Influence of NaCl on the formation of stoichiometric polycrystalline La0.85Na0.15MnO3
DOI:
https://doi.org/10.3329/bjsir.v54i4.44563Keywords:
La0.85Na0.15MnO3; Flux method; Structural propertiesAbstract
Origination of defects and loss of Na during the sintering process are the major problems for the conventional solid-state synthesis technique to form sodium (Na) doped lanthanum manganite. To minimize defect and Na loss during the sintering process, the sodium (Na) doped lanthanum manganite with 15% substitution of La by Na (La0.85Na0.15MnO3) was synthesized using the NaCl flux material incorporated with the conventional solid-state reaction technique (flux method). The amount of micro strain, lattice strain and dislocation density for the flux method to grow polycrystalline La0.85Na0.15MnO3were detected successfully. The structural study using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Energy Dispersive Analysis X-Ray (EDAX) showed that the use of flux synthesis technique instead of conventional solid-state reaction technique was satisfactory to obtain stoichiometric La0.85Na0.15MnO3 polycrystalline structure with a smaller defect. From the closer inspection of the XRD spectrum for La0.85Na0.15MnO3 significantly showed a higher order layered structure for the cathode material for using this flux technique, which is a very important feature to increase the efficiency of the cathode material.
Bangladesh J. Sci. Ind. Res.54(4), 289-296, 2019
Downloads
30
40
Downloads
Published
How to Cite
Issue
Section
License
Bangladesh Council of Scientific and Industrial Research (BCSIR) holds the copyright to all contents published in Bangladesh Journal of Scientific and Industrial Research (BJSIR). A copyright transfer form should be signed by the author(s) and be returned to BJSIR.
The entire contents of the BJSIR are protected under Bangladesh Council of Scientific and Industrial Research (BCSIR) copyrights.
BJSIR is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC) Creative Commons Attribution-NonCommercial 4.0 International License which allows others remix, tweak, and build upon the articles non-commercially, and although their new works must also acknowledge and be non-commercial, they dont have to license their derivative works on the same terms.