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Abstract 
 

In linear regression models, multicollinearity often results in unstable and unreliable parameter 

estimates. Ridge regression, a biased estimation technique, is commonly used to mitigate this issue 

and produce more reliable estimates of regression coefficients. Several estimators have been 

developed to select the optimal ridge parameter. This study focuses on the top 16 estimators from 

the 366 evaluated by Mermi et al. (2024), along with seven additional estimators introduced over 

time. These 23 estimators were compared to Ordinary Least Squares (OLS), Elastic-Net (EN), 

Lasso, and generalized ridge (GR) regression, to evaluate their performance across different levels 

of multicollinearity in multiple regression settings. Simulated data, both with and without outliers, 

and various parametric conditions were used for the comparisons. The results indicated that certain 

ridge regression estimators perform reliably with small sample sizes and high correlations (around 

0.95) in the absence of outliers. However, when outliers were present, some estimators performed 

better due to small sample sizes and increased variance. Furthermore, GR, EN, and Lasso 

exhibited robustness with large datasets, except in cases with substantial outliers and high 

variance. 
 

Keywords: Elastic-Net, Lasso, MSE, Multicollinearity, OLS, Outliers, Ridge regression, 
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1. Introduction  
 

Linear regression is a frequently utilized methodology for analyzing data to construct a model 

depicting the relationship between the dependent variable and one or more independent variables 

(Herawati et al., 2024). During this type of analysis, it is common to encounter specific issues and 

hypotheses regarding the model. One important assumption in regression analysis is the absence of 

multicollinearity, as violating this assumption can render the model unreliable for estimating 

population parameters (Damodar N. Gujarati, 2013, Herawati et al., 2018). In multiple regression 

analysis, multicollinearity occurs when one independent variable is correlated with another 

independent variable. This can result in inaccurate estimates of the regression coefficients, 
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increased standard errors, reduced partial t-tests, statistically insignificant p-values, and diminished 

predictability of the model (Gujarati, 2013). 
 

Addressing high multicollinearity is crucial as it can lead to inaccurate decisions and an increased 

likelihood of accepting the wrong hypothesis. It is essential to find the most suitable method to 

deal with multicollinearity (Gibbons, 1981). One effective approach to overcome this issue is by 

using the shrinkage method to reduce the estimated coefficients, also known as regularization. 

Common regularization methods include Ridge Regression, Least Absolute Shrinkage and 

Selection Operator (Lasso), and Elastic-Net (EN) (Herawati et al., 2024). Ridge Regression 

stabilizes the regression coefficient in the presence of multicollinearity issues by introducing a 

level of bias to the regression estimate (Li et al., 2010). This reduces the standard error and 

provides a more precise estimation of the regression coefficient compared to the Ordinary Least 

Squares (OLS) method (Kibria & Lukman, 2020). On the other hand, Lasso and EN address 

multicollinearity problems by shrinking the regression coefficients of highly correlated or perfectly 

correlated independent variables toward zero (Emmert-Streib & Dehmer, 2019; Liu & Li, 2017). 
 

Hoerl and Kennard (1970) were the first to propose the concept of ridge regression to address the 

issue of multicollinearity in engineering data. They discovered that there exists a non-zero value of 

k (ridge parameter) for which the MSE of the ridge regression estimator is smaller than the 

variance of the OLS estimator (Hoerl & Kennard, 1970). Over the years, numerous researchers 

have delved into this area of study, devising and suggesting various estimators for k. To cite a few, 

Dempster et al., 1977; Gibbons, 1981; Hoerl et al., 1975; Hoerl & Kennard, 1970; J. F. & P, 1976; 

Khalaf & Shukur, 2005; Kibria, 2003; Kibria et al., 2012a; Månsson et al., 2010; McDonald & 

Galarneau, 1975; McDonald & Schwing, 1973; Muniz & Kibria, 2009; Walker & Birch, 1988and 

very recently Arashi & Valizadeh, 2015a, 2015b; Aslam, 2014a, 2014b; Ayinde & Lukman, 2016; 

A. V. Dorugade, 2014; Emmert-Streib & Dehmer, 2019; Golam Kibria & Lukman, 2020; Hefnawy 

& Farag, 2014; Herawati et al., 2018, 2024; Kibria, 2023; Lukman et al., 2018, 2019; Lukman & 

Ayindez, 2017; Melkumova & Shatskikh, 2017; Mermi et al., 2024; Yüzbaşı et al., 2020 Hoque & 

Golam Kibria, 2023; Hoque & Kibria, 2024, among others. 
 

Mermi et al. (2024) compared 366 different ridge parameter estimators that were proposed at 

different times in terms of the number of independent variables (p), sample size (n), the correlation 

coefficient between independent variables (ρ), and standard deviation of errors (σ) (Mermi et al., 

2024). Here, we have incorporated a total of 16 best estimators out of 366, with the exclusion of 

the robust estimator. Furthermore, we have applied seven estimators recommended by Kibria et al. 

(2003, 2023) tailored for asymmetric populations.  
 

The objective of this paper is to provide a thorough analysis to compare 23 ridge parameter 

estimators with OLS, Lasso, EN, and GR. Our analysis not only focused on MSE but also 

examined how the models behaved in the presence of multicollinearity and outliers. Our goal is to 

contribute to the existing literature on ridge regression by providing a comprehensive analysis of 

estimator performance, particularly in simulation scenarios where outliers have a significant 

impact on model estimates. Additionally, we presented real-life examples to validate the 

simulation results. The R programming language is utilized for the purpose of data analysis. 
 

The organization of the paper is as follows: The statistical methodology is described in Section 2. 

A simulation study for comparing the performance of the estimators is presented in Section 3. Two 

real-life datasets are analyzed in Section 4. The paper ends with some concluding remarks in 

Section 5. 
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2. Statistical Methodology 
2.1 Ordinary least squares method 
 

Consider the following multiple linear regression model,  
 

𝑌 = 𝑋𝛽 +  𝜀, 

where 𝑌 is a column vector representing the dependent variable; 𝑋 is a matrix of independent 

variables, and 𝛽 is a parameter vector. The 𝜀 column vector represents the error terms. The 

ordinary least squares estimator of β is obtained as, 

𝛽̂𝑂𝐿𝑆 = (𝑋
𝑇𝑋)−1𝑋𝑇𝑌 

 

2.2 Ridge Regression Method 
 

Hoerl and Kennard (1970) first introduced the ridge regression estimator as a solution to the 

multicollinearity issue. This approach minimizes the sum of squared residuals while applying a 

constraint on the total sum of the coefficient squares, 
 

𝛽̂𝑅𝑖𝑑𝑔𝑒 = argmin⏟    
𝛽

(𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽) + 𝑘 ∥ 𝛽 ∥2 

where ∥ 𝛽 ∥2= ∑𝑖=1
𝑝
 𝛽𝑖
2. Taking the above equation and finding its derivative with respect to 𝛽 and 

setting the outcome to zero, we get 

𝛽̂𝑅𝑖𝑑𝑔𝑒 = (𝑋
𝑇𝑋 + 𝑘𝐼)−1𝑋𝑇𝑌, k ≥ 0 

where k is known as ridge or shrinkage estimator and need to be estimated from observed data.  

The MSE of  𝛽̂Ridge  is obtained as follows: 

MSE (𝛽̂Ridge )  = Var (𝛽̂Ridge ) + [Bias (𝛽̂Ridge )]
2
 

= 𝜎2tr {(𝑋𝑇𝑋 + 𝑘𝐼)−2𝑋𝑇𝑋} + 𝑘2𝛽𝑇(𝑋𝑇𝑋 + 𝑘𝐼)−2𝛽 

= 𝜎2∑𝑖=1
𝑝
 

𝜆𝑗
(𝜆𝑖 + 𝑘)

2
+ 𝑘2𝛽′(𝑋′𝑋 + 𝑘𝐼𝑝)

−2
𝛽 

where 𝜆1, 𝜆2, ... , 𝜆𝑝 are eigenvalues of 𝑋𝑇𝑋 matrix. 

 
2.3 Generalized Ridge (GR) Regression 
 

Yang and Emura (2017) proposed GR regression by changing from uniform shrinkage to non-

uniform shrinkage that replaced the identity matrix 𝐼𝑝  with the diagonal matrix 𝑀̂(Δ) (Yang & 

Emura, 2017). The following is the proposed GR method.  

𝛽̂𝐺𝑅 = {𝑋
T𝑋 + 𝑘𝑀̂(Δ)}

−1
𝑋T𝑦 

 

where Δ ≥ 0  is the threshold parameter and  𝑘 > 0  is the shrinkage parameter. The diagonal 

components of 𝑀̂(Δ) = diag {𝑚̂1(Δ), … , 𝑚̂𝑝(Δ)}, where (Emura et al., 2024) 

𝑚̂𝑖(Δ) = {
1/2  if 𝑧𝑖 ≥ Δ
1  if 𝑧𝑖 < Δ
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where 𝑧𝑖 = 𝛽̂𝑖
0/SD(𝛽̂0), and SD (𝛽̂0) = {∑𝑖=1

𝑝
 (𝛽̂𝑖

0 − ∑𝑖=1
𝑝
 𝛽̂𝑖
0/𝑝)

2
/(𝑝 − 1)}

1/2

 for 𝑖 = 1,… , 𝑝, and 

𝛽̂0 = (𝛽̂1
0, … , 𝛽̂𝑝

0)
T

, defined as 𝛽̂𝑖
0 = 𝑋𝑖

T𝑦/𝑋𝑖
T𝑋𝑖 , where 𝑋𝑖  is the 𝑖-th column of 𝑋. And 𝛽̂0  is a 

compound covariate estimator (Chen & Emura, 2017).  

 

2.4 Least Absolute Shrinkage and Selection Operator (Lasso) 
 

LASSO (Tibshirani, 1996) is a regression analysis technique in statistics and machine learning that 

performs both variable selection and regularization to improve the predictive accuracy and 

interpretability of the statistical model it produces. In LASSO, most of the coefficients of 

irrelevant variables are set to zero, while the other coefficients are shrunk. Lasso estimators, which 

include only the best subset of regressors in their final model, have been used by many researchers 

to address the issue of multicollinearity (Fu & Knight, 2000; Lounici, 2008; Yuan & Lin, 2007). 

The process for estimating Lasso follows a similar procedure as the ridge estimator, but the 

difference is that the squared ℓ2  norm (∥ 𝛽 ∥2
2)  in the ridge has been replaced by ℓ1  norm (∥

𝛽 ∥1).The Lasso technique seeks to minimize the sum of the squared residuals while imposing a 

constraint on the total absolute value of the coefficients, ensuring that it remains below a specified 

constant. 

𝛽̂Lasso = argmin⏟    
𝛽

(𝑌 − 𝑋𝛽)𝑇(𝑌 − 𝑋𝛽) + 𝜆 ∥ 𝛽 ∥1 

 

2.5 Elastic net (EN) 
 

Introduced by Zou and Hastie (2005), the EN extends the Lasso and addresses limitations, 

particularly in variable selection (Zou & Hastie, 2005). It creates regression model that undergoes 

penalty from both the ridge (L2 norm) and the Lasso (L1 norm). The coefficients are effectively 

reduced, similar to ridge regression, and some are forced to zero, similar to Lasso regression. The 

L1 norm produces a sparse model, reducing certain coefficients to zero, while the L2 norm 

removes the constraint on the number of selected variables (Park & Konishi, 2016). Liu and Li 

(2017) utilized an effective EN with regression coefficients technique to identify significant 

variables within the spectrum data (Liu & Li, 2017). When this happens, Lasso cannot select more 

than the specified number of predictors, whereas the EN has the ability to do so. (Emmert-Streib & 

Dehmer, 2019). The loss function is minimized by EN, and the estimated parameter vector is 

derived accordingly. 

 

𝛽̂EN = arg min [∑  

𝑛

𝑙=1

 (𝑦𝑙 −∑  

𝑝

𝑖=1

 𝛽𝑖𝑋𝑙𝑖)

2

+ 𝜆 [(1 − 𝛼)∑  

𝑝

𝑖=1

 𝛽𝑖
2 + 𝛼∑  

𝑝

𝑖=1

  |𝛽𝑖|]] 

 

where 𝜆 = tuning parameter and 𝛼 = weight that should be used to determine the allocation for 

Lasso or ridge such that 0 ≤ 𝛼 ≤ 1, where 𝛼 = 0, 𝛽̂𝐸𝑁 becomes 𝛽̂𝑅𝑖𝑑𝑔𝑒  and where 𝛼 = 1 , 𝛽̂𝐸𝑁 

becomes 𝛽̂𝐿𝑎𝑠𝑠𝑜. 
 

 

The MSE for Lasso and EN was calculated by comparing the estimated coefficients of each model 

with the true coefficient (assumed 𝜷 = 𝑰𝑝), and then averaging the results over all simulations to 

determine the model's performance. 
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2.6 Ridge parameters  
 

There are numerous ridge estimators available in the literature for different types of models, 

mostly mentioned in the introduction, to estimate the ridge parameter k. A study compared 80 

ridge estimators using Monte Carlo simulation techniques (Mermi et al., 2021). In a recent study, 

Mermi et al. (2024) conducted a comparison of 366 different ridge parameter estimators that were 

proposed at different times. For our study, we selected the top 16 estimators from Mermi et al. 

(2024), excluding the robust estimator. These selected estimators are k1 through k4 and k10 through 

k21 (Table 2.1). Additionally, we utilized seven estimators, which are k5 through k9 proposed by 

Kibria (2023) and k22 and k23 by Kibria and Lukman (2020), specifically tailored for asymmetric 

populations. The 23 ridge parameters used in our study, including both simulation-based and 

empirical examples, are presented in Table 2.1. 
 

Table 2.1: Existing best estimators based on the Monte Carlo Simulation 
 

Estimators Citation 

𝑘1 ∶ 𝑚𝑎𝑥 (
1

𝑞𝑖
) (Alkhamisi & Shukur, 2007) 

𝑘2 ∶ 𝑚𝑎𝑥 (
𝑠2

𝛽̂𝑖
2) (Alkhamisi et al., 2006) 

𝑘3 ∶
𝜎̂2

𝑚𝑖𝑛(
𝜎̂2

𝛼̂𝑖
2 + 

1

𝜆𝑖
)
 (Dorugade, 2014) 

𝑘4: √𝑝∑𝑖=1
𝑝
 (

max(𝜆𝑖)𝜎̂
2

(𝑛 − 𝑝)𝜎̂2 +max(𝜆𝑖)𝑎̂𝑖
2) (Lukman & Ayindez, 2017) 

𝑘5: median (
𝜎̂2

𝛽̂𝑖
2
+
1

𝜆𝑖
) (Kibria, 2023) 

𝑘6: max (
𝜎̂2

𝛽̂𝑖
2
+
1

𝜆𝑖
) (Kibria, 2023) 

𝑘7: min (
𝜎̂2

𝛽̂𝑖
2
+
1

𝜆𝑖
) (Kibria, 2023) 

𝑘8: geometric.mean (
𝜎̂2

𝛽̂𝑖
2
+
1

𝜆𝑖
) (Kibria, 2023) 

𝑘9: harmonic.mean (
𝜎̂2

𝛽̂𝑖
2
+
1

𝜆𝑖
) (Kibria, 2023) 

𝑘10: median (
𝑚𝑎𝑥(𝜆𝑖)𝜎̂

2

(𝑛 − 𝑝)𝜎̂2 + 𝜆𝑖𝛼̂𝑖
2) (Lukman & Ayindez, 2017) 

𝑘11: 𝑚𝑎𝑥 (
𝑚𝑎𝑥(𝜆𝑖)𝜎̂

2

(𝑛 − 𝑝)𝜎̂2 +𝑚𝑎𝑥(𝜆𝑖)𝑎̂𝑖
2) (Lukman et al., 2018) 

𝑘12: √𝑝∑  

𝑝

𝑖=1

(
𝜆𝑖𝜎̂

2

(𝑛 − 𝑝)𝜎̂2 + 𝜆𝑖𝑎̂𝑖
2) (Lukman & Ayindez, 2017) 
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Estimators Citation 

𝑘13:
1

𝑝
∑  

𝑝

𝑖=1

max(𝜆𝑖)𝜎̂
2

(𝑛 − 𝑝)𝜎̂2 + 𝜆𝑖𝛼̂𝑖
2 

(Alkhamisi et al., 2006) 

𝑘14: 𝑚𝑎𝑥 (
1
𝜆𝑖𝜎̂

2

(𝑛−𝑝)𝜎̂2+𝜆𝑖𝑎̂𝑖
2

) (Muniz et al., 2012) 

𝑘15: (∏  

𝑝

𝑖=1

 
max(𝜆𝑖)𝜎̂

2

(𝑛 − 𝑝)𝜎̂2 + 𝜆𝑖𝛼̂𝑖
2)

1

𝑝

 
(Muniz et al., 2012) 

𝑘16: 𝑚𝑎𝑥 (1/√
𝜆𝑖𝜎̂

2

(𝑛 − 𝑝)𝜎̂2 + [𝑚𝑎𝑥(𝜆𝑖)]𝛼̂𝑖
2) 

(Lukman et al., 2018) 
 

𝑘17: 𝑚𝑎𝑥 (1/
𝜆𝑖𝜎̂

2

(𝑛 − 𝑝)𝜎̂2 + 𝜆𝑖𝑚𝑎𝑥(𝛼̂𝑖
2)
) 

(Lukman et al., 2018) 
 

𝑘18: ∏𝑖=0
𝑝
 (
1

𝑞𝑖
)

1

𝑝

 
(Kibria et al., 2012) 
 

𝑘19: 𝑚𝑎𝑥 (1/
𝜆𝑖𝜎̂

2

(𝑛 − 𝑝)𝜎̂2 + 𝜆𝑖(𝑚𝑎𝑥(𝛼̂𝑖))
2) 

(Lukman et al., 2018) 
 

𝑘20:
1

√
2𝜎̂2

max(𝜆𝑖)max(𝑎̂𝑖
2)

 (Ayinde & Lukman, 2016) 

𝑘21:
1

√
2𝑝𝜎̂2

max(𝜆𝑖)∑𝑖=1
𝑝

 𝑎̂𝑖
2

 (Ayinde & Lukman, 2016) 

𝑘22: 𝜎̂𝑝
(1+

𝑝

𝑛
)
 (Kibria & Lukman, 2020) 

𝑘23: 𝜎̂ × max (𝑝
(1+

𝑝

𝑛
), 𝑝

(1+
1

𝑝
)
) (Kibria & Lukman, 2020) 

 
3. Simulation study 
 

As the theoretical comparison is not feasible, we conducted a Monte Carlo simulation study using 

the R program in this section.  

 

3.1 Simulation Technique 
 

The data generation process for the models was carried out according to a widely used method as 

described below (Gibbons, 1981). 

𝑥𝑙𝑖 = (1 − 𝜌
2)1/2𝑢𝑙𝑖 + 𝜌𝑢𝑙,𝑝+1, 𝑙 = 1,2,⋯ , 𝑛; 𝑖 = 1,2, … , 𝑝 

where 𝜌 denotes the correlation coefficient between any two explanatory variables, 𝑢𝑗𝑙𝑖  denotes the 

independent pseudo-random variable obtained from standard normal distribution and 𝑝 denotes the 

number of explanatory variables. Moreover, the dependent variable 𝑌 was obtained through the 

following equation. 
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𝑌𝑙 = 𝛽0 + 𝛽1𝑋𝑙1 + 𝛽2𝑥𝑙2 +⋯+ 𝛽𝑝𝑥𝑙𝑝 + 𝜀𝑙 , 𝑙 = 1,2,⋯ , 𝑛 

where, 𝜀𝑙 is the error term, i.e. 𝜀𝑙 ∼ 𝑁(0, 𝜎
2).  

 

For modelling, two different values of explanatory variables, p =  5 and 10, three different values 

of the correlation coefficients between the explanatory variables, =  0.9, 0.95, and, 0.99 , four 

different values of the sample sizes,  𝑛 = 20, 30, 50, and 100, and two different values of the error 

variance  𝜎2 =  1 and 5 were taken. The data generation process of the explanatory variables was 

carried out with the help of the values determined for 𝑝, 𝜌, 𝑛,  and 𝜎 . The experiment was 

repeated, N = 5000 times.  
 

The MSE was calculated by comparing the estimated coefficients of each model with the true 

coefficients (assumed 𝜷 = 𝑰𝑝) and averaged MSE was calculated based on the following formula 

over all simulations.  

𝐴𝑀𝑆𝐸(𝛽̂𝑖
∗) =

1

N
∑𝑖=1
𝑃  (𝛽̂𝑖 − 𝛽)

′
(𝛽̂𝑖 − 𝛽) 

where 𝛽̂𝑖
∗ is any of the OLE, Ridge, Lasso, or EN estimators, 𝛽 is the true parameter (assumed 

𝜷 = 𝑰𝑝), and p is the number of predictors.  

 

3.2 Results and Discussion  
 

In this section, we thoroughly examined a simulation study comparing the performance of current 

best estimators with traditional OLS, EN, Lasso, and GR. In section 3.2.1, the simulation results in 

the absence of outliers in the data are discussed, where Tables 3.1.1 to 3.1.3 represent the MSE 

scenario of the estimators in the presence of the correlation coefficients 0.90, 0.95, and 0.99, 

respectively. Section 3.2.2 discusses the simulation results in the presence of 10% and 25% 

outliers in the dataset. The simulation results, showcased in Tables 3.2.1 to 3.2.6, present outcomes 

for various correlation coefficients, numbers of independent variables, variance numbers, and 

sample sizes in the presence of outliers of 10% and 25%. 
 

3.2.1 Without Outlier  
 

Table 3.1.1 reveals that, for a correlation coefficient of 0.90 and no outliers, the MSE of the 

estimators behaves differently based on sample size, number of predictors, and variance. In smaller 

samples (e.g., 20 or 30 observations) with five predictors and low variance, estimators such as k3, 

k10, k11, k13, k15, and GR tend to show relatively low MSE. However, as the number of predictors 

or variance increases, the MSE also rises. Specifically, with higher variance and a fixed number of 

predictors, the MSE escalates, and a similar trend is observed when the number of predictors 

grows. For small samples (e.g., 20 or 30 observations) with high variance, estimators like k4, k12, 

and k21 are more effective when the number of predictors is unchanged. When both the variance is 

high and the number of predictors is large, estimators k4, k9, k12, and k20 are recommended. In 

contrast, for larger samples, regardless of the variance level, methods such as Lasso, EN, and GR 

are generally preferred due to their efficiency, particularly in the presence of a correlation of 0.90. 

It’s important to note that OLS does not perform well when collinearity is present among the 

independent variables. Figure 3.1 illustrates how estimator performance varies with changes in 

sample size, number of predictors, and variance. 
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Figure 3.1: MSE of the Estimators when 𝜌 = 0.9 and no outlier 

 

Table 3.1.1: MSE values of the estimators with correlation = 0.9 

 
Table 3.1.2 shows that the performance of OLS deteriorates significantly as the correlation 

coefficient rises from 0.90 to 0.95. Consistent with the findings in Table 3.1.1, for small samples 

with low variance and five predictors, estimators such as k10, k11, k13, k15, and GR exhibit relatively 

low MSE. While an increase in the number of predictors leads to higher MSE, these estimators 

maintain stable performance for small sample sizes. Additionally, for small samples with high 
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variance and a correlation coefficient of 0.95, estimators k4, k12, and k20 are recommended. For 

larger samples, regardless of variance, Lasso, EN, and GR remain the preferred choices due to 

their operational efficiency. 
 

Table 3.1.2: MSE values of the estimators with correlation = 0.95 

 
 

Table 3.1.3: MSE values of the estimators with correlation = 0.99 
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From Table 3.1.3, it is evident that conventional methods exhibit lower performance as the 

correlation among predictors increases (from 0.90 to 0.95 to 0.99). Notably, with the same number 

of predictors, an increase in variance results in higher MSE. For example, when number of 

predictors is five and error variance is one for small samples, the models k10, k11, k13, and k15 

demonstrate low MSE; however, their performance diminishes as the number of predictors and 

variance increases. Conversely, with small predictors and high variance, models k4, k12, k20, and 

k21 outperform others, while for high variance and a high number of predictors, models k7, k16, k22, 

and k23 are recommended. Furthermore, for small samples and low variance, the robust 

performance of k10, k11, k13, and k15 is noticeable, especially when the correlation coefficient is 

around 0.99. In the case of large samples, traditional models such as Lasso, EN, and GR are 

preferred due to their ease of use. Figure 3.2 illustrates the performance of the top estimators as the 

sample size, predictors, and variance increase. 
 

 
Figure 3.2: MSE of the Estimators when 𝜌 = 0.99 and no outlier 

 

3.2.2 With outlier 
 

It is noted from Table 3.2.1 is that the MSE of the estimators is reported for correlated predictors at 

0.90 and a 10% outlier present in the data. The addition of outliers is seen to result in an elevated 

MSE in comparison to the values outlined in Table 3.1.1. It is noteworthy that an increase in 

variance leads to a higher MSE when the number of predictors remains constant. Notably, in the 

case of small sample sizes and low variance, it is evident that k20, k22, and k23 demonstrate low 

MSE. However, as the number of predictors and variance increase, k22 and k23 perform well. 

Furthermore, for small predictors and high variance, the estimators k16, k22, and k23 demonstrate 

better performance. For high variance and a high number of predictors, k16, k22, and k23 are 

recommended. Additionally, in the case of large samples, traditional models such as Lasso, EN, 

and GR are recommended due to their ease of operation. Figure 3.3 illustrates the behavior of the 

top-performing estimators when the sample size, predictors, and variance increase in the presence 

of a 10% outlier. With an increase in sample size, predictors, and variance, Figure 3.3 portrays the 

situation for the best-performing estimators. 
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Table 3.2.1: MSE values of the estimators with correlation = 0.90 and 10% outlier 

 
 

 
Figure 3.3: MSE of the Estimators when 𝜌 = 0.90 and 10% outlier 

 

Table 3.2.2 illustrates the MSE of the estimators when there is a 0.95 correlation among predictors 

and a 10% outlier in the data. It is evident that the introduction of outliers leads to a higher MSE 

compared to the findings in Table 3.1.2. In scenarios with the number of predictors is five and 

error variance is one in small samples, it is observed that k18, k20, k22, and k23 yield low MSE, but 
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k18 is noted to be an inconsistent estimator. However, as the number of predictors and variance 

increases, k22 and k23 exhibit strong performance. As variance increases with the same number of 

predictors, the MSE also increases. In situations with fewer predictors and high variance, k16, k22, 

and k23 show superior performance. Similarly, in scenarios with high variance and a high number 

of predictors, k16, k22, and k23 are recommended. In cases of small samples and low variance, k20, 

k22, and k23 demonstrate robust performance when the correlation coefficient is approximately 

0.95. For large samples, traditional models such as Lasso, EN, and GR are recommended due to 

their user-friendly operation. 
 

Table 3.2.2: MSE values of the estimators when correlation = 0.95 and 10% outlier 

 
 

Table 3.2.3 illustrates the MSE of the estimators in the presence of a high predictor correlation 

(0.99) and a 10% outlier. Compared to Table 3.1.3, the introduction of outliers resulted in 

increased MSE. Notably, when the number of predictors (p) is five and the error variance is one 

for small samples, k18, k20, k22, and k23 demonstrate low MSE. However, k18 is an inconsistent 

estimator. On the contrary, k22 and k23 show good performance as both the number of predictors 

and variance increase. Additionally, an increase in variance with a constant number of predictors 

leads to an increase in MSE. For small predictors and high variance, k7, k8, k22, and k23 perform 

well, while for high variance and a high number of predictors, k7, k16, k22, and k23 are 

recommended. When dealing with small sample sizes and low variance, k20, k22, and k23 prove to 

be robust when the correlation coefficient is approximately 0.99. Lastly, for large samples, 

traditional models such as Lasso, EN, and GR are recommended due to their user-friendly 

operation. 
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Table 3.2.3: MSE values of the estimators when correlation = 0.99 and 10% outlier 

 
 

Table 3.2.4 presents the MSE of the estimators when there is a 0.90 correlation among predictors 

and a 25% outlier in the data. A comparison with Table 3.2.1 indicates that as the proportion of 

outliers in the data set increases, the MSE also increases. Specifically, when the number of 

predictors (p) is five and the variance is one for small sample sizes, estimators k7, k16, k22, and k23 

display small MSE. However, some estimators, such as k1, k14, k18, and k19 show inconsistency 

under similar conditions. Additionally, it is observed that the MSE of k22 and k23 increase as the 

variance and number of predictors increase. Importantly, with an increase in variance, the MSE 

grows while the number of predictors remains constant. The performance of k7, k16, k22, and k23 are 

found to be better for small sample sizes and high variance. Furthermore, for a high number of 

predictors and high variance, these estimators are recommended. However, for large sample sizes, 

traditional models such as Lasso, EN, and GR are suggested due to their ease of use. From Table 

3.2.5, the MSE of the estimators is presented for predictors with a correlation of 0.95 and a 25% 

outlier in the data. A comparison to Table 3.2.2 reveals that as the outlier in the dataset increased, 

the MSE also increased. Among the estimators, k7, k20, k22, and k23 demonstrate low MSE for the 

lower number of predictors and lower error variance in small samples. However, some estimators, 

such as k1, k14, k16, k17, and k19, exhibit low MSE for small samples but lack consistency. With an 

increase in variance and an unchanged number of predictors, the MSE also increases. Notably, for 

small predictors and high variance, k7, k22, and k23 exhibit favourable performance. Furthermore, 

for high variance and a high number of predictors, k7, k16, k22, and k23 are recommended. It is 

observed that traditional regularization methods result in lower MSE when dealing with outliers in 
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large samples. From Table 3.2.6, the MSE of the estimators is presented, with predictors exhibiting 

a high correlation of 0.99 and a 25% outlier in the data. A comparison to Table 3.2.3 indicates that 

an increase in the outlier in the dataset led to a corresponding increase in the MSE. Notably, for a 

lower number of predictors (e.g. five) and reduced error variance (e.g. one) in small samples, 

estimators k7, k20, k22, and k23 demonstrate a minimal MSE. However, unlike the consistent 

estimators such as k1, k17, and k19 shown in Table 2.8, these estimators are not consistent. 

Moreover, as variance increases, the MSE also increases for consistent estimators. In scenarios 

with a low number of predictors and high variance, k7, k22, and k23 perform better. Similarly, for 

high variance and a high number of predictors, k7, k16, k22, and k23 are recommended. Traditional 

regularization methods are observed to perform poorly when outliers are present in the data, 

especially for large samples. For situations with a high number of predictors and high variance, k5, 

k9, and k20 are recommended. As the sample size, number of predictors, and variance increase, 

Figure 3.4 visually represents the performance of the most effective estimators. The analysis 

reveals that k7, k22, and k23 exhibit enhanced performance in the presence of heightened correlation, 

increased variance, and a greater number of outliers. 

 

Table 3.2.4: MSE values of the estimators when correlation = 0.90 and 25% outlier 
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Table 3.2.5: MSE values of the estimators when correlation = 0.95 and 25% outlier 

 
 

Table 3.2.6: MSE values of the estimators when correlation = 0.99 and 25% outlier 
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Figure 3.4: MSE of the Estimators when 𝜌 = 0.99 and 25% outlier 
 
 

4. Applications 
 

To illustrate the findings of this paper, we will analyze two real-life datasets in this section. 
 

4.1 Example 1: Portland Cement Data 
 

The initial numerical illustration utilized in this investigation pertains to the Portland cement 
dataset, which has been extensively referenced in previous scholarly works (Dorugade, 2016; Hadi 
& Ling, 1998; Lukman et al., 2019; Trenkler & Toutenburg, 1990). The dataset includes 13 data 
points and four predictors. The independent variables examined are the clinker compounds. The 
outcome variable (Y) is the heat released after 180 days of curing, measured in calories per gram 
of cement with 40% water at 35

0
 C. The independent variables under consideration are the clinker 

compounds. Figure 4.1 represents the correlation matrix of the following independent variables.  
 

X1: Tricalcium aluminate 
X2: Tricalcium silicate  
X3: Tetracalcium aluminoferrite  
X4: Dicalcium silicate  
 

 
 

Figure 4.1: Correlation Matrix of Portland Cement Data 
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In Table 4.1, the Variance Inflation Factor (VIF) of the predictors for the Portland cement data is 

presented. A VIF value exceeding 10 indicates high multicollinearity. It is noteworthy that all 

predictors exhibit exceptionally high VIF values, with particular concern surrounding X2 and X4, 

which both exceed a VIF of 250. These findings suggest a high degree of correlation among the 

variables, resulting in inflated variances due to multicollinearity. Consequently, this scenario may 

lead to unstable coefficient estimates within the regression model, rendering it challenging to 

discern the individual predictors' effects. 
 

Moreover, the observed condition number of 423.73 indicates that strong multicollinearity exists 

among the regressors. However, it is essential to note that the extremely high VIF values for 

individual variables imply that the overall condition number may not entirely capture the 

seriousness of the multicollinearity present in specific predictors. 

 

Table 4.1: VIF of the predictors of Portland Cement Data 
 

Predictors VIF 

X1 38.496 

X2 254.423 

X3 46.868 

X4 282.513 
 

Upon examining the dataset, it is evident that there is a moderate level of multicollinearity present. 

In Figure 4.2, the bar plot displays the estimated MSE of the estimators specifically for the 

Portland Cement Data. Notably, among the estimators, k1, k2, k5, k6, k7, k8, and k9 exhibit smaller 

MSE values. Furthermore, it is worth mentioning that k22 and k23 outperform Lasso, EN, and GR, 

which aligns with the findings from the simulation study. Moreover, upon closer inspection, it is 

apparent that OLS performs significantly worse in terms of MSE, further confirming the outcomes 

observed in the simulation study. 

 

 
Figure 4.2: MSE of the Estimators for Portland Cement Data 
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4.2 Example 2: Longley data 
 

We also examined the Longley data to forecast the total derived employment, which depends on a 

linear combination of several factors: the gross national product implicit price deflator, gross 

national product, unemployment rate, size of the armed forces, and the non-institutional population 

14 years of age. This dataset has been utilized in various studies (Longley, 1967; McDonald & 

Schwing, 1973; Walker & Birch, 1988; Yousif et al., 2012; Yüzbaşı et al., 2020). The following 

figure 4.3 represents multicollinearity among the predictors.  
 

 
 

Figure 4.3: Correlation Matrix of Longley Data 
 

Table 4.2 displays the VIF of the predictors for the Longley data. The predictors X1, X2, and X3 

demonstrate extremely high VIF values (all well over 100), indicating a high degree of collinearity 

with other predictors in the model. This can lead to unstable coefficient estimates and make it 

challenging to determine the individual effect of these predictors. A VIF of 10.787 for X4 suggests 

moderate multicollinearity, while a VIF of 2.506 for X5 indicates relatively low multicollinearity 

with the other predictors. 
 

This dataset demonstrates extremely severe multicollinearity, as indicated by a condition number 

of 293682.548. This condition number implies that the design matrix (the set of predictors) is 

nearly singular, suggesting strong linear dependence among the predictors. Consequently, this 

could result in significant numerical instability in any regression model applied to this data. 
 

Table 4.2: VIF of the predictors of Longley Data 
 

Predictors VIF 

X1 130.829 

X2 639.049 

X3 339.012 

X4 10.787 

X5 2.506 
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In Figure 4.4, the analysis revealed the presence of outliers in the Longley data. Specifically, the 

residual versus fitted plot highlighted data points 6, 16, and 10 as outliers, and this was further 

corroborated by the normal Q-Q plot, which also identified the same data points as outliers. Out of 

16 observations, 3 of them were outliers, which means 18.75% outliers are present in the data.  
 

  
 

Figure 4.4: Presence of Outlier in Longley Data 
 

Upon conducting a thorough analysis of the Longley dataset, it has become clear that there is a 

high degree of multicollinearity present, as well as the presence of outliers, accounting for 18.75% 

of the data points. In Figure 4.5, the bar plot depicts the MSE values for the estimators for the 

Longley Data. It is noteworthy that among the estimators, k4, k5, k7, k10, k12, k13, k16, k22, and k23 

exhibit comparatively smaller MSE values. Additionally, it is pertinent to highlight that k7, k16, k22, 

and k23 outperform all other estimators, which corroborates the findings from the simulation study. 

Furthermore, upon closer examination, it is evident that the OLS method exhibits notably inferior 

performance in terms of MSE, as do the traditional Lasso, EN, and GR methods when outliers are 

present along with severe multicollinearity in terms of small samples. These observations further 

validate the outcomes identified in the simulation study. 

 

 
 

Figure 4.5: MSE of the Estimators for Longley Data 
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5. Concluding Remarks 
 

In our study, we conducted a comprehensive evaluation of multiple linear regression models in the 

presence of multicollinearity. We employed ridge regression as a biased estimation technique to 

obtain more precise estimates of the regression coefficients. From the 366 proposed estimators for 

the ridge parameter, we focused on the top 16, along with seven estimators suggested by other 

researchers, and compared their performance against traditional OLS and modern regularization 

techniques such as Elastic Net (EN), Lasso, and Generalized Ridge (GR) regression. To simulate 

real-world conditions, we introduced outliers at 10% and 25% levels to assess their impact on 

estimator performance. The primary comparison criterion was the mean squared error (MSE), a 

standard metric for evaluating estimator accuracy. 
 

Our findings revealed nuanced insights into the selection of ridge parameter estimators under 

various parametric conditions. Specifically, with small sample sizes and a high degree of 

multicollinearity (correlation close to 0.95) in the absence of outliers, the estimators k10, k11, k13, 

and k15 proved to be reliable, balancing bias and variance to produce lower MSEs. However, in the 

presence of outliers, particularly with small sample sizes and high variance, the estimators k7, k16, 

k22, and k23 performed better, making them the preferred choices in such situations. We also 

analyzed two real-world cases, which further supported the simulation results. 
 

For larger sample sizes, the performance dynamics shifted, with GR, EN, and Lasso emerging as 

robust options. These methods consistently delivered lower MSEs across different levels of 

multicollinearity, except in cases where significant outliers combined with large variances. Under 

such challenging conditions, even these robust methods saw performance declines, indicating the 

need for careful estimator selection in the presence of extreme outliers. 
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