Steady MHD Flow of Viscous Fluid between Two Parallel Porous Plates with Heat Transfer in an Inclined Magnetic Field
DOI:
https://doi.org/10.3329/jsr.v7i3.22574Keywords:
Heat transfer, Temperature dependent, Porous plates, Conducting fluid, Magnetic field.Abstract
The steady flow behavior of a viscous, incompressible and electrically conducting fluid between two parallel infinite insulated horizontal porous plates with heat transfer is investigated along with the effect of an external uniform transverse magnetic field, the action of inflow normal to the plates, the pressure gradient on the flow and temperature. The fluid viscosity is supposed to vary exponentially with the temperature. A numerical solution for the governing equations for both the momentum transfer and energy transfer has been developed using the finite difference method. The velocity and temperature distribution graphs have been presented under the influence of different values of magnetic inclination, fluid pressure gradient, inflow acting perpendicularly on the plates, temperature dependent viscosity and the Hartmann number. In our study viscosity is shown to affect the velocity graph. The flow parameters such as viscosity, pressure and injection of fluid normal to the plate can cause reverse flow. For highly viscous fluid, reverse flow is observed. The effect of magnetic force helps to restrain this reverse flow.
Downloads
232
259
Downloads
Published
How to Cite
Issue
Section
License
© Journal of Scientific Research
Articles published in the "Journal of Scientific Research" are Open Access articles under a Creative Commons Attribution-ShareAlike 4.0 International license (CC BY-SA 4.0). This license permits use, distribution and reproduction in any medium, provided the original work is properly cited and initial publication in this journal. In addition to that, users must provide a link to the license, indicate if changes are made and distribute using the same license as original if the original content has been remixed, transformed or built upon.