Effect of Silica Nanoparticles On Flexural Strength And Surface Hardness Of Heat Polymerized Acrylic Resin.
DOI:
https://doi.org/10.3329/bjms.v23i10.71742Keywords:
polymethyl methacrylate, silanated silica nano particles, nanofillersAbstract
Statement of problem. Various studies are present to increase the strength and surface hardness of heat polymerized acrylic resin by addition of material or surface treatments. The present study to evaluate an effect of silica nanoparticles on flexural strength and surface hardness of heat polymerized acrylic resin.
Purpose. The purpose of this study was effect of silica nanoparticles, incorporated into Polymethyl Methacrylate, on flexural strength and surface hardness. The present study compared the effect of silanated and non silanated silica nanoparticles on the flexural strength and surface hardness of heat polymerized acrylic resin.
Material and Methods. A total of 270 acrylic bars were fabricated, in two batches of 135 each, for testing flexural strength by universal testing machine and surface hardness determined using a digital micro Vickers hardness tester. The control group and subgroups had a sample size of 15 each with varied concentrations of nanoparticles by weight. The fabricated samples were tested for flexural strength and surface hardness.
Results. Flexural strength was highest for PMMA (Polymethyl methacrylate) with 0.5% silanated silica nano particles as fillers. In both the groups, the flexural strength decreased with increase in filler concentration. Surface hardness was highest in the PMMA group with non-silanated nano particles as fillers at 5% concentration. In both groups the surface hardness improved with an increase in filler concentration. ANOVA and TUKEY’s HSD test were used. P<0.05 was considered statistically significant.
Conclusion. Lower concentrations of surface-treated silica nanoparticles should be used as fillers to enhance the flexural strength of commercially available heat polymerized acrylic resin.
Bangladesh Journal of Medical Science Vol.23 (Special Issue) 2024 p.S79-S86
Downloads
38
88
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Swathy Jayasoman, Anupama Prasad D, Jayaprakash K
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in the Bangladesh Journal of Medical Science agree to the following terms that:
- Authors retain copyright and grant Bangladesh Journal of Medical Science the right of first publication of the work.
Articles in Bangladesh Journal of Medical Science are licensed under a Creative Commons Attribution 4.0 International License CC BY-4.0.This license permits use, distribution and reproduction in any medium, provided the original work is properly cited.- Authors are able to enter into separate, additional contractual arrangements for the distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted to post their work online (e.g., in institutional repositories or on their website) as it can lead to productive exchanges, as well as greater citation of published work.