Magnetohydrodynamics Mixed Convection Around a Heat Conducting Horizontal Circular Cylinder in a Rectangular Lid-driven Cavity with Joule Heating
DOI:
https://doi.org/10.3329/jsr.v1i3.2597Keywords:
Mixed convection, Finite element method, Cylinder diameter, Lid-driven cavity, Diffusion.Abstract
In the present paper, a study of magnetohydrodynamic (MHD) mixed convection around a heat conducting horizontal circular cylinder placed at the center of a rectangular cavity along with joule heating has been carried out. Steady state heat transfer by laminar mixed convection has been studied numerically by solving the equations of mass, momentum and energy to determine the fluid flow and heat transfer characteristics in the cavity as a function of Richardson number, Hartmann number and the cavity aspect ratio. The results are presented in the form of average Nusselt number at the heated surface; average fluid temperature in the cavity and temperature at the cylinder center for the range of Richardson number, Hartmann number and aspect ratio. The streamlines and isotherms are also presented. It is found that the streamlines, isotherms, average Nusselt number, average fluid temperature and dimensionless temperature at the cylinder center strongly depend on the Richardson number, Hartmann number and the cavity aspect ratio.
Keywords: Mixed convection; Finite element method; Cylinder diameter; Lid-driven cavity; Hartmann number.
© 2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.
DOI: 10.3329/jsr.v1i3.2597 J. Sci. Res. 1 (3), 461-472 (2009)
Downloads
133
131
Downloads
Published
How to Cite
Issue
Section
License
© Journal of Scientific Research
Articles published in the "Journal of Scientific Research" are Open Access articles under a Creative Commons Attribution-ShareAlike 4.0 International license (CC BY-SA 4.0). This license permits use, distribution and reproduction in any medium, provided the original work is properly cited and initial publication in this journal. In addition to that, users must provide a link to the license, indicate if changes are made and distribute using the same license as original if the original content has been remixed, transformed or built upon.