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Abstract

Combining information from several independent normal populations to es-
timate a common mean parameter has applications in meta-analysis and
is an important statistical problem. For this application, Gregurich and
Broemeling (1997) and Tu (2012) concentrated on point estimation employ-
ing Bayesian techniques to infer about the common mean of two normal
populations with unknown variances. In our study, we expand upon their
investigation to encompass k normal populations with a common mean, in-
corporating a range of objective priors. Through the use of two examples,
it is discovered that as the hyperparameter « under a Bayesian framework
increases, the performance of the Bayesian technique also improves.

Keywords: Meta-analysis; Bayes estimation; Common mean; Noninfor-
mative prior.

AMS Classification: 62F15.

1. Introduction

As medical knowledge continues to grow quickly, healthcare providers are now con-
fronted with substantial difficulties in comprehensively evaluating and analyzing the
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relevant data required for making well-informed decisions [1, 2]. Moreover, the diverse
and occasionally conflicting results shown in various studies exacerbate this challenge.
To mitigate these issues, Gene V. Glass (1976) coined the term ”meta-analysis” to
describe the statistical examination of a comprehensive assembly of findings from in-
dividual studies, aimed at consolidating those results. This approach accomplishes this
goal by using sound statistical procedures to a large collection of analysis results from
individual studies to combine the findings [3, 2]. Moreover, meta-analysis has gar-
nered considerable interest across various scientific domains, including education and
medicine. For instance, in the educational realm, it has been employed to amalgamate
studies on the effectiveness of coaching in enhancing Scholastic Aptitude Test (SAT)
scores in both verbal and mathematical domains [4]. Similarly, in social sciences, it
has been utilized to combine research on gender disparities across quantitative, verbal,
and visual-spatial abilities [5]. Furthermore, in healthcare, meta-analysis has proven
invaluable, particularly in the context of the COVID-19 pandemic, by enhancing our
understanding of the virus’s implications and informing public health strategies on the
basis of combining evidence from many studies [6, 7].

The problem of combining two or more unbiased estimators arises frequently in applied
statistics, where it has important implications in a wide range of fields. A well-known
context of this problem occurred when Meier [8] was asked to draw inferences about
the mean of albumin in plasma protein in human subjects based on results from four
experiments. Another scenario happened when Eberhardt et al. [9] had results from
four experiments about non-fat milk powder and the problem was to draw inferences
about the mean Selenium in non-fat milk powder by combining the results from four
methods.

The early literature predominantly focuses on inferring the common mean p, primar-
ily concerning point estimation and theoretical decision-making criteria regarding u.
Graybill and Deal (1959) laid the groundwork for this research and proposed what
is now known as the Graybill-Deal estimate, which has since seen extensive develop-
ment and elaboration through subsequent studies [10], as well as additional related
references [11, 12]. Furthermore, more work has been done by Meier [8], Sinha [13],
and Hartung [14] which significantly contributed to the field by devising methods to
approximate confidence intervals for the unbiased estimator of the variance of Graybill-
Deal estimate. Additionally, Cohen and Sackrowitz [15], Fairweather [16], Jordan and
Krishnamoorthy [17], and Yu, Sun, and Sinha [18] have proposed methods of con-
structing an exact 100(1 — «)% confidence interval for p by utilizing appropriate linear
combinations of test statistics or P-value based functions serving as pivotal quantities
for this purpose.

Although meta-analysis is widely recognized in the medical field, its application is
not limited to this domain. In fields such as economics and social sciences, Bayesian
meta-analysis is gaining popularity due to its ability to incorporate prior knowledge
and address heterogeneity in a more nuanced way compared to classical methods. In
economics, Bayesian meta-analysis has been effectively employed to synthesize studies
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on the impacts of economic policies, such as the effects of minimum wage increases
on employment [19]. By incorporating prior information and accounting for variations
across different economic contexts, Bayesian methods offer a flexible approach that can
provide more refined policy insights compared to classical meta-analytic techniques.
In social sciences, Bayesian meta-analysis is particularly advantageous for synthesiz-
ing studies with significant heterogeneity, such as those examining the effectiveness
of educational interventions[20]. By modeling the uncertainty and variations across
different study populations and designs, Bayesian approaches offer more tailored and
credible estimates, enhancing the ability to generalize findings across diverse contexts.

The study by Gregurich and Broemeling (1997) and Tu (2012) focused on point esti-
mation and hypothesis testing to draw inferences on the common mean of two normal
populations [21, 22]. In this paper, we extend their work to encompass k diverse
normal populations, employing varied objective priors.

2. Methods

Estimating the common mean of several populations with unknown variance poses
a significant challenge in statistical analysis. However, Bayesian approaches offer a
flexible alternative that can effectively handle uncertainty in parameter estimation
by incorporating prior knowledge. Gregurich and Broemeling (1997) and Tu (2012)
suggest that a Bayesian approach holds promise for estimating common mean among
several normal populations with unknown variances [21, 22]. Their recommendation
stems from the understanding that the outcomes of a meta-analysis, where data from
multiple studies are combined to draw overarching conclusions, heavily hinge on the
prior information available. In this context, Bayesian techniques offer a distinct ad-
vantage by allowing the integration of prior knowledge into the analysis process.

The study conducted by the above authors concentrated on point estimation employ-
ing Bayesian techniques to infer the common mean of two normal populations with
unknown variances. In our study, we expand upon their investigation to encompass
k several normal populations, incorporating a range of subjective priors. To formu-
late the present problem, we assume only that there are £ normal populations with a
common mean but with unknown possibly unequal variances o2, 03, - - - ,0,% > 0. Let
us assume that we have independent and identically distributions (i.i.d) observations
Xi1, oy Xin; from N(p,02),i=1,2,...,k the likelihood function is

2 u —n; : 1 S 2
Hf(ﬂﬁij\Man)O( Hai ") exp —Z<%2)Z(wzj—u) : (1)

i=1 j=1

The log-likelihood function of the likelihood given in (1) can be defined as
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Since I(u,0%,03,...,0%) has a diagonal form, we can calculate Jeffrey’s [23] indepen-
dence prior as
W(U7J%7U§7"'7O—lz> ZW(M)W(J%,U%,...7O’£> (3)

Assuming constant prior for the common mean p, and the unknown and possibly
unequal variances U ;0 =1,2,--+  k, two non-informative priors are chosen. It is easy
to see the references prior

k
1
7w, 03,05,...,0%) O(Hﬁ, (4)
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these prior assume g and o1,09,.. ak are independent and the prior for common
mean p as m(u) = 1 and for variances 02,4 = 1,2, ,k as m(0?) = o; . Combining
this prior with the likelihood function y1e1ds the posterior probability density function

(pdf) for p,0%,03,... 0%
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From the joint posterior distribution 7 (u,0%,03,...,0%|x ), it is possible to derive

the conditional posterior distribution, of u given the variance components o2
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The conditional posterior distribution of u given the variance a? components still
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follows a normal distribution
k - -1
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The conditional posterior distribution of 01-2 given the p variance components follows
an Inverse Gamma distribution
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Since Y, (z; — p )? = (n; — 1)s? + ni(z; — w)?, it is clear that we do not need micro
data, but only the summary statistics Z and s2.

Remark 1. For the case when o = 2, prior for u, 0%, 03, ..., Uz ism(p,0%,03,... ,a,%) =
Hle o, 2. The conditional posterior distribution of z does not change, however, the
conditional posterior distribution of the o2 given the u can be given as

2
O_iQ‘uvaIG T;vzw 7i:1a"'7k' (9)
ij
Remark 2. For the case when o = 1, prior for u, 03, 03,...,0% is m(u,0%,03,...,0%) =
Hle o; ! which is a right invariant Haar measure [24]. The conditional posterior dis-
tribution of p remains unchanged, but the conditional posterior distribution of o2
given the p can be expressed as

1 L 2
0'22|/,L7XNIG an ’Z (xl] M) ’ i= 1, ,k‘. (10)
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3. Results

The Gibbs sampling algorithm provides a flexible and widely applicable approach for
drawing samples from complex posterior distributions, especially in Bayesian inference
where analytical solutions may be intractable. This study used the Gibbs sampling
algorithm to approximate the joint distribution from (8) to (9) by iterative sampling
from their conditional distributions. Here’s a description of the algorithm and its
steps:

e Step 1: Start with an initial guess (u(o),af(o), e ,02(0)). The initial values
are chosen as p(® = (Zle %TJ / (Zle %) and 02-2(0) as the study sample
variance s?.

e Step 2: Given the ith sample (,u(i),af(i), e ,ai(i)), update the (u(*Y) from

2(d) 2(4)
Tl 0 X).

e Step 3: Generate ﬂ(af(iﬂ)]u(i),x).

e Step 3:
e Step 4: Generate W(az(iﬂ)!u(i),x).

e Step 5: Repeat the following steps 2 to 4 until convergence is reached.

3.1. Illustrative Examples

We will use two examples to illustrate how the Bayesian method compares to both
approximate and exact confidence interval methods. The initial instance originates
from Meier’s work in 1953 [8], while the second is drawn from the research of Eberhardt
et al. in 1989 [9].

3.1.1. Example 1

To estimate the percentage of albumin in plasma protein, four separate experiments
each employing distinct experimental setups were conducted. The results obtained
from these four experiments are given in Table 1 [8].



88 International Journal of Statistical Sciences, Vol. 24(2)s, 2024

Table 1: Mean of albumin in plasma protein

Experiment | n; | Mean | Variance
A 12 | 62.30 | 12.99
B 15 | 60.30 | 7.84
C 7 | 59.50 | 33.43
D 16 | 61.50 | 18.51
alpha =1.0 alpha=1.5 alpha =2.0
o | F\ N - D"\ - 7] 4
7 ; 1 = |
£ 34 £ 3 - g
T - S =
[ o 7 =
S S =
= [ T T T T 1 =" [ T T T T 1 =" [ T T T T 1
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I 0 n
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2 - N @ - i - A
= < z <7 z =
5 5 g
= o S o
= [ T T T 1 =" [ T T T T 1 = [ T T T 1
600 605 610 615 620 595 605 615 B0.0 605 610 615 620

0 I n

Figure 1: Posterior distribution of the percentage of albumin in plasma protein based
on noninformative priors

The mean albumin in plasma protein is estimated and confidence intervals are con-
structed by four approximations, six exact, and two Bayesian approaches. Table 2
shows the estimated common mean value, with 95% confidence and credible inter-
vals. It should be noted that the Bayesian technique yields a shorter interval than the
approximate and exact confidence intervals based on both cases, for this particular
problem. Once again, the posterior density credible interval based on prior with o = 4
is slightly shorter than its counterpart prior based on other values of a. It can be noted
that as « increases, the performance based on the Bayesian technique also increases.
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Table 2: Interval estimates for u of albumin in plasma protein

Approximate L 95% CI on u
Sinha, CI, (1) 60.99 | (59.88;62.10)
Meier, Cla(p) 60.99 | (59.86;62.12)
Large Sample, CI3(u) 60.99 | (60.00;61.98)
Hartung, Cly(u) 60.99 | (59.33;62.65)
Exact 95% CI on u
Cohen & Sackrowitz, Cls(u) 60.82 | (59.14;62.50)
Cohen & Sackrowitz, Clg(u) 60.78 | (59.20;62.36)
Fairweather, CI7(p) 61.04 | (59.89;62.19)
Jordan & Krishnamoorthy, CIg(x) | 61.00 | (59.56;62.44)
Inverse Normal, Clg(s) 61.00 | (59.69;62.31)
Fisher, Clio(p) 61.00 | (59.58;62.42)
Bayesian 95% CrlI on p
a=10 60.87 | (60.21;61.42)
a=15 60.89 | (60.26;61.42)
a=20 60.90 | (60.32;61.42)
a=25 60.92 | (60.36;61.42)
a=3.0 60.93 | (60.39;61.41)
a=4.0 60.95 | (60.45;61.40)

3.1.2. Example 2

In 1989, Eberhardt et al. conducted a study involving four separate experiments fo-
cusing on nonfat milk powder and the problem was to draw inference about the mean
Selenium in non-fat milk powder by combining the results from four methods [9] (Table
3). The mean Selenium in non-fat milk powder is estimated and confidence intervals

Table 3: Mean Selenium in non-fat milk powder

Methods n; | Mean | Variance
Atomic absorption spectrometry 8 | 105.00 | 85.71
Neutron activation:
1.) Instrumental 12 | 109.75 | 20.75
2.) Radiochemical 14 | 109.50 | 2.73
Isotope dilution mass spectrometry | 8 | 113.25 | 33.64

are constructed by four approximations, six exact, and two Bayesian approaches. Ta-
ble 4 shows the estimated common mean value, with 95% confidence and credible
intervals. It should be noted that the Bayesian technique yields a higher interval than
the approximate and exact confidence intervals. The approximation methods by Sinha
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(1985) and Meier (1953) yield shorter interval than the Bayesian credible interval. On
the other hand, the Inverse Normal exact method also yields a shorter interval than the
Bayesian credible interval. Once again, the posterior density credible interval based
on prior with o = 4 is slightly shorter than its counterpart prior based on other values
of a.
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Figure 2: Posterior distribution of the Selenium in non-fat milk powder



Mphekgwana, Kifle and Marange: Bayes Estimation of a Common Mean 91

Table 4: Interval estimates for u of Selenium in non-fat milk powder

Approximate m 95% CI on p

Sinha, CT; (1) 109.60 | (108.71; 110.49)
Meier, Cla(u) 109.60 | (108.70;110.50)
Large Sample, CI3(p) 109.60 | (108.80;110.41)
Hartung, CIs(u) 109.60 | (107.89;111.31)
Exact 95% CI on u

Cohen & Sackrowitz, Cls(u) 109.50 | (108.12;110.88)
Cohen & Sackrowitz, Clg(u) 109.50 | (108.23;110.77)
Fairweather, CI7(u) 109.70 | (108.59;110.81)
Jordan & Krishnamoorthy, Clg(x) | 109.60 | (108.52;110.68)
Inverse Normal, Clg(u) 109.60 | (108.67;110.53)
Fisher, CLyo(1) 109.60 | (108.51;110.69)
Bayesian 95% CrlI on p
a=1.0 108.50 | (106.10;110.88)
a=15 108.50 | (106.18;110.82)
a=20 108.50 | (106.27;110.75)
a=25 108.50 | (106.30;110.66)
a = 3.0 108.51 | (106.38;110.62)
a=14.0 108.51 | (106.46;110.48)

4. Limitations

While Gibbs sampling is an efficient and widely used method for Bayesian inference,
its computational complexity increases significantly with large datasets, which may
lead to longer run times or require more advanced computational resources. This lim-
itation could be addressed in future work by exploring alternative sampling methods,
such as Hamiltonian Monte Carlo, or by implementing optimization techniques to im-
prove efficiency. Future research could benefit from exploring a wider range of prior
distributions, including non-conjugate or more flexible priors. This would allow for a
more nuanced modeling of the data and potentially yield improved predictive perfor-
mance. The model currently assumes normally distributed data, which may not be
appropriate for all real-world applications. Future extensions could involve adapting
the model to accommodate non-normal populations, such as those with heavy tails or
skewness, using robust distributions like t-distributions or skew-normal distributions.

5. Conclusion

In conclusion, this study has significantly advanced the field by leveraging Bayesian
methodologies to draw inferences concerning the common mean of k different nor-
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mal populations. Our approach, which incorporates diverse objective priors, stands
out as a notable contribution. Upon comparing with both approximate and exact
confidence intervals, it was noted that in one instance, Bayesian methods showcased
the effectiveness and reliability of our approach in delivering precise estimates for the
common mean. However, this was not replicated in the second scenario. Furthermore,
it was discovered that as the parameter « increases, the performance of the Bayesian
technique also improves. This work not only expands upon prior research but also
underscores the importance of Bayesian techniques in tackling various problems in
statistical inference.
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