Convective Flow Of Micropolar Fluids Along An Inclined Flat Plate With Variable Electric Conductivity And Uniform Surface Heat Flux
DOI:
https://doi.org/10.3329/diujst.v6i1.9336Keywords:
Convective flow, Micropolar fluid, Heat transfer, Electric conductivity, Inclined plate, Locally self-similar solutionAbstract
Magnetohydrodynamic (MHD) twodimensional steady convective flow and heat transfer of micropolar fluids flow along an inclined flat plate with variable electric conductivity and uniform surface heat flux has been analyzed numerically in the presence of heat generation. With appropriate transformations the boundary layer partial differential equations are transformed into nonlinear ordinary differential equations. The local similarity solutions of the transformed dimensionless equations for the velocity flow, microrotation and heat transfer characteristics are assessed using Nachtsheim- Swigert shooting iteration technique along with the sixth order Runge-Kutta-Butcher initial value solver. Numerical results are presented graphically in the form of velocity, microrotation, and temperature profiles within the boundary layer for different parameters entering into the analysis. The effects of the pertinent parameters on the local skin-friction coefficient (viscous drag), plate couple stress and the rate of heat transfer (Nusselt number) are also discussed and displayed graphically.
Keywords: Convective flow; Micropolar fluid; Heat transfer; Electric conductivity; Inclined plate; Locally self-similar solution
DOI: http://dx.doi.org/10.3329/diujst.v6i1.9336
DIUJST 2011; 6(1): 69-79
Downloads
126
236
Downloads
How to Cite
Issue
Section
License
Copyright and Reprint Permissions
This journal and the individual contributions contained in it are protected by the copyright of Daffodil International University. Photocopies of this journal in full or parts for personal or classroom usage may be allowed provided that copies are not made or distributed for profit or commercial advantage and the copies bear this notice and the full citation. Copyright for components of this work owned by others than Daffodil International University must be honored. Abstracting with credit is permitted. Specific permission of the publisher and payment of a fee are required for multiple or systemic copying, copying for advertising or promotional purposes, resale, republishing, posting on servers, redistributing to lists and all forms of document delivery.
Subscribers may reproduce table of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the publisher is required for resale and distribution outside the institution. Permission of the publisher is required for all other derivative works, including compilations and translations. Except as outlined above, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the publisher.
Permissions may be sought directly from Daffodil International University; email: diujst@daffodilvarsity.edu.bd.