Effective synthesis of n-butyl salicylate over wash coated cordierite honeycomb by zirconia and its mixed oxides: a kinetic study
DOI:
https://doi.org/10.3329/bjsir.v53i1.35912Keywords:
Honeycomb, Solid acid catalyst, Transesterification, N-butyl salicylate, Kinetic studies, MonolithsAbstract
Cordierite honeycombs were coated with solid acid catalysts such as ZrO2 (Z), Mo(VI)/ZrO2 (MZ) and Pt-SO4 2-/ZrO2 (PSZ) were prepared and characterized for their physico-chemical properties. These catalytic materials were characterized for their total surface acidity, crystallinity, functionality, elemental analysis and morphology by using techniques such as NH3 -TPD, PXRD, FTIR, ICP-OES, SEM and TEM respectively. These honeycomb catalysts were used for the liquid phase transesterification reaction of methyl salicylate (MS) with n-butanol (n-BA). Optimization of reaction conditions such as reaction temperature, reaction time, amount of catalysts and molar ratio of the reactants were carried out to obtain maximum yield of transester (n-butyl salicylate). n-butyl salicylate is obtained as major product and di-butyl ether is obtained as minor product. Highest total transester 70 % obtained by MZ and 80 % n-butyl salicylate and 10 % selectivity of di-butyl ether obtained in the presence of 0.4 g of honeycomb coated catalysts at a molar ratio of MS: n-BA 2:1, reaction temperature 403 K and reaction time 4 h. The energy of activation (16.81 and 14.92 kJ mol-1) and temperature coefficient (1.36 and 1.12) values of the MZ and PSZ were obtained from the kinetic studies. Pre-adsorption studies showed that the transesterification reaction methyl salicylate with n-butyl alcohol over honeycomb catalysts follows Langmuir-Hinshelwood mechanism. A reaction mechanism for transesterification is proposed based on the kinetic data. Reactivation and reusability studies of the honeycomb coated as well as powder form of catalysts up to 6 reaction cycles were also studied.
Bangladesh J. Sci. Ind. Res.53(1), 63-76, 2018
Downloads
21
21
Downloads
Published
How to Cite
Issue
Section
License
Bangladesh Council of Scientific and Industrial Research (BCSIR) holds the copyright to all contents published in Bangladesh Journal of Scientific and Industrial Research (BJSIR). A copyright transfer form should be signed by the author(s) and be returned to BJSIR.
The entire contents of the BJSIR are protected under Bangladesh Council of Scientific and Industrial Research (BCSIR) copyrights.
BJSIR is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC) Creative Commons Attribution-NonCommercial 4.0 International License which allows others remix, tweak, and build upon the articles non-commercially, and although their new works must also acknowledge and be non-commercial, they dont have to license their derivative works on the same terms.