The Effects Of Radiation And Heat Generation On Magnetohydrodynamic(MHD) Natural Convection Flow Along A Vertical Flat Plate In Presence Of Viscous Dissipation
DOI:
https://doi.org/10.3329/diujst.v6i1.9330Keywords:
Radiation, Heat Generation Parameter, Viscous Dissipation Parameter, MHD, Finite Difference Method, Vertical Flat Plate.Abstract
This article investigates the effects of radiation and heat generation on magnetohydrodynamic( MHD) natural convection flow of an incompressible viscous electrically conducting fluid along a vertically placed flat plate in presence of viscous dissipation and heat conduction. Appropriate transformations were employed to transform governing equations of this flow into dimensionless form and then solved using the implicit finite difference method with Keller box scheme. The resulting numerical solutions of transformed governing equations are presented graphically in terms of velocity profile, temperature distribution, skin friction coefficient and surface temperature and the effects of magnetic parameter (M), radiation parameter (R), Prandtl number (Pr) and heat generation parameter (Q) and viscous dissipation parameter (N) on the flow have been studied with the help of graphs.
Keywords: Radiation; Heat Generation Parameter; Viscous Dissipation Parameter; MHD; Finite Difference Method; Vertical Flat Plate.
DOI: http://dx.doi.org/10.3329/diujst.v6i1.9330
DIUJST 2011; 6(1): 20-29
Downloads
125
116
Downloads
How to Cite
Issue
Section
License
Copyright and Reprint Permissions
This journal and the individual contributions contained in it are protected by the copyright of Daffodil International University. Photocopies of this journal in full or parts for personal or classroom usage may be allowed provided that copies are not made or distributed for profit or commercial advantage and the copies bear this notice and the full citation. Copyright for components of this work owned by others than Daffodil International University must be honored. Abstracting with credit is permitted. Specific permission of the publisher and payment of a fee are required for multiple or systemic copying, copying for advertising or promotional purposes, resale, republishing, posting on servers, redistributing to lists and all forms of document delivery.
Subscribers may reproduce table of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the publisher is required for resale and distribution outside the institution. Permission of the publisher is required for all other derivative works, including compilations and translations. Except as outlined above, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the publisher.
Permissions may be sought directly from Daffodil International University; email: diujst@daffodilvarsity.edu.bd.