Nano-sized SnO<sub>2</sub> Photocatalysts: Synthesis, Characterization and Their Application for the Degradation of Methylene Blue Dye
DOI:
https://doi.org/10.3329/jsr.v8i3.27524Keywords:
Nanoparticles, SnO2, Photocatalyst, Photodegradation, Methylene blue.Abstract
In the present study, tin oxide (SnO2) nanoparticles were prepared by precipitation method using tin tetrachloride (SnCl4) as precursor and ammonia solution as precipitating agent followed by calcination at 400 ºC for 2 h. As-prepared SnO2 particles were characterized by X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR). The powder XRD results revealed that the SnO2 nanoparticles had a typical tetragonal rutile (cassiterite) structure and the average crystallite size calculated by using the Debye Scherrer equation was found to be approximately 5.1 nm. The photocatalytic activity of the as-prepared photocatalysts was investigated by degrading methylene blue (MB) dye. The effect of pH, catalyst loading and initial dye concentration on photocatalytic degradation was investigated. Results showed that the SnO2 nanoparticles represented excellent photocatalytic activity for the degradation of MB under UV light with 200 min of irradiation time. The results also showed that the pH of solution had a direct influence on the photocatalysis process and basic pH was favorable for the degradation of MB. The effect of pH on photocatalytic activity was explained with the help of zero point charge (pHpzc). Furthermore, the photocatalysts could be easily recycled without significant change in the catalytic activity.
Downloads
92
108
Downloads
Published
How to Cite
Issue
Section
License
© Journal of Scientific Research
Articles published in the "Journal of Scientific Research" are Open Access articles under a Creative Commons Attribution-ShareAlike 4.0 International license (CC BY-SA 4.0). This license permits use, distribution and reproduction in any medium, provided the original work is properly cited and initial publication in this journal. In addition to that, users must provide a link to the license, indicate if changes are made and distribute using the same license as original if the original content has been remixed, transformed or built upon.