 | 0.858 | 0.854 | 0.909 | 0.873 | 0.850 | 0.845

kyy 0948 [ 0936 | 0.966 | 0.976 | 0.940 0974 | 0.965 | 0.975 [ 0.984 | 0990 | 0.962 | 0.974 | 0.983 | 0.980

ks 0812 | 0.814 | 0.871 | 0.934 | 0.882
kpp 0.948 ] 0.956 | 0.966 | 0.976 | 0.940

0.983 | 0.911 [ 0.836 | 0.826 | 0.891 | 0.904 | 0.886 | 0.920 | 0.969
0.974 | 0.965 | 0.975 | 0.084 | 0.990 | 0.962 | 0.974 | 0.983 | 0.980

ky 0814 [ 0734 | 0.660 | 0.387 | 0977 0596 | 0.897 | 0.829 | 0.744 | 0.646 | 1.043 | 0.908 | 0.762 | 0.643

k) 0.858 [ 0.756 | 0.664 | 0.584 | 1.092 0.601 | 0.953 | 0.846 | 0.736 | 0.631 | 1.236 | 1.016 | 0.801 | 0.652

=) 0.816 | 0.765 | 0.738 | 0.709 | 0.841 0.796 | 0.905 | 0.875 [ 0.837 | 0.793 | 0.929 | 0.912 | 0.888 | 0.864

kn 0.816 | 0.762 | 0.724 | 0.681 | 0.841 0.766 | 0.905 | 0.875 | 0.837 | 0.793 | 0.929 | 0.912 | 0.888 | 0.864

Lasso | 1.033 | 0.885 | 0.740 | 0.613 | 1151 0.636 | 1.201 | 1.046 | 0.870 | 0.688 | 1417 | 1.153 | 0.935 | 0.726

EN 1.008 | 0.864 | 0.743 | 0.612 | 1.127 0634 [ 1173 [ 1.013 [ 0854 [ 0.679 [ 1367 [ 1.101 [ 0.905 [ 0.714

0614 | 1.000 | 0.897 [ 0.772 [ 0.640 [ 1.091 [ 0.983 | 0.807 | 0.663

GR_ | 0891 | 0.797 | 0.699 | 0.598 | 0.993
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Figure 3.3: MSE of the Estimators when p = 0.90 and 10% outlier

Table 3.2.2 illustrates the MSE of the estimators when there is a 0.95 correlation among predictors
and a 10% outlier in the data. It is evident that the introduction of outliers leads to a higher MSE
compared to the findings in Table 3.1.2. In scenarios with the number of predictors is five and
error variance is one in small samples, it is observed that kig ko, Koz, and kyz yield low MSE, but




36 International Journal of Statistical Sciences, Vol. 24(2)s, 2024

kig is noted to be an inconsistent estimator. However, as the number of predictors and variance
increases, K, and kas exhibit strong performance. As variance increases with the same number of
predictors, the MSE also increases. In situations with fewer predictors and high variance, ki, k,
and ko; show superior performance. Similarly, in scenarios with high variance and a high number
of predictors, kyg, ka,, and kjs are recommended. In cases of small samples and low variance, Ky,
ks, and k,3 demonstrate robust performance when the correlation coefficient is approximately
0.95. For large samples, traditional models such as Lasso, EN, and GR are recommended due to
their user-friendly operation.

Table 3.2.2: MSE values of the estimators when correlation = 0.95 and 10% outlier

Estimator P=5¢° =1 P=3¢° =3 P=10,0° =1 P=10,0" =%

30 | 30 | S50 | 100 | 20 | 30 | 50 | 100 | 20 | 30 | 50 | Ioa | 20 | 30 | 50 | 100
OLS 7335 | 1.204 | 0.806 | 0.710 | 2.943 | 1484 | 0.967 | 0.834 | 6.649 | 2.966 | 1467 | 0.871 | 8.349 | 3.740 | 1.765 | 0.837
Iy 0852 | 0.840 | 0.873 | 0.035 | 0.003 | 0.026 | 0.050 | 0.083 | 0.032 | 0.903 | 0.864 | 0.894 | 0.036 | 0.023 | 0.927 | 0.068
k 0.873 | 0.826 | 0.823 | 0.879 | 0.927 | 0.045 | 0.973 | 0.990 | 0.971 | 0.913 | 0.870 | 0.879 | 0.951 | 0.949 | 0.960 | 0.986
ks 2077 | 1125 | 0.778 | 0601 | 2.159 | 1277 | 0.822 | 0.610 | 5.039 | 2.711 | 1.385 | 0.753 | 6.210 | 3.051 | 1.539 | 0.807
ks 1.009 | 0.806 | 0.687 | 0.591 | 1.079 | 0.8093 | 0.726 | 0.607 | 1.108 | 0.918 | 0.795 | 0.665 | 1.137 | 0.957 | 0.816 | 0.679
ks 0.920 [ 0.780 | 0.691 | 0.624 | 0.927 | 0.822 [ 0.745 | 0.702 | 1.111 | 0.903 | 0.816 | 0.706 | 1.136 | 0.924 | 0.839 [ 0.770
ks 1.246 | 0.857 | 0.693 | 0.602 | 1.279 | 0.010 | 0.720 | 0.644 | 2.736 | 1.442 | 0.902 | 0.663 | 2.826 | 1.430 | 0.903 | 0.692
ks 0888 | 0.858 | 0.800 | 0.728 | 0.918 | 0.907 | 0.889 | 0.830 | 0.947 | 0.934 | 0.920 | 0.890 | 0.955 | 0.952 | 0.954 | 0.949
kg 0001 | 0.780 | 0.701 | 0.636 | 0.014 | 0.823 | 0.760 | 0.728 | 1.088 | 0.906 | 0.814 | 0.717 | 1.103 | 0.022 | 0.847 | 0.794
™ 0.991 | 0.787 | 0.684 | 0.620 | 0.995 | 0.825 | 0.729 | 0.600 | 1.439 | 0.986 | 0.802 | 0.682 | 1.479 | 0.997 | 0.824 | 0.738
[ 1795 | 1.110 | 0.792 | 0609 | 2.179 | 1334 | 0.854 | 0632 | 2420 | 1.711 | 1.224 | 0.754 | 2.864 | 2.138 | 1.448 | 0817
Iy 1776 | 1.108 | 0.792 | 0.600 | 2.167 | 1.352 | 0.854 | 0632 | 2388 | 1.700 | 1323 | 0.753 | 2.847 | 2.136 | 1.448 | 0.817
I 1.112 [ 0.841 | 0.698 [ 0.592 | 1.220 | 0.955 | 0.743 | 0.610 | 1.386 | 1.002 | 0.809 | 0.656 | 1.505 | 1.087 | 0.848 | 0.678
ln 1.823 | 1.114 | 0.793 | 0.609 | 2.204 | 1.336 | 0.854 | 0.632 | 2.524 | 1.762 | 1.233 | 0.754 | 2.983 | 2.170 | 1432 | 0.817
Ky 0.963 | 0.060 | 0.071 | 0.078 | 0.962 | 0.066 | 0.067 | 0.976 | 0.974 | 0.085 | 0.991 | 0.094 | 0.971 | 0.084 | 0.990 | 0994
ks 1848 | 1115 | 0.793 | 0.600 | 2212 | 1356 | 0.854 | 0632 | 2720 | 1.702 | 1335 | 0.754 | 3.065 | 2.170 | 1.452 | 0.817
kg 0.860 | 0.827 | 0.802 | 0.804 | 0.865 | 0.825 | 0.790 | 0.791 | 0.936 | 0.917 | 0.889 | 0.881 | 0.938 | 0.012 | 0.884 | 0.877
ly7 0.967 | 0.070 | 0.071 | 0.078 | 0.962 | 0.066 | 0.067 | 0.976 | 0.975 | 0.085 | 0.091 | 0.004 | 0.971 | 0.084 | 0.990 | 0994
™ 0.837 | 0.821 | 0.865 | 0.034 | 0.891 | 0.021 | 0.058 | 0.083 | 0.079 | 0.880 | 0.840 | 0.887 | 0.047 | 0.010 | 0.920 | 0.967
lgo 0.067 | 0.070 | 0.971 | 0.078 | 0.962 | 0.066 | 0.967 | 0.976 | 0.975 | 0.985 [ 0.991 | 0.994 | 0.971 | 0.084 | 0.990 | 0.994
I 0.848 | 0.752 | 0.665 | 0.992 | 1.006 | 0.877 | 0.718 | 0.602 | 0.950 | 0.888 | 0.795 | 0.676 | 1.105 | 0.967 | 0.818 | 0.612
kn 0.897 | 0.772 | 0.670 | 0.588 | 1.135 | 0.950 | 0.745 | 0.607 | 1.014 | 0.906 | 0.789 | 0.658 | 1345 | 1.085 | 0.866 | 0.684
Ky 0.844 | 0.779 | 0.737 | 0.714 | 0.863 | 0.831 | 0.808 | 0.800 | 0.033 | 0.903 | 0.851 | 0.801 | 0.038 | 0.024 | 0.806 | 0.860
Iy 0.844 [ 0.777 | 0.723 | 0.687 | 0.863 | 0.827 | 0.792 | 0.771 | 0.933 | 0.903 | 0.851 | 0.801 | 0.938 | 0.924 | 0.896 | 0.869
Lasso 1162 | 0.032 | 0.781 | 0.610 | 1.330 | 1.048 | 0.826 | 0.646 | 1553 | 1.202 | 1.003 | 0.747 | 1.863 | 1.400 | 1.076 | 0.793
EN 1122 | 0.003 | 0.770 | 0.615 | 1.290 | 1.005 | 0.810 | 0.643 | 1445 | 1.132 | 0.066 | 0.733 | 1.724 | 1.330 | 1.039 | 0.773
GR 0963 [ 0.825 | 0.713 | 0.602 | 1.073 | 0.913 | 0.746 | 0.625 | 1.129 | 0.985 | 0.849 [ 0.674 | 1277 | 1.103 | 0.908 | 0.702

Table 3.2.3 illustrates the MSE of the estimators in the presence of a high predictor correlation
(0.99) and a 10% outlier. Compared to Table 3.1.3, the introduction of outliers resulted in
increased MSE. Notably, when the number of predictors (p) is five and the error variance is one
for small samples, kig Koo, Koz, and ki3 demonstrate low MSE. However, kig is an inconsistent
estimator. On the contrary, ky, and ky; show good performance as both the number of predictors
and variance increase. Additionally, an increase in variance with a constant number of predictors
leads to an increase in MSE. For small predictors and high variance, k7, Kg, Koy, and kps perform
well, while for high variance and a high number of predictors, ks, Kkis, Ko, and kp; are
recommended. When dealing with small sample sizes and low variance, Ky, k2, and kys prove to
be robust when the correlation coefficient is approximately 0.99. Lastly, for large samples,
traditional models such as Lasso, EN, and GR are recommended due to their user-friendly
operation.
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Table 3.2.3: MSE values of the estimators when correlation = 0.99 and 10% outlier

P=30" =1 P=30°=5 P=10,6°-1 P=10,4°=5

Estimator | —5——; D [ 100 | 20 | 30 | 50 [ 100 | 20 | 30 | 50 [ 100 | 20 | 30 | 50 [ 100

OLS 6.327 | 1.885 | 0.863 | 0.718 | 8.745 | 2370 | 0.981 | 0.745 | 28,97 | 1231 | 4705 | 1.182 | 39.34 | 16.38 | 6.127 | 1.339

Iy 0.894 | 0.853 | 0.872 | 0.933 | 0.924 | 0.928 | 0.958 | 0.983 | 0.984 | 0.953 | 0.908 | 0.897 | 0.984 | 0.963 | 0.942 | 0.965

ks 0.949 | 0.838 | 0.826 | 0.876 | 0.968 | 0.945 | 0.972 | 0.990 | 1.057 | 0.964 | 0.904 | 0.883 | 0.988 | 0.969 | 0.965 | 0.984

k; 5.328 | 1.684 | 0.827 | 0.607 | 4926 | 1.745 | 0.887 | 0.627 | 2535 | 10.79 | 4.096 | 1.101 | 26.06 | 10.68 | 4.084 | 1.159

ky 1.145 | 0.865 | 0.704 | 0.595 | 1.220 | 0.948 | 0.743 | 0.612 | 1.839 | 1.094 | 0.872 | 0.701 | 1.814 | 1.126 | 0.892 | 0.713

ks 1.003 | 0.819 | 0.707 | 0.627 | 1.015 | 0.833 | 0.760 | 0.704 | 1.257 [ 0.970 | 0.892 | 0.741 | 1.336 | 0.984 | 0.900 | 0.793

ks 1.563 | 0966 | 0.713 | 0.605 | 1705 | 0997 | 0.738 | 0647 | 7771 [ 2853 | 1.130 | 0.713 | 8729 | 2.869 | 1.120 | 0.724

ky 0.938 | 0.893 | 0.827 | 0.735 | 0.943 | 0.922 | 0.899 | 0.854 | 0.979 | 0.965 | 0,957 | 0.941 | 0.985 | 0.972 | 0.964 | 0.964

ks 0946 | 0.812 | 0.718 | 0.639 | 0061 | 0.847 | 0.781 | 0.730 | 1.257 | 0982 | 0.8753 | 0.756 | 1.322 | 0,997 | 0.880 | 0.812

kg 1.112 | 0839 | 0.700 | 0.622 | 1.155 | 0867 | 0.741 | 0692 | 2804 [ 1261 | 0887 | 0711 | 2853 | 1.274 | 0.896 | 0.748

kg, 2788 | 1471 [ 0838 | 0616 | 3235 | 1.776 | 0944 | 0643 | 4704 | 2.773 | 1934 | 1.023 | 3448 | 3.407 | 2480 | 1150

kg 2.824 | 1460 | 0.838 | 0.616 | 3.239 | 1.772 | 0.944 | 0.643 | 5.738 | 2.957 | 1.944 | 1.022 | 5905 | 3.492 | 2485 | 1.130

ki 1.311 | 0922 | 0.717 | 0.596 | 1438 | 1.030 | 0.766 | 0.615 | 3.056 | 1.353 | 0.904 | 0.609 | 3.242 | 1.406 | 0.937 | 0.721

k13 2.875 | 1.489 | 0.839 616 | 3.391 | 1.791 | 0.944 | 0.643 | 4997 | 3.015 | 2.033 | 1.026 | 5.808 | 3.606 | 2.340 | 1.151

ks 0.989 | 0.984 | 0.976 080 | 0.988 | 0.983 | 0.974 | 0978 | 0.987 | 0.995 | 0.998 | 0.999 | 0.987 | 0.995 | 0.998 | 0.998

ks 3.154 | 1.500 | 0.839 616 | 3.336 | 1.794 | 0.944 | 0.643 | 5.970 | 3.312 | 2.077 | 1.026 | 6.482 | 3.734 | 2.352 | 1.151

k- 0.989 | 0.985 | 0.977 080 | 0.988 | 0.983 | 0.974 | 0.978 | 0.988 | 0.995 | 0,998 | 0.999 | 0.988 | 0.995 | 0.998 | 0.998

ks 0.882 | 0.831 | 0.863 031 | 0.911 | 0.921 | 0.957 | 0.983 | 1.078 | 0.967 | 0.878 | 0.886 | 1.049 | 0.962 | 0.927 | 0.964

ke 0.989 | 0.985 | 0.977 080 | 0.988 | 0.983 | 0.974 | 0978 | 0.988 | 0.995 | 0.998 | 0.999 | 0.988 | 0.995 | 0.998 | 0.998

0.
0.
0.
ks 0.920 | 0.869 | 0.820 | 0.810 | 0.913 | 0.865 | 0.812 | 0.798 | 0.978 | 0.961 | 0.943 | 0.931 | 0.989 | 0.961 | 0.933 | 0.925
0.
0.
0.
0.

kg 0897 | 0.781 | 0.681 396 | 1.037 | 0.807 | 0.731 | 0.606 | 1048 | 0966 | 0.862 | 0.717 | 1.213 | 1.029 | 0.882 | 0.710

I 0.935 | 0.803 | 0.686 | 0.391 | 1.148 | 0.975 | 0.763 | 0.612 | 1.129 | 0.993 | 0.862 | 0.700 | 1.401 | 1.112 | 0.906 | 0.724

ko 0900 | 0.799 | 0.746 | 0.715 | 0.901 | 0.842 | 0.815 | 0.801 | 1.030 | 0.957 | 0.880 | 0.810 | 1.005 | 0.960 | 0.909 | 0.869

ks 0.900 | 0.797 | 0.734 | 0.688 | 0.901 | 0.839 | 0.800 | 0.772 | 1.030 | 0.957 | 0.880 | 0.810 | 1.005 | 0.960 | 0.909 | 0.869

Lasso | 1.687 | 1.122 | 0.815 | 0.625 | 2.330 | 1.235 | 0.873 | 0.657 | 3.134 | 2.118 | 1.437 | 0.915 | 4359 | 2.689 | 1.613 | 0.952

EN 1.5908 | 1.107 | 0.801 | 0.622 | 2.226 | 1.200 | 0.856 | 0.652 | 3.256 | 2.036 | 1.363 | 0.878 | 4.400 | 2.618 | 1.351 | 0915

GR 1.081 | 0.920 | 0.739 | 0.606 | 1.272 | 1.008 | 0.780 | 0.628 | 1.616 | 1.266 | 0.972 | 0.737 | 1.826 | 1.431 | 1.047 | 0.765

Table 3.2.4 presents the MSE of the estimators when there is a 0.90 correlation among predictors
and a 25% outlier in the data. A comparison with Table 3.2.1 indicates that as the proportion of
outliers in the data set increases, the MSE also increases. Specifically, when the number of
predictors (p) is five and the variance is one for small sample sizes, estimators k7, K, Koy, and Koz
display small MSE. However, some estimators, such as ki, K4, Kig, and kig show inconsistency
under similar conditions. Additionally, it is observed that the MSE of ky, and kys increase as the
variance and number of predictors increase. Importantly, with an increase in variance, the MSE
grows while the number of predictors remains constant. The performance of k7, kg, Koy, and kys are
found to be better for small sample sizes and high variance. Furthermore, for a high number of
predictors and high variance, these estimators are recommended. However, for large sample sizes,
traditional models such as Lasso, EN, and GR are suggested due to their ease of use. From Table
3.2.5, the MSE of the estimators is presented for predictors with a correlation of 0.95 and a 25%
outlier in the data. A comparison to Table 3.2.2 reveals that as the outlier in the dataset increased,
the MSE also increased. Among the estimators, ks, kg, k2, and kys demonstrate low MSE for the
lower number of predictors and lower error variance in small samples. However, some estimators,
such as ki, Ky, Kig, Ki7, and kyg, exhibit low MSE for small samples but lack consistency. With an
increase in variance and an unchanged number of predictors, the MSE also increases. Notably, for
small predictors and high variance, k7, Ka,, and ks exhibit favourable performance. Furthermore,
for high variance and a high number of predictors, k7, ki, k2, and ko3 are recommended. It is
observed that traditional regularization methods result in lower MSE when dealing with outliers in
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large samples. From Table 3.2.6, the MSE of the estimators is presented, with predictors exhibiting
a high correlation of 0.99 and a 25% outlier in the data. A comparison to Table 3.2.3 indicates that
an increase in the outlier in the dataset led to a corresponding increase in the MSE. Notably, for a
lower number of predictors (e.g. five) and reduced error variance (e.g. one) in small samples,
estimators k7, Ky, kg, and ky; demonstrate a minimal MSE. However, unlike the consistent
estimators such as ki, ki7, and kig shown in Table 2.8, these estimators are not consistent.
Moreover, as variance increases, the MSE also increases for consistent estimators. In scenarios
with a low number of predictors and high variance, ks, ky,, and k,; perform better. Similarly, for
high variance and a high number of predictors, k7, ks, k2, and kys are recommended. Traditional
regularization methods are observed to perform poorly when outliers are present in the data,
especially for large samples. For situations with a high number of predictors and high variance, ks,
ko, and kyo are recommended. As the sample size, number of predictors, and variance increase,
Figure 3.4 visually represents the performance of the most effective estimators. The analysis
reveals that k;, ky,, and K,z exhibit enhanced performance in the presence of heightened correlation,
increased variance, and a greater number of outliers.

Table 3.2.4: MSE values of the estimators when correlation = 0.90 and 25% outlier

tn
Q

P=50"=1 P=50"=5 P=10,4° =1 P=10,q" =5

Estimator
20 30 50 100 0 30 30 100 20 30 50 100 20 30 50 100

QLS | 3243 | 2.104 | 1281 | 0913 | 3.699 | 2.236 | 1.336 | 0.947 | 7.119 | 3.515 | 1.818 | 1.057 | 8.134 | 3.881 | 2.022 | 1.117

Iy 0910 | 0.877 | 0.865 | 0.915 | 0921 | 0.926 | 0.950 | 0.978 | 0.953 | 0.931 | 0.880 | 0.886 | 0.954 | 0.932 | 0.923 | 0.963

k, 1.046 | 0992 | 0842 | 0.834 | 0996 | 0.962 | 0.954 | 0.983 | 1082 | 0.983 | 0.896 | 0.861 | 0.968 | 0.940 | 0.940 | 0.979

k3 2985 | 1984 | 1232 | 0798 | 3.046 | 1.966 | 1.255 | 0.822 | 6.547 | 3315 | 1.753 | 1.040 | 6.445 | 3395 | 1.893 | 1092

ky 1675 | 1389 | 1.029 | 0754 | 1.799 | 1436 | 1.068 | 0.781 | 1.447 | 1.170 | 0.970 | 0.806 | 1.389 | 1.194 | 1.004 | 0.829

ks 1424|1193 | 0904 | 0710 | 1.394 | 1.100 | 0.863 | 0.730 | 1.588 | 1.148 | 0920 | 0.772 | 1.493 | 1.115 | 0.908 | 0.782

ks 2148 | 1.542 | 1.033 | 0.733 | 2180 | 1.480 | 0994 | 0.731 | 3913 | 2.224 | 1.297 | 0.874 | 3.641 | 2.054 | 1.235 | 0.844

ks 1.020 | 0.948 | 0.866 | 0.791 | 1.002 | 0.943 | 0.900 | 0.872 | 0.985 | 0.954 | 0.916 | 0.889 | 0.981 | 0.959 | 0.946 | 0.947

kg 1.371 | 1.139 | 0.879 | 0.710 ) 1.295 | 1.049 | 0.848 | 0.746 | 1.522 | 1.142 | 0.919 | 0.771 | 1.402 | 1.085 | 0.901 | 0.796

ky 1.633 | 1.282 | 0926 | 0.709 ) 1.607 | 1.189 | 0.881 | 0.720 ) 2158 | 1.412 | 1.009 | 0.787 | 1.971 | 1.312 | 0.965 | 0.780

ko 2873 | 2011 | 1264 | 0811 | 3.242 | 2.150 | 1.319 | 0.844 | 3896 | 2.705 | 1.686 | 1.045 | 4.065 | 2.980 | 1.868 | 1.103

ki 2849 | 2005 | 1263 | 0811 | 3230 | 2.148 | 1.318 | 0.844 | 3.692 | 2.679 | 1.684 | 1.045 | 3998 | 2.973 | 1.868 | 1.103

ky 1.893 | 1.500 | 1.071 | 0764 | 2068 | 1.571 | 1.115 | 0.792 | 1920 | 1418 | 1.073 | 0.845 | 1.905 | 1478 | 1.132 | 0.877

kg 2898 | 2.016 | 1.264 | 0811 [ 3261 | 2.132 | 1.319 | 0.844 | 4016 | 2.756 | 1.692 | 1.045 | 4201 | 3.008 | 1.870 | 1.104

Ky 0942 | 0.945 | 0952 | 0.966 | 0.943 | 0.945 | 0.950 | 0.964 | 0.963 | 0.971 | 0979 | 0.986 | 0.964 | 0.969 | 0.978 | 0.986
ks 2923 | 2.018 | 1264 | 0811 [ 3267 | 2.133 | 1.319 | 0.844 | 4279 | 2.787 | 1.693 | 1.045 | 4291 | 3.015 | 1.871 | 1.104
k1 0947 | 0.801 | 0.804 | 0.769 [ 1.030 | 0.918 | 0.808 | 0.764 | 0.960 | 0.932 | 0.878 | 0.841 | 0996 | 0.948 | 0.879 | 0839
kyy 0945 | 0.948 | 0953 | 0967 | 0.944 | 0.946 | 0.950 | 0964 | 0965 | 0.972 | 0979 | 0.986 | 0.964 | 0.969 | 0.979 | 0986
ks 0958 | 0.877 | 0854 | 0913 | 0918 | 0.920 | 0948 | 0978 | 1.112 | 0.979 | 0.868 | 0.876 | 1.002 | 0.934 | 0.917 | 0962
kyg 0945 | 0.948 | 0953 | 0967 | 0.944 | 0.946 | 0.950 | 0964 | 0965 | 0.972 | 0979 | 0.986 | 0.964 | 0.969 | 0.979 | 0986

Ly 1.149 | 1.054 | 0.866 | 0.698 | 1.589 | 1.339 | 1.019 | 0.761 | 1.071 | 1.005 | 0.897 | 0.766 | 1.362 | 1.220 | 1.035 | 0.838

ky 1.315 | 1.180 | 0932 | 0.719 ) 1.880 | 1.510 | 1.087 | 0.784 | 1.249 | 1.124 | 0.964 | 0.800 | 1.776 | 1.504 | 1.183 | 0.904

ky 1.040 | 0.944 | 0.799 | 0.711 | 0.962 | 0.892 | 0.816 | 0.776 | 0.963 | 0.935 | 0.869 | 0.793 | 0.952 | 0.932 | 0.894 | 0.534

ks 1.040 | 0.951 | 0.804 | 0.700 ) 0962 | 0.895 | 0.810 | 0.753 | 0963 | 0.935 | 0.869 | 0.795 | 0.952 | 0.932 | 0.894 | 0.854

Lasso | 1.635 | 1.374 | 1.068 1776 | 1.374 | 1.095 | 0.828 | 1875 | 1433 | 1.191 | 0.932 | 2.005 | 1.514 | 1.229 | 0939

EN 1.539 | 1.327 | 1.031 1.686 | 1.325 | 1.066 | 0.817 | 1.759 | 1.362 | 1.150 | 0.915 | 2.001 | 1468 | 1.179 | 0.944

GR 1324 | 1.191 | 0943 1435 | 1175 | 0970 | 0.761 | 1.392 | 1.176 | 1.027 | 0.838 | 1.500 | 1.260 | 1.051 | 0.862
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Table 3.2.5: MSE values of the estimators when correlation = 0.95 and 25% outlier

Estimator P=50° =1 P=5 o =3 P=10, o° =1 P=10,0° =35
30 | 50 | 100 | 30 | 30 | 50 [ 100 | 20 | 30 | S0 [ 100 | 20 | 30 | 50 | 100
OLS 2730 | Tdel | 0945 | 3482 [ 2095 | 1532 | 00960 | 13045 | 6190 | 2821 | 1337 | 15111 | 6n6d | 3113 | 1.385
ky 0600 | 0871 | 0915 | 0936 [ 0927 [ 0948 | 0978 | 0083 | 0966 | 0011 | 0890 | 0079 [ 0637 | 0934 | 0938
k 1.000 | 0.881 | 0.897 | 0991 0093 | 0082 | 1.145 | 1.032 | 0852 | 0872 | 0995 | 0068 | 0934 | 09N
ks 2334 | 1403 | 0826 | 4119 1397 | 0840 | 11875 230 2651 | 1298 | 11289 | 5347 | 272 1322
ks 1.381 | 1116 73| 1995 Q41 [ 0795 | 1857 | 1347 [ 1049 | 0B6d | 1731 [ 1305 | 1083 | 0875
ks 1304 [ 0057 | 0718 | 1402 0830 | 0740 | 1803 | 1.208 | 0857 | 0.813 | 1.763 | 1.163 | 0952 | 0.800
ky 1.847 | 1.133 | 0749 | 2662 1069 | 0744 | 6338 | 3263 | 1618 | 0986 | 5982 | 2835 | 149 | 0913
ks 0077 | 0882 | 0704 | 109 0897 | 0874 | 1018 | 0975 | 0052 | 0.898 | 1.010 | 0074 | 0832 | 094
ky 1.240 | 0920 | 0719 | 1402 (R6n | 0757 43 | 1228 | 0969 | 0800 | 1674 | 1155 | 0930 | 0808
ke 0891 | 0720 1 0018 [ 0729 | 2631 | 1704 | 1114 [ 0843 | 2721 | 1304 | 1.056 | 0806
I 1135 | 084 1502 | 0.866 | 5460 | 3.620 | 2.360 | 1303 | 5583 | 4.008 | 1612 | 1340
leyg 1434 | 0843 1501 | 0Ba6 | 5335 | 3796 | 2335 | 1302 | 3566 | 4003 | 2610 | 1340
Ly 1173 | 0783 1209 [ OB0B | 2731 | 1743 | 1194 [ 0927 | 2668 | 1709 | 1259 | 0944
Ty 436 [ 0843 1507 [ 0866 | 5632 | 3.065 | 2385 | 1303 | 5873 | 4091 | 1621 [ 1340
lyy 0960 | 0970 | 0960 0037 | 0948 | 0678 | 0081 | OG89 | 0992 | 0975 | 0G80 | 0982 | 0991
T 1136 | 0843 | 4362 1500 | 0.866 | 6288 | 4.065 | 2303 | 1303 | 6.5 | 4122 | 1623 | 1340
ks 0824 | 0778 | 1043 QRI2 | 0775 | 0090 | 0963 | 0913 | 0872 | 1.020 | 0877 | 0913 | 0862
lgpy 0962 | 0970 | 0960 0037 | 0948 | 0679 | 0O82 | 0GR9 | 0992 | 0976 | 0G80 | 0982 | 0991
I 0530 | 0012 | 0900 0045 [ 0977 | 1185 | 1047 | 0.907 | 0878 | 1.066 | 0876 | 0926 | 0837
liyo 0962 | 0970 | 0960 (0957 | 0968 | 0079 | 0082 | DOR9 | 0992 | 0976 | 0080 0991
kn 0801 | 0.707 | L1613 1067 | 0.771 | 1133 | 1.038 | 0842 | 0.805 | 1416 | 1230 0876
o U930 | 0730 | 1939 1166 [ 0797 | 1321 | 1175 | 1008 | 0847 | 1805 | 1512 0963
i1 0826 | 0717 | 1016 0825 | 0782 | 1032 | 00991 | 0504 [ 0813 | 0588 | 0661 0835
kn 0835 | 0.706 | LOIg 0820 | 0.760 | 1051 | 0.091 | 0.005 | 0.615 | 0.088 | 0961 085
Lasso 11534 | 0820 [ 2212 1182 | 0846 | 2601 | 1819 | 1402 | 1074 | 2877 | 1808 1.093
EN 1118 | 0815 | 2093 1142 [ 0836 | 2478 | 1726 | 1343 | 10328 | 2682 | 1784 1.063
GR 018 [ 0062 | 1682 1039 | 0.776 | 1699 | 1426 | 1.156 | 0047 | 1708 | 1448 0945
Table 3.2.6: MSE values of the estimators when correlation = 0.99 and 25% outlier

, P=35.4%=1 P=5.4%=5 P=10,¢" =1 P=10, 4% =5
Estimator 05— T 100 | 20 | 30 | 50 | 100 | 20 | 30 | 50 | 100 | 20 | 30 | 50 | 100
OLS 1438 | 4801 [ 1.746 | 0986 | 1659 | 5654 | 1.874 | 1235 | 6099 | 2621 | 9718 | 2594 | 6970 | 3019 | 1100 | 2.743
Ig 0979 | 0917 | 0876 | 0916 | 0966 | 0940 | 0948 [ 0877 | 1.019 | 099 | 0942 [ 0901 | 1.015 | 0.995 | 0955 | 0.961
ka 1015 | 0999 | 0868 | 0841 | 0993 | 0972 | 0953 | 0982 | 1233 | 1075 | 0964 | 0883 | 1.041 | 1.000 | 0964 | 0976
ky | 1234 [ 4353 | 1.647 [ 0.866 | 10.01 | 4122 [ 1.656 | 0.897 | 54.62 | 23.64 [ 8.644 | 2.406 | 40.08 | 21.19 [ 7.657 | 2253
ky 2520 | 1800 | 1.192 | 0800 | 2393 | 1839 | 1256 | 0836 | 3960 | 1.734 | 1.183 | 0948 | 3267 | 1.664 | 1.180 | 0959
ks 1824 | 1428 | 1000 | 0737 | 1678 | 1318 | 0936 | 0.754 | 1893 | 1.151 | 0961 | 0.865 | 1.877 | 1.170 | 0987 | 0.844
ks 3940 | 2280 | 1.237 | 0775 | 3854 | 2236 | 1193 [ 0772 | 1909 | 7188 [ 2316 | 1.212 | 18.68 | 6.908 | 2.159 | 1.096
Iy 0993 | 0944 | 0885 | 0812 | 0994 | 0961 | 0904 | 0B84 | 1.038 | 0996 | 0954 | 0926 | 1.034 | 1.000 | 0964 | 0948
kg 1528 | 1.276 [ 0938 | 0735 | 1461 | 1195 | 0904 | 0.768 | 1930 | 1223 | 1.001 | 0.844 [ 1905 | 1.225 | 0.994 | 0.841
ky 2390 | 1630 | 1.047 | 0739 | 2273 | 1540 | 0985 | 0745 | 6256 | 2339 [ 1285 | 0931 | 5932 | 2216 [ 1225 | 0876
I 7553|3943 | 1690 | 0883 | 7237 | 4433 | 1.815 | 0931 | 1156 | 6.6890 | 4403 | 2258 | 1103 | 7397 | 4989 | 2373
ky 7374 | 3872 | 1688 | 0883 | 7228 | 4410 | 1814 [ 0031 | 1473 | 7439 | 4450 | 2254 | 1246 | 7632 [ 4980 | 2372
kp» 3185 | 2085 | 1275 | 0814 | 3028 | 2186 | 1.353 | 0833 | 7229 | 2772 | 1381 | 1.053 | 6.33 | 2.566 | 1.398 | 1.068
k3 7496 | 3083 | 1692 | 0883 | 7575 | 4486 | 1816 | 0931 | 1182 | 7385 | 472 2268 | 1199 | 7985 | 5138 | 2376
Iy 0986 | 0980 | 0968 | 0973 | 0987 | 0981 | 0966 | 0971 | 0991 | 0994 | 0997 | 0998 | 0990 | 0994 | 0997 | 0998
Iy 8491 | 4049 | 1693 | 0883 | 8000 | 4508 | 1.816 | 0931 | 1519 | B530 | 4919 | 2270 | 1364 | 8488 | 5.184 | 2.376
ks 0982 | 0922 | 0839 | 0791 | 1020 | 0930 | 0842 | 0785 | 1.013 | 0980 [ 0030 [ 0621 | 1047 | 1.013 | 0948 | 0918
k17 0987 | 0981 | 0969 | 0973 | 0987 | 0981 | 0966 | 0971 | 0991 | 0994 | 0997 | 0998 | 0990 | 0.994 | 0997 | 0998
lys | 1.074 | 0.028 | 0.863 | 0.013 | 0.087 | 0.033 | 0.045 | 0.077 | 1.233 | 1.111 | 0.04 | 0.882 | 1.168 | 1.050 | 0.045 | 0.058
kg 0987 | 0981 | 0969 | 0973 | 0987 | 0981 | 0966 | 0971 | 0991 | 0994 | 0997 | 0998 | 0990 | 0.994 | 0997 | 0998
kxp 1231 | 1108 [ 0917 [ 0723 | 1599 | 1445 1.120 | 0803 | 1.222 | 1.120 | 0982 | 0.840 [ 1.478 | 1.259 | 1.081 | 0918
kp; 1406 | 1250 [ 1003 [ 07490 | 1805 | 1893 | 1251 | 0836 | 1396 | 1200 | 1042 | 0887 [ 1954 | 1443 | 1189 | 1.024
kyy 1202 | 1.046 | 0843 | 0730 | 1.119 | 0967 | 0.840 | 0787 | 1250 | 1.119 | 0958 | 0.832 | 1.125 | 1.057 | 0945 | 0.870
ky; 1202 | 1.057 [ 0854 [ 0720 | 1.119 | 0973 | 0838 | 0.766 | 1.230 | 1.119 | 0938 | 0.832 [ 1.125 | 1.057 | 0945 | 0870
Lasso | 4547 | 2357 | 1312 | 0852 | 4842 | 2715 | 1.335 | 0891 | 74352 [ 4343 | 2412 | 1.569 | 8863 | 4312 | 2.363 | 1.613
EN 4365 [ 2196 | 1.266 | 0.840 | 4724 | 2584 | 1311 | 0882 | 7398 | 4136 | 2255 | 1.509 | 8396 | 4.235 | 2407 | 1521
GR 2147 | 1665 | 1.141 | 0786 | 2205 | 1909 | 1.162 | 0816 | 2.798 | 2071 | 1421 | 1.214 | 3098 | 2.034 | 1512 | 1.229
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Figure 3.4: MSE of the Estimators when p = 0.99 and 25% outlier

4. Applications
To illustrate the findings of this paper, we will analyze two real-life datasets in this section.

4.1 Example 1: Portland Cement Data

The initial numerical illustration utilized in this investigation pertains to the Portland cement
dataset, which has been extensively referenced in previous scholarly works (Dorugade, 2016; Hadi
& Ling, 1998; Lukman et al., 2019; Trenkler & Toutenburg, 1990). The dataset includes 13 data
points and four predictors. The independent variables examined are the clinker compounds. The
outcome variable (Y) is the heat released after 180 days of curing, measured in calories per gram
of cement with 40% water at 35° C. The independent variables under consideration are the clinker
compounds. Figure 4.1 represents the correlation matrix of the following independent variables.

Xi: Tricalcium aluminate

X,: Tricalcium silicate

Xs: Tetracalcium aluminoferrite
X,: Dicalcium silicate

— |

-1 0.8 -0.6 -0.4 -0.2 o 0.2 0.4 0.6 0.8 1

Figure 4.1: Correlation Matrix of Portland Cement Data
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In Table 4.1, the Variance Inflation Factor (VIF) of the predictors for the Portland cement data is
presented. A VIF value exceeding 10 indicates high multicollinearity. It is noteworthy that all
predictors exhibit exceptionally high VIF values, with particular concern surrounding X, and X,,
which both exceed a VIF of 250. These findings suggest a high degree of correlation among the
variables, resulting in inflated variances due to multicollinearity. Consequently, this scenario may
lead to unstable coefficient estimates within the regression model, rendering it challenging to
discern the individual predictors' effects.

Moreover, the observed condition number of 423.73 indicates that strong multicollinearity exists
among the regressors. However, it is essential to note that the extremely high VIF values for
individual variables imply that the overall condition number may not entirely capture the
seriousness of the multicollinearity present in specific predictors.

Table 4.1: VIF of the predictors of Portland Cement Data

Predictors VIF
X1 38.496
X, 254.423
X;3 46.868
X, 282.513

Upon examining the dataset, it is evident that there is a moderate level of multicollinearity present.
In Figure 4.2, the bar plot displays the estimated MSE of the estimators specifically for the
Portland Cement Data. Notably, among the estimators, ki, ka, ks kg K7 kg and kg exhibit smaller
MSE values. Furthermore, it is worth mentioning that k,, and k,3 outperform Lasso, EN, and GR,
which aligns with the findings from the simulation study. Moreover, upon closer inspection, it is
apparent that OLS performs significantly worse in terms of MSE, further confirming the outcomes
observed in the simulation study.

1.8
1.6
14
1.2
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Figure 4.2: MSE of the Estimators for Portland Cement Data
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4.2 Example 2: Longley data

We also examined the Longley data to forecast the total derived employment, which depends on a
linear combination of several factors: the gross national product implicit price deflator, gross
national product, unemployment rate, size of the armed forces, and the non-institutional population
14 years of age. This dataset has been utilized in various studies (Longley, 1967; McDonald &
Schwing, 1973; Walker & Birch, 1988; Yousif et al., 2012; Yiizbasi et al., 2020). The following
figure 4.3 represents multicollinearity among the predictors.

3<
X1 1.00 ~
><
X2 0.99 1.00 -
><
X3 0.98 0.99 1.00 -
>
X4 0.62 0.60 0.69 1.00 .
><
X5 1.00
-1 -0.8 -0.6 -0.4 -0.2 o 0.2 0.4 0.6 0.8 1

Figure 4.3: Correlation Matrix of Longley Data

Table 4.2 displays the VIF of the predictors for the Longley data. The predictors Xj, X,, and X;
demonstrate extremely high VIF values (all well over 100), indicating a high degree of collinearity
with other predictors in the model. This can lead to unstable coefficient estimates and make it
challenging to determine the individual effect of these predictors. A VIF of 10.787 for X, suggests
moderate multicollinearity, while a VIF of 2.506 for X5 indicates relatively low multicollinearity
with the other predictors.

This dataset demonstrates extremely severe multicollinearity, as indicated by a condition number
of 293682.548. This condition number implies that the design matrix (the set of predictors) is
nearly singular, suggesting strong linear dependence among the predictors. Consequently, this
could result in significant numerical instability in any regression model applied to this data.

Table 4.2: VIF of the predictors of Longley Data

Predictors VIF
Xy 130.829
X, 639.049
X; 339.012
X4 10.787
Xs 2.506
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In Figure 4.4, the analysis revealed the presence of outliers in the Longley data. Specifically, the
residual versus fitted plot highlighted data points 6, 16, and 10 as outliers, and this was further
corroborated by the normal Q-Q plot, which also identified the same data points as outliers. Out of
16 observations, 3 of them were outliers, which means 18.75% outliers are present in the data.

Residuals vs Fitted Normal Q-Q
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Figure 4.4: Presence of Outlier in Longley Data

Upon conducting a thorough analysis of the Longley dataset, it has become clear that there is a
high degree of multicollinearity present, as well as the presence of outliers, accounting for 18.75%
of the data points. In Figure 4.5, the bar plot depicts the MSE values for the estimators for the
Longley Data. It is noteworthy that among the estimators, ks Ks k7, Kio Ko, Kiz Kig Koo and ks
exhibit comparatively smaller MSE values. Additionally, it is pertinent to highlight that k; ki Koy,
and k,3 outperform all other estimators, which corroborates the findings from the simulation study.
Furthermore, upon closer examination, it is evident that the OLS method exhibits notably inferior
performance in terms of MSE, as do the traditional Lasso, EN, and GR methods when outliers are
present along with severe multicollinearity in terms of small samples. These observations further
validate the outcomes identified in the simulation study.
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Figure 4.5: MSE of the Estimators for Longley Data
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5. Concluding Remarks

In our study, we conducted a comprehensive evaluation of multiple linear regression models in the
presence of multicollinearity. We employed ridge regression as a biased estimation technique to
obtain more precise estimates of the regression coefficients. From the 366 proposed estimators for
the ridge parameter, we focused on the top 16, along with seven estimators suggested by other
researchers, and compared their performance against traditional OLS and modern regularization
techniques such as Elastic Net (EN), Lasso, and Generalized Ridge (GR) regression. To simulate
real-world conditions, we introduced outliers at 10% and 25% levels to assess their impact on
estimator performance. The primary comparison criterion was the mean squared error (MSE), a
standard metric for evaluating estimator accuracy.

Our findings revealed nuanced insights into the selection of ridge parameter estimators under
various parametric conditions. Specifically, with small sample sizes and a high degree of
multicollinearity (correlation close to 0.95) in the absence of outliers, the estimators ki, Ki1, K13,
and kys proved to be reliable, balancing bias and variance to produce lower MSEs. However, in the
presence of outliers, particularly with small sample sizes and high variance, the estimators k7, ks,
ko, and k,3 performed better, making them the preferred choices in such situations. We also
analyzed two real-world cases, which further supported the simulation results.

For larger sample sizes, the performance dynamics shifted, with GR, EN, and Lasso emerging as
robust options. These methods consistently delivered lower MSEs across different levels of
multicollinearity, except in cases where significant outliers combined with large variances. Under
such challenging conditions, even these robust methods saw performance declines, indicating the
need for careful estimator selection in the presence of extreme outliers.
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